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Abstract
Considering digital ink as plane curves provides a valuable framework for various applications, including
signature verification, note-taking, and mathematical handwriting recognition. These plane curves can
be obtained parameterized pairs of approximating truncated series (𝑥(𝑠), 𝑦(𝑠)) determined by sampled
points. Earlier work has found that representing these truncated series (polynomials) in a Legendre or
Legendre-Soblolev basis has a number of desirable properties. These include compact data representation,
meaningful clustering of like symbols in the vector space of polynomial coefficients, linear separability of
classes in this space and highly efficient calculation of variation between curves. In this work, we take a
first step at examining the use of Chebyshev-Sobolev series for symbol recognition. The early indication
is that this representation may be superior to Legendre-Sobolev representation for some purposes.
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1. Introduction

Digital ink is an important tool in modern computing with applications ranging from note-
taking, signature verification to handwriting and mathematical expression recognition. In
order to accurately use digital ink data, methods like orthogonal series representations can be
employed. The use of orthogonal polynomials like Legendre, Chebyshev, Legendre-Sobolev etc.
provide a powerful framework for approximating functions. The Legendre-Sobolev series has
gained attention for its improved recognition rates [1]. In this paper, we extend the exploration
of orthogonal series representation by focusing on the Chebyshev-Sobolev series.
Viewing digital ink as parametric plane curves is a sharp departure from previous work

which used either a pixel-based approach or point-sequence approach. Both of these earlier
approaches are resolution dependent, one in space and the other in time. This leads to a host of
challenges. For example, older data is “resampled” (i.e. interpolated, then discretized) to keep
use these methods with data from different sources. Another issue is in matching corresponding
points in comparing curves, leading to challenging optimization of alignment-based “dynamic
time warping”. Working with parametric curves as algebraic objects avoids all these problems.
Building on the results of the Legendre-Sobolev series, this paper explores the potential

of the Chebyshev-Sobolev series for digital ink representation. Chebyshev polynomials are
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known for stability [2] and improved accuracy for function approximation [3]. The sobolev
space incorporates the smoothness by including the derivates in the expression. Therefore,
Chebyshev-Sobolev series can improve the recognition rate for handwritten text and sumbols.
The combination will help in differentiating between different writing styles more reliably.

In Section2, we discuss the background methods in using an orthogonal polynomial for digital
ink representation. In Section 3, we define a “Chebyshev-Sobolev” inner product and give some
of its properties. In Section 4 give an algorithm to classify a sample curve against a database
of many reference curves. This uses the same idea as earlier work based on Legendre-Sobolev
polynomials. Then, in Section 5, describe some initial experiments examining the use of digital
ink in a Chebyshev-Sobolev basis representation. Finally, we give some brief conclusions in
Section 6

2. Background

As we know, Digital ink is generated by sampling points from curve traces which result into a
series of points, each containing x and y coordinates. The time interval and resolution depend
on the hardware and therefore, devices with different hardware will result in different series
of points from the same input character. As technology evolves, various ad hoc treatments
have been developed, such as size normalization and resampling to consider these differences.
However, this introduce its own problems. Representing handwritten symbols in the space
of coefficients of a orthogonal function approximation is a popular method [4, 5, 6, 7] and
proven to be robust against changes in hardware [8],. Additionally, this method has very high
recognition rates with small training sets [4].
In our work, we have considered an ink trace as a segment of plane curve 𝑥(𝑠) and 𝑦(𝑠),

parameterized by euclidean arc length represented as 𝑠, where

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2. (1)

Let {𝐵𝑖(𝑠)}𝑖=0,....𝑑 be the polynomial basis for approximating (𝑥(𝑠), 𝑦(𝑠)). The trace can be repre-
sented as

𝑥(𝑠) ≈
𝑑
∑
𝑖=0

𝑥𝑖𝐵𝑖(𝑠) (2)

𝑦(𝑠) ≈
𝑑
∑
𝑖=0

𝑦𝑖𝐵𝑖(𝑠) (3)

where, 𝑥𝑖 and 𝑦𝑖 are the coefficients and d is the degree of the truncated series. For convenience
of calculation of coefficients, the function 𝐵𝑖(𝑠) is choosen to be othogonal polynomials, e.g.
Chebyshev, Legendre, or Legendre-Sobolev. The approximated curve can be made very close
to original trace by choosing higher value of d. In earlier work, Legendre-sobolev basis has
become a popular choice as it results in desired shape for relatively low degree of truncated
polynomial [9]. The inner product for legendre sobolev polynomial is defined as:

⟨𝑓 , 𝑔⟩ = ∫
𝑏

𝑎
𝑓 (𝑠)𝑔(𝑠)𝑑𝑠 + 𝜇 ∫

𝑏

𝑎
𝑓 ′(𝑠)𝑔′(𝑠)𝑑𝑠 (4)



Using the Gram-Schmidt orthogonalization of the monomials {𝑠𝑖} with respect to inner product,
one can compute the equivalent basis polynomial of degree i. After approximation, the digital
ink trace can be represented as (𝑥0, ...., 𝑥𝑑, 𝑦0, ....., 𝑦𝑑). We can also measure the closeness of two
characters using the distance between the coefficients of approximated curves. This approach
is crucial in handwriting recognition.

||(𝑥, 𝑦) − (𝑥′, 𝑦 ′)|| ≃
√

𝑑
∑
𝑖=0

[(𝑥𝑖 − 𝑥′𝑖 )2 + (𝑦𝑖 − 𝑦 ′𝑖 )2] (5)

where (𝑥0, ...., 𝑥𝑑, 𝑦0, ....., 𝑦𝑑) and (𝑥′0, ...., 𝑥′𝑑 , 𝑦
′
0 , ....., 𝑦 ′𝑑) represents coefficients of symbols.

2.1. Legendre Inner Product and Legendre Basis

The classical Legendre polynomials 𝑃𝑛(𝑥) are a degree-graded family orthogonal with respect
to the following functional inner product

⟨𝑓 , 𝑔⟩𝑃 = ∫
1

−1
𝑓 (𝑥)𝑔(𝑥)𝑑𝑥 (6)

and normalized as

⟨𝑃𝑚, 𝑃𝑛⟩𝑃 = {
2

2𝑛+1 if 𝑚 = 𝑛
0 otherwise.

(7)

We call (6) the Legendre inner product and the corresponding norm is

||𝑓 ||2𝑃 = ⟨𝑓 , 𝑓 ⟩𝑃. (8)

If 𝑓 and 𝑔 are polynomials given in Legendre basis such that

𝑓 (𝑥) =
𝑑
∑
𝑖=0

𝑓𝑖𝑃𝑖(𝑥) 𝑔(𝑥) =
𝑑
∑
𝑖=0

𝑔𝑖𝑃𝑖(𝑥), (9)

then, using (7), we have

⟨𝑓 , 𝑔⟩𝑃 =
𝑑
∑
𝑖=0

2
2𝑖 + 1

𝑓𝑖𝑔𝑖. (10)

Note that the coefficients 𝑓𝑖 may be obtained as

𝑓𝑖 =
⟨𝑓 , 𝑃𝑖⟩𝑃
⟨𝑃𝑖, 𝑃𝑖⟩𝑃

. (11)

2.2. Legendre-Sobolev Inner Product

A Sobolev inner product of order 𝑁 on a domain 𝐷 with Borel measures 𝜇𝑖 and coefficients
𝜆𝑖 ∈ ℝ+ is defned as

⟨𝑓 , 𝑔⟩𝑆 =
𝑁
∑
𝑖=0

𝜆𝑖 ∫
𝐷
𝑓 (𝑖)𝑔(𝑖)𝑑𝜇𝑖.



Earlier work [7] examined classification using the Legendre-Sobolev inner product studied by
Althammer [10],

⟨𝑓 , 𝑔⟩𝐿𝑆 = ∫
1

−1
𝑓 (𝑥)𝑔(𝑥)𝑑𝑥 + 𝜆 ∫

1

−1
𝑓 ′(𝑥)𝑔′(𝑥)𝑑𝑥. (12)

3. Chebyshev-Sobolev Inner Product

We now come to the main topic of the article. We propose to use a Sobolev inner product based
on Chebyshev polynomials.

3.1. Chebyshev Inner Product

We begin by noting the familiar properties of the Chebyshev polynomials of the first kind 𝑇𝑛(𝑥),
which are a degree-graded family orthogonal with respect to the inner product

⟨𝑓 , 𝑔⟩𝑇 = ∫
1

−1

𝑓 (𝑥)𝑔(𝑥)

√1 − 𝑥2
𝑑𝑥 (13)

and normalized as

⟨𝑇𝑛, 𝑇𝑚⟩𝑇 =
⎧

⎨
⎩

0 if 𝑛 ≠ 𝑚
𝜋 if 𝑛 = 𝑚 = 0
𝜋
2 otherwise.

(14)

We call (13) the Chebyshev inner product and the corresponding norm is

||𝑓 ||2𝑇 = ⟨𝑓 , 𝑓 ⟩𝑇.. (15)

If 𝑓 (𝑠) and 𝑔(𝑠) are polynomials of degree 𝑑 written in a Chebyshev basis as

𝑓 (𝑥) =
𝑑
∑
𝑖=0

𝑓𝑖𝑇𝑖(𝑥) 𝑔(𝑥) =
𝑑
∑
𝑖=0

𝑔𝑖𝑇𝑖(𝑥), (16)

then, using (14), we have

⟨𝑓 , 𝑔⟩𝑇 = ∫
1

−1
(

𝑑
∑
𝑖=0

𝑑
∑
𝑗=0

𝑓𝑖𝑇𝑖(𝑥)𝑔𝑗𝑇𝑗(𝑥))
𝑑𝑥

√1 − 𝑥2

= ∫
1

−1
(

𝑑
∑
𝑖=0

𝑓𝑖𝑔𝑖𝑇𝑖(𝑥)𝑇𝑖(𝑥) + cross terms) 𝑑𝑥

√1 − 𝑥2

= 𝜋
2
(2𝑓0𝑔0 +

𝑑
∑
𝑖=1

𝑓𝑖𝑔𝑖) . (17)

The coefficients 𝑓𝑖 may be obtained as

𝑓𝑖 =
⟨𝑓 , 𝑇𝑖⟩𝑇
⟨𝑇𝑖, 𝑇𝑖⟩𝑇

. (18)



3.2. Chebyshev-Sobolev Inner Product

We now consider the first order Sobolev inner product for Chebyshev polynomials,

⟨𝑓 , 𝑔⟩𝐶𝑆 = ∫
1

−1

𝑓 (𝑥)𝑔(𝑥)

√1 − 𝑥2
𝑑𝑠 + 𝜆 ∫

1

−1

𝑓 ′(𝑥)𝑔′(𝑥)

√1 − 𝑥2
𝑑𝑠 (19)

where 𝜆 > 0. We call this a Chebyshev-Sobolev inner product with corresponding norm

||𝑓 ||2𝐶𝑆 = ⟨𝑓 , 𝑓 ⟩𝐶𝑆. (20)

Applying Gram-Schmidt orthogonalization with respect to ⟨⋅, ⋅⟩𝐶𝑆 to monomials {1, 𝑥, 𝑥2, ....}
gives a dgree-graded family we call Chebyshev-Sobolev polynomials we shall denote by 𝑆𝜆 𝑖. We
take the same normalization as for Chebyshev polynomials so 𝑆0 𝑖 = 𝑇𝑖.
An analytic function 𝑓 (𝑥) may be written as a series using the basis 𝑆𝜆 𝑖

𝑓 (𝑥) =
∞
∑
𝑖=0

𝑓𝑖𝑆𝜆 𝑖(𝑠),

where the coefficients 𝑓𝑖 satisfy

𝑓𝑖 =
⟨𝑓 , 𝑆𝜆 𝑖⟩𝐶𝑆
⟨𝑆𝜆 𝑖, 𝑆𝜆 𝑖⟩𝐶𝑆

.

Approximations to 𝑓 (𝑥) may be obtained by summing only up to some degree 𝑑.

4. A Matching Algorithm

Comparing a sample input handwritten character to a set of model characters to find the best
match can now be done as follows:

1. Receive as inputs points (𝑥𝑖, 𝑦𝑖), 𝑖 ∈ [0..𝑁 ].
2. Compute piecewise polynomial splines (e.g. piecewise-linear or piecewise-cubic) interpo-

lating the sequences 𝑥𝑖 and 𝑦𝑖.
3. Compute arclengths 𝑠𝑖, 𝑖 ∈ [0..𝑁 ] from the point (𝑥0, 𝑦0) to (𝑥𝑖, 𝑦𝑖) along the interpolating

splines.
4. Shift and scale so that 𝑠0 = −1 and 𝑠𝑁 = 1. This scales the character to a standard size.
5. Let 𝐶𝑋(𝑠) and 𝐶𝑌(𝑠) be the piecewise splines such that 𝐶𝑋(𝑠𝑖) = 𝑥𝑖 and 𝐶𝑌(𝑠𝑖) = 𝑦𝑖.
6. Compute the coefficients 𝑋𝑖 and 𝑌𝑖, 𝑖 ∈ [1..𝑑] such that 𝐶𝑋(𝑠) = ∑𝑑

𝑖=0 𝑋𝑖𝑇𝑖(𝑠) and 𝐶𝑌(𝑠) =
∑𝑑

𝑖=0 𝑌𝑖𝑇𝑖(𝑠). This requires 2𝑁 low-degree polynomial integrations done by formula. The
coefficients of 𝑇0 are to be dropped to center the character.

7. At this point, we have a resolution-independent representation of the character that is
centered and scaled to a standard size. This representation requires 2𝑑 numbers.

8. Compare this sample character against the model characters one by one. For each model
character 𝐺 compute the euclidean norm as follows:

𝐷2
𝐺 = ||𝐶𝑋 − 𝐺𝑋||2 + ||𝐶𝑌 − 𝐺𝑌||2

and return the character model that gives the minimum.



We remark on a few things:

• All the approximation comes from choosing the truncation degree 𝑑 of the series.
• The choice of order of the interpolating spline should ideally be the same for the sample
character as for all the models, but in practice it might not matter very much. The step
that scales 𝑠 is important.

• The integrations to obtain the coefficients in 𝐶𝑋 and 𝐶𝑌 can be done by polynomial
formulas and do not require numerical integration techniques.

• If the summations to compute the Chebyshev basis coefficients of the derivative poly-
nomials becomes computationally significant, then we can consider using Clenshaw
summation [11].

• This whole procedure could use shifted Chebyshev polynomials 𝑇 ∗𝑛 (𝑥) = 𝑇𝑛(2𝑥 − 1) on
[0, 1], in which case 𝑠 would be scaled to [0, 1].

The main point with this, and with the Legendre-Sobolev method, is that it is possible to
compare efficiently against a great many models, since the computation for each depends only
on the degree 𝑑 of the approximation and in particular does not depend on the number of sample
points 𝑁.

5. Experiments on Digital Ink

To give a first assessment of the suitability of the Chebyshev sobolev polynomials, we have run
tests on Ink ML dataset [12] and UCI pendigits dataset [13]. The ink dataset consist of traces of
different letters and UCi pendigits dataset conatin samples of handwrtten digits (0-9) of multiple
users. We started the experiment by approximating the digital ink using Chebyshev-Sobolev
polynomials. For the sake of comparison we have also considered Legendre, Chebyshev, and
Legendre-Sobolev polynomial. We perform the following experiments:

5.1. Handwriting representation using Chebyshev-Sobolev series

In this experiment, we plot the approximated curve considering different degrees for the
orthogonal polynomials. We have considered the hyper parameter 𝜆 as 1

8 and compare the
approximated curve with the orignal trace by increasing degree. It can be observed that the
quality of approximated curve improves with increase in degree. Figure 1a shows the letters in
orignal trace of Ink ML dataset. In this figure, we can observe large number of points resulting
in shorter distance between the adjacent curves. From figure 1b,1c, and 1d it can be seen that
the approximated curve are able to accurately and smoothly represent the letters. Additionally,
with Chebyshev-Sobolev polynomials, we are able to accurately represent the self overlapping
letters like ”e”, and ”o”.

Figure 2a shows the 10 digits selected at random from the UCI pen digits dataset. In this figure
we can observe that each digit has exactly 8 points and we connected these points considering
them as linearly separable. Due to limited number of points and equal distances in the points,
the handwritten digits are coarsely represented. From figure 2b, 2c and 2d, it can be seen that the
approximated curve are able to accurately represent the handwritten digits. The gaps between
the point is smooth and there are no vibrations near the end points.



(a) Orignal (b) Approximated with degree = 5

(c) Approximated with degree = 7 (d) Approximated with degree = 10

Figure 1: Handwriting representation test on Ink ML dataset

(a) Orignal

(b) Approximated digits with degree = 5

(c) Approximated digits with degree = 7

(d) Approximated digits with degree = 10

Figure 2: Handwriting representation test on UCI pen digits dataset



5.2. Representation error of approximated curve using Chebyshev-Sobolev
series

In this test, we measure the representation error by calculating euclidean distance from the
orignal points and approximated points. The error can be represented as:

𝐸𝑟𝑟𝑜𝑟 ∶=
𝑁
∑
𝑖=0

√(𝑥𝑖 − �̂�𝑖)2 + (𝑦𝑖 − ̂𝑦𝑖)2 (21)

where, N is the total number of points in the original trace, (𝑥𝑖, 𝑦𝑖) are the original points,
and (�̂�𝑖, ̂𝑦𝑖) are the approximated points in the trace. Figure 3a, 3b, 3c, and 3d represents the
points generated by considering chebyshev-sobolev polynomials upto degree 3, 7, 10, and 15
respectively. For the sake of comparison we have joined the points with the straight line to see
likelihood with the orignal trace. The approximated points for some traces like of ”1” are very
close with degree 7, while some self looping traces like ”9” need higher degree polynomials for
approximation. These findings are also justified in Figure 5b which is plot of representation
error in equation (21) vs degree of polyomial. Similarly, the Figure 4a, 4b, 4c, and 4d shows
approximated points of Ink ML dataset considering polynomials upto degree 3, 7, 10, and 20.
Additionally, figure 5a shows the plot of representation error vs degree.

5.3. Handwriting recognition using 𝑘 nearest neighbours

In order to evaluate the effectiveness of handwriting recognition using Chebyshev sobolev series
we perform a test using UCI pendigits dataset from [13]. The dataset consist of 10992 samples
of 10 different classes of numerical digits (0-9). Each digit consist of equal 8 points and each
class has approximately 1000 samples. In order to examine the classification performance of
Chebyshev-Sobolev series, we used two third of the handwritten digits in the data set for training,
the remaining ones for testing, and then computed the coefficients of these handwritten digits
respectively. We have truncated the series upto N=10 and used 𝜆 = 1

8 . Afterwards, Euclidean
distance was used as the metric to perform k-nearest neighbours classification of the test set
from the training set, where 𝑘 ranges from 1 to 10. Fig. 6a and Fig. 6b shows the accuracy
and error rate for 𝑘 ranging from 1 to 10 for Legendre , Chebyshev, Legendre- Sobolev, and
Chebyshev-Sobolev Polynomial. The accuracy remains high, but decreases with increase in 𝑘
for all the methods. The error rates increases with increase in k. This is an expected behaviour
of 𝑘-NN method where the smaller 𝑘 captures the best trends of the data. It can be Observed
that Chebyshev-Sobolev polynomials performs the best for all the values of k. Also, Legendre-
Sobolev has the accuracy higher than Chebhyshev Polynomial and Legendre Polynomials. The
decrease in accuracy with 𝑘 is comparatively gradual for Chebyshev-Sobolev polynomial.

6. Conclusions

We have defined the family of Chebyshev-Sobolev polynomials in analogy to the Legendre-
Sobolev polynomials studied by Althammer and used in earlier work in mathematical hand-
writing recognition. Some initial results show that they can be superior to Legendre-Sobolev



(a) Approximated digits with degree = 3

(b) Approximated digits with degree = 7

(c) Approximated digits with degree = 10

(d) Approximated digits with degree = 15

Figure 3: Representation error on UCI pen digits dataset

(a) Approximated with degree = 3 (b) Approximated with degree = 7

(c) Approximated with degree = 10 (d) Approximated with degree = 15

Figure 4: Representation error on Ink ML dataset



(a) Representation error vs degree on InkML
dataset

(b) Representation error vs degree on UCI
pendigits dataset

(a) Accuracy vs 𝑘 for Different Polynomials (b) Error Rate vs 𝑘 for Different Polynomials

polynomials in some circumstances. This motivates us to study their properties in more detail
and their effectiveness on more varied symbol corpora.



References

[1] V. Mazalov, S. M. Watt, Improving isolated and in-context classication of handwritten
characters, in: Document Recognition and Retrieval XIX, volume 8297, SPIE, 2012, pp.
77–84.

[2] G. Wu, Y. Zhang, A new chebyshev polynomials descriptor applicable to open curves,
Pattern Recognition Letters 62 (2015) 41–48.

[3] C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res. Nat.
Bur. Standards 49 (1952) 33–53.

[4] S. M. Watt, Polynomial approximation in handwriting recognition, in: Proceedings of the
2011 International Workshop on Symbolic-Numeric Computation, 2012, pp. 3–7.

[5] O. Golubitsky, S. M. Watt, Online stroke modeling for handwriting recognition, in:
Proceedings of the 2008 conference of the center for advanced studies on collaborative
research: meeting of minds, 2008, pp. 72–80.

[6] B. W. Char, S. M. Watt, Representing and characterizing handwritten mathematical
symbols through succinct functional approximation, in: Ninth International Conference
on Document Analysis and Recognition (ICDAR 2007), volume 2, IEEE, 2007, pp. 1198–1202.

[7] O. Golubitsky, S. M. Watt, Distance-based classification of handwritten symbols, Interna-
tional Journal on Document Analysis and Recognition (IJDAR) 13 (2010) 133–146.

[8] R. Hu, S. M. Watt, Identifying features via homotopy on handwritten mathematical
symbols, in: 2013 15th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, IEEE, 2013, pp. 61–67.

[9] R. Hu, S.M.Watt, Determining points on handwrittenmathematical symbols, in: Intelligent
Computer Mathematics: MKM, Calculemus, DML, and Systems and Projects 2013, Held as
Part of CICM 2013, Bath, UK, July 8-12, 2013. Proceedings 6, Springer, 2013, pp. 168–183.

[10] P. Althammer, Eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen und deren
Anwendung auf die beste approximation., J. Reine Ang. Math. 211 (1962) 192–204.

[11] C. Clenshaw, A note on the summation of Chebyshev series, Math Comp 9 (1955) 118–120.
[12] Y.-M. Chee, K. Franke, M. Froumentin, S. Madhvanath, J.-A. Magana, G. Russell, G. Seni,

C. Tremblay, S. Watt, L. Yaeger, Ink Markup Language (InkML), Technical Report, W3C,
2006.

[13] E. Alpaydin, F. Alimoglu, Pen-Based Recognition of Handwritten Digits, UCI Machine
Learning Repository, 1998. DOI: https://doi.org/10.24432/C5MG6K.


	1 Introduction
	2 Background
	2.1 Legendre Inner Product and Legendre Basis
	2.2 Legendre-Sobolev Inner Product

	3 Chebyshev-Sobolev Inner Product
	3.1 Chebyshev Inner Product
	3.2 Chebyshev-Sobolev Inner Product

	4 A Matching Algorithm
	5 Experiments on Digital Ink
	5.1 Handwriting representation using Chebyshev-Sobolev series
	5.2 Representation error of approximated curve using Chebyshev-Sobolev series
	5.3 Handwriting recognition using k nearest neighbours

	6 Conclusions

