
An Abstraction-Preserving Block Matrix
Implementation in Maple

Stephen M. Watt
Ontario Research Centre for Computer Algebra

and Cheriton School of Computer Science
University of Waterloo, Canada
smwatt@uwaterloo.ca

D. J. Jeffrey
Ontario Research Centre for Computer Algebra

and Department of Mathematics
University of Western Ontario, Canada

djeffrey@uwo.ca

Abstract—An implementation supporting recursive block, or
partitioned, matrices in Maple is described. A data structure is
proposed and support functions are defined. These include con-
structor functions, basic operations such as addition and product,
and inversion. The package is demonstrated by calculating the
LU factors of a block-defined matrix.

I. INTRODUCTION

Partitioning a matrix into blocks is an elementary concept
in linear algebra [2], [5], [6]. It is supported in all major
mathematical software systems, but typically only as a means
for building a matrix or specifying submatrices – a matrix is
flattened before operations can be performed with it. However,
a data representation of matrices with elements themselves
being matrices, and potentially recursively so, has several
useful properties:

• dense, sparse and structured matrices can be represented
with reasonable space efficiency [1], [4],

• block matrices provide a middle ground that avoids
pathological communication bottlenecks in row-major or
column-major code [3], and

• multiplication and related algorithms can have improved
computational time complexity [7].

It should be remembered that when a matrix is viewed as
having blocks as elements, the elements are clearly non-
commutative. It is easy to see how ring operations may be
performed. For example, given

M1 =

[
A B
C D

]
and M2 =

[
E F
G H

]
,

one may compute M1 +M2 if corresponding blocks have the
same shape so A+E, B+F , C+G, and D+H are defined.
Similarly, one may compute M1M2 if the block dimensions
allow the multiplications AE, BG, AF , AH , CE, DG, CF ,
and DH . These requirements apply recursively if A, B, etc
are themselves block matrices. Provided M1 and M2 are non-
singular, it is also possible to compute their inverses using only
block operations, even if all of the sub-blocks are singular. A
theoretical basis for the operations has been outlined in [10].

An implementation is described here which preserves and re-
spects the block structure of matrices while allowing the usual

matrix operations to be performed. The functions implemented
are verified by using them to compute an LU factorization of
a matrix.

The implementation described here is in Maple, allowing the
ultimate matrix elements to be symbolic expressions. To work
efficiently with block matrices with floating point or finite
field entries, a compiled language such as C++, Rust, Julia
or Aldor [8] may be used. All of these offer parametric types
and operator overloading, allowing an elegant implementation.

The remainder of the paper is organized as follows: Section II
describes the Maple data structure we use for recursive block
matrices and some of the considerations in the choice. Sec-
tion III presents a Maple module used to encapsulate the
data representation and describes the operations provided.
Section IV gives some details about the implementation,
pointing to some of the considerations in structuring the
code. Section V shows how the block operations may be
used to compute PLU decomposition of square non-singular
matrices. Section VI gives examples of using the package and
Section VII outlines some directions for future work. Finally,
VIII gives some brief conclusions.

II. DATA STRUCTURE

We describe here the data structure we have used for block
matrices. As Maple does not provide lightweight structures
with named fields, we have used a symbolic function appli-
cation, _BM(kind, er, ec, val). This is represented
internally as a pair with first element being a pointer to
the name _BM and second element being a pointer to a
four element “expression sequence” which is basically four
consecutive words in memory plus a header.

The first element, kind, is a name being one of zero,
scalar, matrix or rblock. The meaning of these is
described below.

The second and third elements, er and ec, are integers
giving the number of leaf rows and columns, respectively. For



example, the block matrix
[
11 12
13 14

] [
15 16 17
18 19 20

]
[
21 22

] [
23 24 25

]


would have er = 3 and ec = 5.

The meaning of the fourth element, val, depends on the value
of kind:

• When kind = zero, the block is interpreted as a zero
matrix whose entries are not explicitly stored. The value
of val is always the integer 0.

• When kind = scalar, the block is interpreted as a
diagonal matrix equal to val times the er×er identity.
To be well-formed, it is required that er = ec.

• When kind = matrix, val is a er × er Maple
object of type Matrix whose entries are leaf elements
of the block matrix.

• When kind = rblock, val is a Maple object of type
Matrix whose entries are themselves block matrices.
(The name connotes “recursive block”.)
To be well formed, two conditions are required:

– Each of the blocks in a given row must have the
same er, and the sum of the er values of all the
rows must equal the er value of the whole block
matrix.

– Each of the blocks in a given column must have the
same ec, and the sum of the ec values of all the
columns must equal the ec value of the whole block
matrix.

There are several optimizations that could be done to make
this representation more space efficient, but the above repre-
sentation is convenient development purposes. For example,
it would be possible to use the symbolic kind names in
place of _BM and have different length expression sequences
for each kind. It would also be possible to have a kind for
general diagonal matrices, and so on. It would also be possible
to omit the er and ec fields in some of the kinds, since
these can sometimes be determined by inspection, but having
them always present gives more uniform code and avoids
computation.

III. MODULE

All of the operations on block matrices are collected in a
Maple module that hides the representation and presents an
abstract interface. The following operations are provided.

A. Construction operations:

• BM(vals) constructs a block matrix from a list of lists
or an object of type Matrix. The kind is rblock if
all the entries of vals are block matrices. Otherwise the
kind is matrix.
Finer control is provided by the constructors below.

• zeroBM(er, ec) gives kind zero of dimension
er × ec.

• scalarBM(er, s) gives kind scalar of dimen-
sion er×er, interpreted as a matrix with diagonal entries
equal to s and off-diagonal entries equal to 0.

• matrixBM(m) gives kind matrix with entries given
by the matrix m.

• rblockBM(m) gives kind rblock with entries them-
selves being block matrices given by the elements of
matrix m.

• genDiagBM(er, ec, v) gives a block matrix of
dimension er × er. If v is zero, the kind is zero.
If er = ec, the kind is scalar. Otherwise the kind
is matrix. This operation is useful when constructing
sub-blocks in arithmetic operations.

• shapedDiagBM(M, v) is the same as
genDiagBM(er, ec, v) with er and ec taken
from the dimensions of matrix M.

B. Operations to abstract the type:

• ‘type/BM‘(B) test whether B is a block matrix. Re-
turns true or false. Allows Maple statements of the
form if type(A, ’BM’) then .. and for block
matrices to participate in Maple’s structured type system.
The grave characters “‘” allow the solidus “/” to appear
in the name.

• nEltRows(B) and nEltCols(B) give the number of
rows and columns, respectively, when B is viewed as a
usual matrix.

• elt(B,r,c) return the (r,c) element, when B is
viewed as a usual matrix.

• nBlockRows(B) and nBlockCols(B) give the
number of rows and columns of blocks. If kind is not
rblock then these operations return 1.

• block(B,r,c) return the (r,c) block, when B is
viewed as a block matrix.

Operations to traverse the data structure:

• map(f, A) returns a block matrix whose elements are
those of A with the function f applied.
Logically, if R = map(f,A), then Rij = f(Aij), for
1 ≤ i ≤ er, 1 ≤ j ≤ ec.
The resulting matrix always has the same block structure
as A, but the kinds of the blocks can change. For example
if f(0) ̸= 0 then a zero block will have a matrix block
as its image.

• zip(f, A, B) returns a block matrix whose elements
are the values of f applied to pairs of corresponding
elements from A and B.
Logically, if R = zip(f,A,B), then Rij = f(Aij , Bij),
for 1 ≤ i ≤ er, 1 ≤ j ≤ ec.
A and B must have the same dimension and block
structure and this will be the block structure of the result.
As with map, the kinds of the blocks can change. The
implementation handles combinations of different kinds



of blocks. The following combinations of kinds are
allowed:

– zero with any kind and any kind with zero
– scalar with any kind and any kind with scalar
– matrix with matrix and
– rblock with rblock.

• blockKind(B) and blockVal(B) return the kind
and val fields B respectively. These are lower-level
operations, not intended for external use, but which are
required when traversing or combining block matrix data
structures such as with map or zip.

C. Matrix ring operations:

• plus(A, B) computes A + B. The same shape rules
apply as for zip.

• ‘minus‘(A, B) computes A − B. The same shape
rules apply as for zip. The grave characters “‘” are
required because minus is a keyword in Maple meaning
set difference.

• neg(A) -A. The same shape rules apply as for map.
• times(A, B) computes A · B. The inputs must be

structured such that the required products of blocks is
defined. The same combinations of blocks are allowed as
for zip, provided the dimensions allow matrix multipli-
cation.
At present, only classical matrix multiplication is used,
though it would be straightforward to use Strassen recur-
sive multiplication beyond a given size.

• hermTrans(A) computes the Hermitian transpose of
A, that is, logically, Aij = Aji, where z denotes complex
conjugation. The blocks of the result are of the same
kinds as transposed blocks of A.

D. Inversion-related operations:

• inv(M) computes the multiplicative inverse of M , that
is A−1. If the block matrix is singular, then FAIL is
returned.
At present only 1 × 1 and 2 × 2 blocks are handled,
though it would be straightforward to handle more rows
and columns of blocks by grouping them.
First, tryInv is called, attempting to compute the
inverse assuming that the (1, 1) block is non-singular.
If that fails, the more general method [9] provided by
invByMTM is used.
In principle, if the (1, 1) block is singular, it would be
possible to permute the blocks and try again to see if any
other block is non-singular. But whether the multiple tries
would give a smaller expected execution time less than
the general method may depend on the element type. An
alternative would be to precondition by multiplying with
a random invertible matrix.

• tryInv(M) attempt to invert M using[
A B
C D

]−1

=

[
A−1 +A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

]

where SA = D − CA−1B is the Schur complement of
A. This may fail by having A singular, even if M is
invertible. However, if M and A are both invertible, then
so will be SA.

• invByMTM(M) computes the inverse of M using

M−1 = (M∗M)−1M∗,

where M∗ is the Hermitian transpose of M . For formally
real or complex element rings, M∗M will have invertible
principal minors. In particular its (1, 1) will be invertible
by tryInv.

• schurComp(M, i, j, inv,...) computes the
Schur complement of the (i, j) block in M . The inversion
required to compute the Schur complement is performed
using the inv function parameter. Optional extra argu-
ments allows the return of some of the products used in
computing the Schur complement. This is discussed in
more detail below.

• PLU_Decomp(M) compute the PLU decomposition of
M , if possible, or return FAIL. The result is a triple
(P,L, U) of block matrices, where P is represents a
permutation matrix, L is represents a lower triangular
with diagonal elements equal to 1, and U is represents an
upper triangular matrix. The block matrices L and U are
triangular as matrices of elements, not only as matrices of
blocks. For example, the (1, 1) block of L is also lower
triangular, and recursively.

E. Local Utilities:

• isWellFormed(A) returns true or false according
as whether the rules about row and column dimensions
are satisfied.

• isSameShape(A, B) tests whether A and B have the
same shape, meaning the same dimension and kinds of
blocks, and recursively.

• mustBeBM(A) gives an error if A is not a block matrix.
• orElse(bool, args) has no action if bool is true.

if bool is false it gives an error with args as
arguments.

• never(args) is for locations in the code that should
never be reached. It gives an error with args as argu-
ments.

IV. SOME IMPLEMENTATION DETAILS

We now discuss some of the details of the implementation to
illustrate the package.

A. Traversal Functions

We begin by showing how the traversal functions deal with
blocks of the varying kinds. The map function is shown
in Figure 1. The way in which the function f is applied
depends on the kind of block matrix. On line 5 we see how
genDiagBM is used to sort out the appropriate kind for a
block containing elements equal to f(0). For kind matrix,



1 export map := proc(f, A)
2 local kind, er, ec, v;
3 er, ec := nEltRows(A), nEltCols(A);
4 kind, v := blockKind(A), blockVal(A);
5 if kind = ’zero’ then genDiagBM(er, ec, f(0))
6 elif kind = ’scalar’ then scalarBM(er, f(v))
7 elif kind = ’matrix’ then matrixBM(:-map(f, v))
8 elif kind = ’rblock’ then rblockBM(:-map(b->map(f,b),
9 v))

10 else never("Malformed BlockMatrix", A)
11 fi
12 end:
13
14 export neg := A -> map(a->-a, A):

Fig. 1. Implementation of map and neg

1 # Zip requires compatible sub-blocks.
2 export zip := proc(f, A, B)
3 local ka, kb, va, vb, er, ec, br, bc, r, c, sfun;
4 mustBeBM(A); mustBeBM(B);
5 orElse(isSameShape(A, B),
6 "Incompatible matrices.", A, B);
7
8 ka, va := blockKind(A), blockVal(A);
9 kb, vb := blockKind(B), blockVal(B);

10 er, ec := nEltRows(A), nEltCols(A); # Same as B
11 br, bc := nBlockRows(A),nBlockCols(A); # Same as B
12
13 if (ka = ’zero’ or ka = ’scalar’) and
14 (kb = ’zero’ or kb = ’scalar’) then
15 genDiagBM(er, ec, f(va,vb))
16 elif ka = ’matrix’ and kb = ’matrix’ then
17 matrixBM(:-zip(f, va, vb))
18 elif ka = ’rblock’ and kb = ’rblock’ then
19 rblockBM(:-zip((a,b)-> zip(f,a,b), va, vb))
20 elif ka = ’zero’ or ka = ’scalar’ then
21 if kb = ’matrix’ then
22 sfun := proc(b)
23 if r = c then f(va, b) else b fi
24 end;
25 matrixBM([seq([seq(sfun(vb[r,c]),
26 c=1..ec)], r=1..er)])
27 elif kb = ’rblock’ then
28 sfun := proc(b) if r <> c then b
29 else zip(f, shapedDiagBM(b, va), b) fi
30 end;
31 rblockBM([seq([seq(sfun(vb[r,c]),
32 c=1..bc)], r=1..br)])
33 else never("Malformed BlockMatrix", B)
34 fi
35 elif kb = ’zero’ or kb = ’scalar’ then
36 if ka = ’matrix’ then
37 sfun := proc(a)
38 if r = c then f(a, vb) else a fi
39 end;
40 matrixBM([seq([seq(sfun(va[r,c]),
41 c=1..ec)], r=1..er)])
42 elif ka = ’rblock’ then
43 sfun := proc(a) if r <> c then a
44 else zip(f, a, shapedDiagBM(a, vb)) fi
45 end;
46 rblockBM([seq([seq(sfun(va[r,c]),
47 c=1..bc)], r=1..br)])
48 else never("Malformed BlockMatrix", A)
49 fi
50 else
51 never("Malformed BlockMatrix pair", A, B)
52 fi
53 end:
54
55 export plus := (A, B) -> zip((a,b)->a+b, A, B):
56 export ‘minus‘ := (A, B) -> zip((a,b)->a-b, A, B);

Fig. 2. Implementation of zip, plus and ‘minus‘

1 export times := proc(A, B)
2 local ka, kb, va, vb,
3 era, eca, erb, ecb, bra, bca, brb, bcb,
4 r, c, rows, row, i, elt;
5 mustBeBM(A); mustBeBM(B);
6
7 ka, va := blockKind(A), blockVal(A);
8 era,eca := nEltRows(A), nEltCols(A);
9 bra,bca := nBlockRows(A), nBlockCols(A);

10
11 kb, vb := blockKind(B), blockVal(B);
12 erb,ecb := nEltRows(B), nEltCols(B);
13 brb,bcb := nBlockRows(B), nBlockCols(B);
14
15 orElse(eca = erb and bca = brb,
16 "Incompatible Shapes", eca,erb,bca,brb);
17
18 if ka = ’zero’ or kb = ’zero’ then
19 zeroBM(era,ecb)
20 elif ka = ’scalar’ then map(b->va * b, B)
21 elif kb = ’scalar’ then map(a->a * vb, A)
22 elif ka = ’matrix’ then
23 orElse(kb = ’matrix’,
24 "Incompatible BlockMatrix values", A,B);
25 matrixBM(va . vb)
26 elif ka = ’rblock’ then
27 orElse(kb = ’rblock’,
28 "Incompatible BlockMatrix values", A,B);
29 rows := NULL;
30 for r from 1 to bra do
31 row := NULL;
32 for c from 1 to bcb do
33 elt := times(block(A,r,1),
34 block(B,1,c));
35 for i from 2 to brb do
36 elt := plus(elt,
37 times(block(A,r,i),
38 block(B,i,c)))
39 od;
40 row := row, elt;
41 od;
42 rows := rows, [row];
43 od;
44 rblockBM([rows])
45 else
46 never("Malformed BlockMatrix", A)
47 fi
48 end:

Fig. 3. Implementation of times

1 # Arguments named opt_... optionally pass back values.
2
3 export schurComp :=
4 proc(A, i, j, inv, opt_ainv, opt_cainv, opt_ainvb)
5 local a,b,c,d, ainv, cainv;
6
7 orElse(nBlockRows(A)=2 and nBlockCols(A)=2,
8 "Unhandled Schur comploement");
9

10 # If i is 1 or 2 then 3-i is 2 or 1, respectively.
11 a := block(A,i,j); b := block(A,i,3-j);
12 c := block(A,3-i,j); d := block(A,3-i,3-j);
13
14 ainv := inv(a);
15 cainv := times(c, ainv);
16
17 if nargs >=5 then opt_ainv := ainv fi;
18 if nargs >=6 then opt_cainv := cainv fi;
19 if nargs >=7 then opt_ainvb := times(ainv, b) fi;
20
21 ‘minus‘(d, times(cainv, b))
22 end:

Fig. 4. Implementation of Schur complement in 2× 2 matrix



the builtin Maple map is used to apply f to the matrix
elements. It is invoked using :-map on line 7 as otherwise
the map being defined would be called recursively. For kind
rblock, the builtin map is used to apply the anonymous
function b->map(f,b) to the sub-blocks. The call to map
in the anonymous function is a recursive call to the map being
defined. In all cases, the last expression evaluated is returned
from the function, as is usual in Maple.

With map defined this way, it is possible to define neg as
shown on line 14.

The zip function is considerably more involved and illustrates
how different kinds of blocks may be combined, as shown in
Figure 2. After some initial checks, the function begins by
handling the cases where both A and B are either of kind zero
or scalar on line 15. That is, neither are stored as explicit
matrices and the resulting block is computed with only a single
call to f. Next, the cases where both blocks are of the same
kind are handled on lines 17 and 19. The more complicated
cases come when explicit and implicit blocks are combined,
that is when a zero or scalar block is combined with
a matrix or rblock. These are handled in the sections
starting on lines 20 and 35. With these details sorted out, it
is simple to define plus and ‘minus‘ as shown lines 55
and 56.

B. Ring Operations

We have already seen how neg, plus and ‘minus‘ can
be implemented with functional traversal operations. It would
be possible to write a general convolution function and use
that for multiplication, but since there is only one use at
present, we specialize it for times as shown in Figure 3. The
cases of multiplying by a zero block are simple to handle.
Multiplying by a scalar block is likewise easy. When both
blocks are matrix blocks, the builtin matrix multiplication is
used. When both are rblock blocks, classical multiplication
with sub-blocks as elements is performed, in which case the
multiplication of sub-blocks is done with a recursive call to
times.

The implementation of Hermitian transpose is obvious and
not shown. The placement of the sub-blocks is transposed
and they are individually Hermitian-transposed. For zero
blocks, the row and column dimensions are swapped. For
scalar blocks, the value is conjugated, and for matrix
blocks, the builtin Maple HermitianTranspose from the
LinearAlgebra package is used.

C. Inversion-Related Operations

We implement inversion only for matrices with a single block
or with 2 × 2 blocks. If matrices have more blocks, then it
would be possible to group them.

To compute inverses of block matrices, the Schur complement
is required. The implementation is shown in Figure 4. The
function schurComp implements the formula SA = D −

1 local tryInvInner := proc(A)
2 local ka, va, br, bc, ainv, cainv, ainvb,
3 sa, sainv, ainvbsainv;
4
5 ka, va := blockKind(A), blockVal(A);
6
7 if ka = ’zero’ then
8 error singularError
9 elif ka = ’scalar’ then

10 scalarBM(nEltRows(A), tryInvElement(va))
11 elif ka = ’matrix’ then
12 matrixBM(tryInvMatrix(va))
13 elif ka = ’rblock’ then
14 br, bc := nBlockRows(A), nBlockCols(A);
15 if br = 1 and bc = 1 then
16 rblockBM([[tryInvInner(va[1,1])]])
17 elif br = 2 and bc = 2 then
18 sa := schurComp(A, 1, 1, tryInvInner,
19 ainv, cainv, ainvb);
20 sainv := tryInvInner(sa);
21 ainvbsainv := times(ainvb, sainv);
22 rblockBM([
23 [plus(ainv, times(ainvbsainv,cainv)),
24 neg(ainvbsainv)],
25 [neg(times(sainv, cainv)),
26 sainv]
27 ])
28 else
29 error "Unhandled block structure";
30 fi
31 else
32 never("Malformed BlockMatrix", A)
33 fi
34 end:

Fig. 5. Implementation of tryInv

CA−1B where A can be any of the (1, 1), (1, 2), (2, 1) or
(2, 2) blocks and D is the block diagonally opposite. This is
achieved on lines 11 and 12 using the indexing trick that if i is
1 or 2, then 3− i is 2 or 1, respectively. The fourth argument
to the function is the inversion routine to use, as different
ones may be used in different situations. In computing the
Schur complement, certain matrix products are or may be
formed. These may be useful to the caller, so the function
schurComp allows optional extra arguments to pass back
values. This occurs on lines 17 to 19 where arguments allow
A−1, CA−1 and A−1B to be returned.

With the Schur complement in place, it is possible to provide
block matrix inverse. The first step is to try to apply the
formula given for tryInv in Section III-D. The function
tryInv sets up a catch point so that attempting to invert
any singular sub-block can immediately exit to the top level.
We note that it is possible that all sub-blocks be singular even
though the block matrix as a whole is non-singular, e.g.

[
1 0
0 0

] [
0 0
1 0

]
[
0 1
0 0

] [
0 0
0 1

]
 .

The recursive function tryInvInner is shown in Figure 5.
On line 8 an error is raised, throwing the value of the variable
singularError. This is caught by the top-level tryInv.
The functions tryInvElement and tryInvMatrix are
trivial wrappers of the built in inversions of scalars and



matrices that likewise raise singularError as required.
On line 19 the function schurComp is called with all the
optional arguments to receive the auxiliary matrix products
useful in computing the inverse.

The function invByMTM computes (M∗M)−1M∗ using
tryInv. If M is invertible, then the cal to tryInv will
not fail.

V. PLU DECOMPOSITION

One of the goals of this work was to implement the ideas
of [10], and, in particular, the description of PLU decompo-
sition of non-singular block matrices using only block opera-
tions. As described in Section III-D, the PLU decomposition
of a matrix M is a triple, (P,L, U) such that M = PLU ,
P is a permutation matrix, L is lower triangular and U is
upper triangular. We require L and U to be triangular element-
wise, not just block-wise, and we take the disambiguating
convention that the diagonal of L contains 1s.

For the present, we take the simplifying assumption that M
is a square block matrix and the leading principal minors of
M are non-singular. Then, as shown in [10], if

M =

[
A B
C D

]
,

and we seek M = LU such that

L =

[
L1 0
X L2

]
U =

[
U1 Y
0 U2

]
with L1 and L2 lower triangular and U1 and U2 upper triagular,
we may compute

L1U1 = A recursively

X = CU−1
1

Y = L−1
1 B

L2U2 = D −XY recursively.

The implementation of the core 2×2 rblock case is shown in
Figure 6. Notice that we are able to use the functions described
so far to provide relatively easy to read, natural code.

VI. EXAMPLES

We now give examples of using the BlockMatrix module.
In order to have results that can be shown in the article, we
use small examples with simple elements.

The first example is shown in Figures 7, 8 and 9. Figure 7
shows reading the file that defines the BlockMatrix pack-
age, sets some abbreviations and defines B55 to be a square
block matrix. Figure 8 shows the inversion of B55. This is
a simple case since the block B11 is non-singular. The figure
also shows a verification step that the matrix times its inverse
is the identity. Figure 9 shows the factorization of B55 into
its PLU decomposition.

1 a := block(M,1,1); b := block(M,1,2);
2 c := block(M,2,1); d := block(M,2,2);
3
4 ra, ca := nEltRows(a), nEltCols(a);
5 rb, cb := nEltRows(b), nEltCols(b);
6 rc, cc := nEltRows(c), nEltCols(c);
7 rd, cd := nEltRows(d), nEltCols(d);
8
9 # Check shape.

10 orElse(ra = ca and rd = cd,
11 "Principal block not square");
12 orElse(ra = rb and rc = rd and
13 ca = cc and cb = cd, "Bad shape");
14 n1 := ra;
15 n2 := rd;
16
17 # Compute decomposition recursively.
18 p1, l1, u1 := PLU_Decomp(a); # n1 x n1 all
19 l1inv := inv(l1); # n1 x n1
20 u1inv := inv(u1); # n1 x n1
21 x := times(c, u1inv); # n2 x n1
22 y := times(l1inv, b); # n1 x n2
23 y := times(inv(p1),y); # n1 x n2
24 t := ‘minus‘(d, times(x,y)); # n2 x n2
25 p2, l2, u2 := PLU_Decomp(t); # n2 x n2 all
26
27 # Zero blocks of the neede sizes.
28 z12 := zeroBM(n1,n2); z21 := zeroBM(n2,n1);
29
30 # Return P, L, U
31 BM([[p1, z12],[z21,p2]]), # P
32 BM([[l1,z12],[x,l2]]), # L
33 BM([[u1,y],[z21,u2]]) # U

Fig. 6. 2× 2 rblock case of PLU_Decomp

The second example, given in Figure 10, shows the inversion
of a block matrix where the principal minors are singular.

VII. FUTURE WORK

There are a number of additional operations and tidying up
that would be required for a generally useful block matrix
package, including

• matrix transpose (non-Hermitian!)
• re-organizing block matrices to desired compatible shapes
• inversion of other than 1 × 1 and 2 × 2 block matrices,

by grouping
• PLU decomposition of non-square matrices and matrices

with singular principal minors
• matrix norms
• eigenvalue computation
• and many others.

It would also be useful to examine the trade-offs in computing
inverses — when to try to pivot blocks to give a non-singular
(1, 1) block versus going to the more general (M∗M)−1M∗

method versus preconditioning by a matrix other than M∗.

Finally, it would be useful to experiment with a compiled
programming language with parametric polymorphism and
overloading to see how competitive these methods can be on
larger numerical examples.



Fig. 7. Definition of a block matrix

Fig. 8. Inversion of a block matrix

VIII. CONCLUSIONS

We have described a Maple implementation of recursive block
matrices and operations on them and we have shown that many
of the operations of linear algebra can be performed using
block operations only, without breaking the block abstraction.
The whole package is about 535 lines of Maple code.

REFERENCES

[1] S.K. Abdali and D.S. Wise. Experiments with quadtree representation
of matrices. In P. Gianni, editor, Proc. ISSAC 88, page 96–108. Springer
Verlag LNCS 358, 1989.

[2] Howard Anton. Elementary Linear Algebra, 11th ed. Wiley, 2014.

[3] Jack J. Dongarra, Robert A. van de Geun, and David W. Walker.
Scalability issues affecting the design of a dense linear algebra library.
J. Parallel and Distributed Computing, 22:52–537, 1994.

[4] Irene Gargantini. An effective way to represent quadtrees. Communi-
cations of the ACM, 25(12):905–910, 1982.

[5] Peter J. Olver and Chehrzad Skakiban. Applied Linear Algebra.
Springer, 2018.

[6] David Poole. Linear Algebra: a modern introduction. Cengage, 2015.
[7] V. Strassen. Gaussian elimination is not optimal. Numerische Mathe-

matik, 13:354–356, 1969.
[8] S.M. Watt. Aldor. In Handbook of Computer Algebra, page 265–270.

Springer Verlag, 2003.
[9] Stephen M. Watt. Pivot-free block matrix inversion. In Proc. 8th

International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC 2006), pages 151–155, 2006.

[10] Stephen M. Watt. Algorithms for recursive block matrices. In
Proc. LALO60: Matrices and Polynomials in Computer Algebra. also
arXiv:2407.03976v1, 2024.



Fig. 9. PLU decomposition of a block matrix

Fig. 10. Inversion of a block matrix with singular principal minors


