
An Abstraction-Preserving Block Matrix
Implementation in Maple

Stephen M. Watt
Ontario Research Centre for Computer Algebra

and Cheriton School of Computer Science
University of Waterloo, Canada
smwatt@uwaterloo.ca

D. J. Jeffrey
Ontario Research Centre for Computer Algebra

and Department of Mathematics
University of Western Ontario, Canada

djeffrey@uwo.ca

Abstract—A Maple implementation of partitioned matrices is
described. A recursive block data structure is used, with all
operations preserving the block abstraction. These include con-
structor functions, ring operations such as addition and product,
and inversion. The package is demonstrated by calculating the
PLU factorization of a block matrix.

I. INTRODUCTION

Partitioning a matrix into blocks is an elementary concept in
linear algebra [2], [5]. It is supported in all major mathematical
software systems, but typically only as a means for building a
matrix or specifying submatrices – a matrix is flattened before
operations can be performed with it. In more advanced studies,
however, the abstraction of a block matrix is often used to
present and analyse algorithms [8]. Therefore, an ability to
work with block matrices as computational objects is desirable.
In addition to theoretical studies, block matrices offer potential
benefits for computation:

• dense, sparse and structured matrices can be represented
with reasonable space efficiency [1], [4],

• block matrices provide a middle ground that avoids
pathological communication bottlenecks in row-major or
column-major code [3], and

• multiplication and related algorithms can have improved
computational time complexity [7].

The basic algebra of block matrices is covered in standard
references [6], and a theoretical basis for implementing oper-
ations has been outlined in [11].

An implementation is described here that preserves and re-
spects the block structure for all the usual matrix operations,
including inversion. The functions are demonstrated by using
them to compute a matrix PLU factorization.

The implementation is in Maple, allowing the ultimate matrix
elements to be symbolic expressions. To work efficiently with
block matrices with floating point or finite field entries, a
compiled language such as C++, Rust, Julia or Aldor [9]
may be used. All of these offer parametric types and operator
overloading, allowing elegant implementations.

The remainder of the paper is organized as follows: Sec-
tion II describes the Maple data structure we use for recursive

block matrices and some of the considerations in the choice.
Section III presents a Maple module used to encapsulate
the data representation and describes the operations provided.
Section IV shows how the block operations may be used to
compute PLU decomposition of square non-singular matrices.
Section V gives examples of using the package and Section VI
outlines some directions for future work. Finally, VII gives
some brief conclusions.

II. DATA STRUCTURE

We describe here the data structure we have used for block ma-
trices. We have used an expression tree structure with the inte-
rior nodes being symbolic function applications, _BM(kind,
er, ec, val). This is represented as a pair with the first
element being a pointer to the name _BM and second element
being a pointer to a four element “expression sequence” which
is basically four consecutive words in memory plus a header.

The first element, kind, is a name being one of zero,
scalar, matrix or rblock. The meaning of these is
described below.

The second and third elements, er and ec, are integers
giving the number of leaf rows and columns, respectively. For
example, the block matrix

[
11 12
13 14

] [
15 16 17
18 19 20

]
[
21 22

] [
23 24 25

]


would have er = 3 and ec = 5.

The meaning of the fourth element, val, depends on the value
of kind:

• When kind = zero, the block is interpreted as a zero
matrix whose entries are not explicitly stored. The value
of val is always the integer 0.

• When kind = scalar, the block is interpreted as a
diagonal matrix equal to val times the er×er identity.
To be well-formed, it is required that er = ec.

• When kind = matrix, val is a er × er Maple
object of type Matrix whose entries are leaf elements
of the block matrix.



• When kind = rblock, val is a Maple object of type
Matrix whose entries are themselves block matrices.
(The name connotes “recursive block”.)
To be well formed, two conditions are required:

– Each of the blocks in a given row must have the
same er, and the sum of their ec values must equal
the ec value of the whole block matrix.

– Each of the blocks in a given column must have the
same ec, and the sum of their er values must equal
the er value of the whole block matrix.

There are several optimizations that could be done to make this
representation more space efficient, but the above represen-
tation is convenient for development purposes. For example,
it would be possible to use the symbolic kind names in
place of _BM and have different length expression sequences
for each kind, or it would be possible to have a kind for
general diagonal matrices, and so on. It would also be possible
to omit the er and ec fields in some of the kinds, since
these can sometimes be determined by inspection, but having
them always present gives more uniform code and avoids
computation.

III. MODULE

All of the operations on block matrices are collected in a
Maple module that hides the representation and presents an
abstract interface. The following operations are provided.

A. Construction operations:

• BM(vals) constructs a block matrix from a list of lists
or an object of type Matrix. The kind is rblock if
all the entries of vals are block matrices. Otherwise the
kind is matrix.
Finer control is provided by the constructors below.

• zeroBM(er, ec) gives kind zero of dimension
er × ec.

• scalarBM(er, s) gives kind scalar of dimen-
sion er×er, interpreted as a matrix with diagonal entries
equal to s and off-diagonal entries equal to 0.

• matrixBM(m) gives kind matrix with entries given
by the matrix m.

• rblockBM(m) gives kind rblock with entries them-
selves being block matrices given by the elements of
matrix m.

• A number of other specialzied constructors.

B. Operations to abstract the type:

• ‘type/BM‘(B) tests whether B is a block matrix,
returning true or false. This allows Maple statements
of the form if type(A, ’BM’) then .. so block
matrices participate in Maple’s structured type system.

• nEltRows(B) and nEltCols(B) give the number of
leaf element rows and columns.

• elt(B,r,c) return the (r,c) leaf element, i.e. when
B is viewed as a un-partitioned matrix.

• nBlockRows(B) and nBlockCols(B) gives the
number of rows of blocks and columns of blocks.

• block(B,r,c) return the (r,c) block, i.e. when B is
viewed as a block matrix.

Operations to traverse the data structure:

• map(f, A) returns a block matrix whose elements are
those of A with the function f applied.
Logically, if R = map(f,A), then Rij = f(Aij), for
1 ≤ i ≤ er, 1 ≤ j ≤ ec. The resulting matrix always
has the same block structure as A, but the kinds of the
blocks can change. For example if f(0) ̸= 0 then a zero
block will have a matrix block as its image.

• zip(f, A, B) returns a block matrix whose elements
are the values of f applied to pairs of corresponding
elements from A and B. Logically, if R = zip(f,A,B),
then Rij = f(Aij , Bij), for 1 ≤ i ≤ er, 1 ≤ j ≤ ec. A
and B must have the same dimension and block structure
and this will be the block structure of the result. As
with map, the kinds of the blocks can change. The
implementation handles combinations of different kinds
of blocks. The following combinations of kinds are
allowed:

– zero with any kind and any kind with zero
– scalar with any kind and any kind with scalar
– matrix with matrix and
– rblock with rblock.

• blockKind(B) and blockVal(B) return the kind
and val fields B respectively. These are lower-level
operations, not intended for external use, but which are
required when traversing or combining block matrix data
structures such as with map or zip.

C. Matrix ring operations:

• plus(A, B) and ‘minus‘(A, B) compute A + B
and A − B respectively. The same shape rules apply as
for zip. The grave characters “‘” are required because
minus is a keyword in Maple meaning set difference.

• neg(A) computes -A. The shape rules are as for map.
• times(A, B) computes A · B. The inputs must be

structured such that the required products of blocks is
defined. The same combinations of blocks are allowed as
for zip. At present, only classical matrix multiplication
is used, though it would be straightforward to use Strassen
recursive multiplication beyond a given size.

• hermTrans(A) computes the Hermitian transpose of
A, that is, logically, Aij = Aji, where z denotes complex
conjugation. The blocks of the result are of the same
kinds as transposed blocks of A.

D. Inversion-related operations:

• inv(M) computes the multiplicative inverse of M , that
is A−1. If the block matrix is singular, then FAIL is
returned. At present only 1 × 1 and 2 × 2 blocks are



handled, though it would be straightforward to handle
more rows and columns of blocks by grouping them.

First, tryInv is called, attempting to compute the
inverse assuming that the (1, 1) block is non-singular.
If that fails, the more general method [10] provided by
invByMTM is used.

In principle, if the (1, 1) block is singular, it would be
possible to permute the blocks and try again to see if
any other block is non-singular. But whether the multiple
tries would give a better expected execution time less than
the general method may depend on the element type. An
alternative would be to precondition by multiplying with
a random invertible matrix.

• tryInv(M) attempts to invert M using[
A B
C D

]−1

=

[
A−1 +A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

]
where SA = D − CA−1B is the Schur complement of
A. This may fail by having A singular, even if the whole
matrix is invertible. However, if the whole matrix and A
are both invertible, then SA will be as well.

• invByMTM(M) computes the inverse of M using

M−1 = (M†M)−1M†,

where M† is the Hermitian transpose of M . For formally
real or complex element rings, M†M will have invertible
principal minors. In particular its (1, 1) will be invertible
by tryInv.

• schurComp(M, i, j, inv,...) computes the
Schur complement of the (i, j) block in M . The inversion
required to compute the Schur complement is performed
using the inv functional parameter. Optional extra argu-
ments allow the return of some of the products used in
computing the Schur complement.

• PLU_Decomp(M) computes the PLU decomposition
of M , if possible, or returns FAIL. The result is a
triple (P,L, U) of block matrices, where P represents
a permutation matrix, L represents a lower triangular
with diagonal elements equal to 1, and U represents an
upper triangular matrix. The block matrices L and U are
triangular as matrices of elements, not only as matrices of
blocks. For example, the (1, 1) block of L is also lower
triangular, and recursively.

IV. PLU DECOMPOSITION

One of the goals of this work was to implement the ideas
of [11], and, in particular, the description of PLU decompo-
sition of non-singular block matrices using only block opera-
tions. As described in Section III-D, the PLU decomposition
of a matrix M is a triple, (P,L, U) such that M = PLU ,
P is a permutation matrix, L is lower triangular and U is
upper triangular. We require L and U to be triangular element-
wise, not just block-wise, and we take the disambiguating
convention that the diagonal of L contains 1s.

1 a := block(M,1,1); b := block(M,1,2);
2 c := block(M,2,1); d := block(M,2,2);
3
4 ra, ca := nEltRows(a), nEltCols(a);
5 rb, cb := nEltRows(b), nEltCols(b);
6 rc, cc := nEltRows(c), nEltCols(c);
7 rd, cd := nEltRows(d), nEltCols(d);
8
9 # Check shape.

10 orElse(ra = ca and rd = cd,
11 "Principal block not square");
12 orElse(ra = rb and rc = rd and
13 ca = cc and cb = cd, "Bad shape");
14 n1 := ra;
15 n2 := rd;
16
17 # Compute decomposition recursively.
18 p1, l1, u1 := PLU_Decomp(a); # n1 x n1 all
19 l1inv := inv(l1); # n1 x n1
20 u1inv := inv(u1); # n1 x n1
21 x := times(c, u1inv); # n2 x n1
22 y := times(l1inv, b); # n1 x n2
23 y := times(inv(p1),y); # n1 x n2
24 t := ‘minus‘(d, times(x,y)); # n2 x n2
25 p2, l2, u2 := PLU_Decomp(t); # n2 x n2 all
26
27 # Zero blocks of the neede sizes.
28 z12 := zeroBM(n1,n2); z21 := zeroBM(n2,n1);
29
30 # Return P, L, U
31 BM([[p1, z12],[z21,p2]]), # P
32 BM([[l1,z12],[x,l2]]), # L
33 BM([[u1,y],[z21,u2]]) # U

Fig. 1. 2× 2 rblock case of PLU_Decomp

For the present, we take the simplifying assumption that M
is a square block matrix and the leading principal minors of
M are non-singular. Then, as shown in [11], if

M =

[
A B
C D

]
,

and we seek M = LU such that

L =

[
L1 0
X L2

]
U =

[
U1 Y
0 U2

]
with L1 and L2 lower triangular and U1 and U2 upper triagular,
we may compute

L1U1 = A recursively

X = CU−1
1

Y = L−1
1 B

L2U2 = D −XY recursively.

The implementation of the core 2×2 rblock case is shown in
Figure 1. Notice that we are able to use the functions described
so far to provide relatively easy to read, natural code.

V. EXAMPLES

We now give examples of using the BlockMatrix module.
In order to have results that can be shown in the article, we
use small examples with simple elements. The first example,
shown in Figure 2, inverts a block matrix all of whose
blocks are singular. The second example, shown in Figure 3,
performs a PLU factorization.



Fig. 2. Inversion of a block matrix whose blocks are all singular. The symbols
R,M,Z, S respectively indicate recursive, matrix, zero and scalar nodes. The
last line verifies the matrix and inverse multiply to give an identity matrix.

VI. FUTURE WORK

There are a number of additional operations and tidying up
that would be required for a generally useful block matrix
package, including

• re-organizing block matrices to desired compatible shapes
• inversion of other than 1× 1 and 2× 2 block matrices
• PLU decomposition of non-square matrices and matrices

with singular principal minors
• matrix norms
• eigenvalue computation
• and many others.

It would also be useful to examine the trade-offs in computing
inverses — when to try to pivot blocks to give a non-singular
(1, 1) block versus going to the more general (M†M)−1M†

method versus preconditioning by a matrix other than M†.

Finally, it would be useful to experiment with a compiled
programming language with parametric polymorphism and
overloading to see how competitive these methods can be on
larger numerical examples.

VII. CONCLUSIONS

We have described a Maple implementation of recursive block
matrices and operations on them and we have shown that many
of the operations of linear algebra can be performed using

Fig. 3. PLU decomposition of a block matrix and check of result

block operations only, without breaking the block abstraction.
The whole package is about 535 lines of Maple code.

REFERENCES

[1] S.K. Abdali and D.S. Wise. Experiments with quadtree representation
of matrices. In P. Gianni, editor, Proc. ISSAC 88, page 96–108. Springer
Verlag LNCS 358, 1989.

[2] Howard Anton. Elementary Linear Algebra, 11th ed. Wiley, 2014.
[3] Jack J. Dongarra, Robert A. van de Geun, and David W. Walker.

Scalability issues affecting the design of a dense linear algebra library.
J. Parallel and Distributed Computing, 22:52–537, 1994.

[4] Irene Gargantini. An effective way to represent quadtrees. Communi-
cations of the ACM, 25(12):905–910, 1982.

[5] Peter J. Olver and Chehrzad Skakiban. Applied Linear Algebra.
Springer, 2018.

[6] Robert Reams. Handbook of Linear Algebra, chapter Partitioned
Matrices, pages 11.1–11.10. CRC Press, 2nd edition, 2014.

[7] V. Strassen. Gaussian elimination is not optimal. Numerische Mathe-
matik, 13:354–356, 1969.

[8] Lloyd N. Trefethen and David B. Lau III. Numerical Linear Algebra.
SIAM, 1997.

[9] S.M. Watt. Aldor. In Handbook of Computer Algebra, page 265–270.
Springer Verlag, 2003.

[10] Stephen M. Watt. Pivot-free block matrix inversion. In Proc. 8th
International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC 2006), pages 151–155, 2006.

[11] Stephen M. Watt. Algorithms for recursive block matrices. In
Proc. LALO60: Matrices and Polynomials in Computer Algebra. also
arXiv:2407.03976v1, 2024.


