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Abstract
Considering digital ink as plane curves provides a valuable framework for various applications, including
signature verification, note-taking, and mathematical handwriting recognition. These plane curves can
be obtained as parameterized pairs of approximating truncated series (𝑥(𝑠), 𝑦(𝑠)) determined by sampled
points. Earlier work has found that representing these truncated series (polynomials) in a Legendre or
Legendre-Sobolev basis has a number of desirable properties. These include compact data representation,
meaningful clustering of like symbols in the vector space of polynomial coefficients, linear separability of
classes in this space, and highly efficient calculation of variation between curves. In this work, we take a
first step at examining the use of Chebyshev-Sobolev series for symbol recognition. The early indication
is that this representation may be superior to Legendre-Sobolev representation for some purposes.
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1. Introduction

Digital ink is an important tool in modern computing with applications ranging from note-
taking, signature verification to handwriting and mathematical expression recognition. In
order to accurately use digital ink data, methods like orthogonal series representations can
be employed. The use of orthogonal polynomials such as Legendre, Laguerre, Chebyshev or
other polynomials provides a powerful framework for approximating functions. The Legendre-
Sobolev series has gained attention for its improved recognition rates [1]. In this paper, we
extend the exploration of orthogonal series representation by focusing on Chebyshev-Sobolev
series.
Viewing digital ink as parametric plane curves is a sharp departure from previous work

which used either a pixel-based approach or point-sequence approach. Both of these earlier
approaches are resolution dependent, one in space and the other in time. This leads to a host of
challenges. For example, older data is “resampled” (i.e. interpolated, then discretized) to use
these methods with data from different sources. Another issue is in matching corresponding
points in comparing curves, leading to challenging optimization of alignment-based “dynamic
time warping”. Working with parametric curves as algebraic objects avoids all these problems.
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Building on the results using Legendre-Sobolev series, this paper explores the potential of
the Chebyshev-Sobolev series for digital ink representation. Chebyshev polynomials are known
for stability [2] and improved accuracy for functional approximation [3]. The Sobolev space
improves shape matching by including the derivatives in the expression. Therefore, we suspect
Chebyshev-Sobolev series may be suitable for handwritten text and symbol recognition.
This paper is organized as follows: Section2 discusses the background methods to use an

orthogonal polynomial basis for digital ink representation. In Section 3, we define a “Chebyshev-
Sobolev” inner product and give some of its properties. Section 4 gives an algorithm to classify
a sample curve against a database of many reference curves. This uses the same idea as earlier
work based on Legendre-Sobolev polynomials. Section 5 describes some initial experiments
examining the use of digital ink in a Chebyshev-Sobolev basis representation. Finally, we give
some brief conclusions in Section 6.

2. Background

Digital ink is typically generated by sampling points from pen traces which results in a series
of points, each giving 𝑥 and 𝑦 coordinates. The time interval and resolution depend on the
hardware so devices with different hardware will result in different series of points from the
same input trace. As technology evolves, various ad hoc treatments have been developed, such
as size normalization and resampling to deal with these differences. However, these methods
introduce their own problems. Representing handwritten symbols in the space of coefficients
of an orthogonal basis approximation is a useful alternative method [4, 5, 6, 7] and has proven
to be robust against changes in hardware [8]. Additionally, this method has high recognition
rates with small training sets [4].

2.1. Parameterized Curves in an Orthogonal Basis

In our work, we have considered an ink trace as a segment of plane curve 𝑥(𝑠) and 𝑦(𝑠),
parameterized by euclidean arc length 𝑠, where

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2. (1)

If we let {𝐵𝑖(𝑠)}𝑖=0,....𝑑 be a graded polynomial basis for approximating (𝑥(𝑠), 𝑦(𝑠)), a trace can be
represented as

𝑥(𝑠) ≈
𝑑
∑
𝑖=0

𝑥𝑖𝐵𝑖(𝑠) (2)

𝑦(𝑠) ≈
𝑑
∑
𝑖=0

𝑦𝑖𝐵𝑖(𝑠) (3)

where, 𝑥𝑖 and 𝑦𝑖 are the coefficients and 𝑑 is the degree of the truncated series. To allow
efficient calculation of coefficients, the functions 𝐵𝑖(𝑠) can be chosen to be polynomials that are
orthogonal with respect to a functional inner product. The approximated curve can be made
close to the original trace by choosing higher value of 𝑑.



Given a functional inner product, a graded basis of orthogonal polynomials may be obtained
using Gram-Schmidt orthogonalization of the set of monomials {𝑠𝑖}𝑖∈[0..𝑑]. Then a digital ink
trace can be represented in this basis as the vector of coefficients (𝑥0, ...., 𝑥𝑑, 𝑦0, ....., 𝑦𝑑).
We can now illustrate the benefit or representing curves in an orthogonal basis. The usual

way of comparing two traces given as series of sampled points is to find a correspondence
between points of the traces to minimize the sum of distances between corresponding points.
Suppose two traces are given as point sequences (𝑋0, 𝑌0), … , (𝑋𝑚, 𝑌𝑚) and (𝑈0, 𝑉0), … , (𝑈𝑛, 𝑉𝑛).
(Note that here we use subscripts to indicate a position in the sequence, not a coefficient.)
Without loss of generality, assume 𝑚 ≥ 𝑛. Then we measure the squared distance between the
two traces as

min
𝜙∶[0..𝑚]→[0..𝑛]

𝑚
∑
𝑖=0

(𝑋𝑖 − 𝑈𝜙(𝑖))2 + (𝑌𝑖 − 𝑉𝜙(𝑖))2 (4)

over all choices of non-decreasing 𝜙 with 𝜙(0) = 0 and 𝜙(𝑚) = 𝑛. Considerable attention has
been given to strategies for this minimization problem.
In contrast, suppose we have represented the traces as parameterized plane curves in the

basis 𝐵𝑖(𝑠), then we measure the squared distance as

⟨𝑥 − 𝑢, 𝑥 − 𝑢⟩𝐵 + ⟨𝑦 − 𝑣, 𝑦 − 𝑣⟩𝐵

=
𝑑
∑
𝑖=0

𝑑
∑
𝑗=0

(𝑥𝑖 − 𝑢𝑖)(𝑥𝑗 − 𝑢𝑗)⟨𝐵𝑖, 𝐵𝑗⟩𝐵 +
𝑑
∑
𝑖=0

𝑑
∑
𝑗=0

(𝑦𝑖 − 𝑣𝑖)(𝑦𝑗 − 𝑣𝑗)⟨𝐵𝑖, 𝐵𝑗⟩𝐵

=
𝑑
∑
𝑖=0

((𝑥𝑖 − 𝑢𝑖)2 + (𝑦𝑖 − 𝑣𝑖)2) ⟨𝐵𝑖, 𝐵𝑖⟩𝐵. (5)

This is straightforward and fast to compute since the ⟨𝐵𝑖, 𝐵𝑖⟩𝐵 are a set of 𝑑 + 1 fixed values.

2.2. Legendre Inner Product and Legendre Basis

The classical Legendre polynomials 𝑃𝑛(𝑥) are a degree-graded family orthogonal with respect
to the following functional inner product

⟨𝑓 , 𝑔⟩𝑃 = ∫
1

−1
𝑓 (𝑥)𝑔(𝑥)𝑑𝑥 (6)

and normalized as

⟨𝑃𝑚, 𝑃𝑛⟩𝑃 = {
2

2𝑛+1 if 𝑚 = 𝑛
0 otherwise.

(7)

We call (6) the Legendre inner product and the corresponding norm is

||𝑓 ||2𝑃 = ⟨𝑓 , 𝑓 ⟩𝑃. (8)

If 𝑓 and 𝑔 are polynomials given in Legendre basis such that

𝑓 (𝑥) =
𝑑
∑
𝑖=0

𝑓𝑖𝑃𝑖(𝑥) 𝑔(𝑥) =
𝑑
∑
𝑖=0

𝑔𝑖𝑃𝑖(𝑥), (9)



then, using (7), we have

⟨𝑓 , 𝑔⟩𝑃 =
𝑑
∑
𝑖=0

2
2𝑖 + 1

𝑓𝑖𝑔𝑖. (10)

Note that the coefficients 𝑓𝑖 may be obtained as

𝑓𝑖 =
⟨𝑓 , 𝑃𝑖⟩𝑃
⟨𝑃𝑖, 𝑃𝑖⟩𝑃

. (11)

2.3. Legendre-Sobolev Inner Product

A Sobolev inner product of order 𝑁 on a domain 𝐷 with Borel measures 𝜇𝑖 and coefficients
𝜆𝑖 ∈ ℝ+ is defined as

⟨𝑓 , 𝑔⟩𝑆 =
𝑁
∑
𝑖=0

𝜆𝑖 ∫
𝐷
𝑓 (𝑖)𝑔(𝑖)𝑑𝜇𝑖.

Earlier work [7] examined classification using the Legendre-Sobolev inner product studied by
Althammer [9],

⟨𝑓 , 𝑔⟩𝐿𝑆 = ∫
1

−1
𝑓 (𝑥)𝑔(𝑥)𝑑𝑥 + 𝜆 ∫

1

−1
𝑓 ′(𝑥)𝑔′(𝑥)𝑑𝑥. (12)

3. Chebyshev-Sobolev Inner Product

We now come to the main topic of the article. We propose to use a Sobolev inner product
based on Chebyshev polynomials. Chebyshev polynomials are used extensively in numerical
approximation due to their “minimax” property, that is minimizing the maximum error in
the approximation of a function over an interval. As changing polynomial basis may be
numerically ill conditioned, we explore using a Chebyshev basis ab initio and working with this
representation throughout.

3.1. Chebyshev Inner Product

We begin by noting the familiar properties of the Chebyshev polynomials of the first kind 𝑇𝑛(𝑥),
which are a degree-graded family orthogonal with respect to the inner product

⟨𝑓 , 𝑔⟩𝑇 = ∫
1

−1

𝑓 (𝑥)𝑔(𝑥)

√1 − 𝑥2
𝑑𝑥 (13)

and normalized as

⟨𝑇𝑛, 𝑇𝑚⟩𝑇 =
⎧

⎨
⎩

0 if 𝑛 ≠ 𝑚
𝜋 if 𝑛 = 𝑚 = 0
𝜋
2 otherwise.

(14)

We call (13) the Chebyshev inner product and the corresponding norm is

||𝑓 ||2𝑇 = ⟨𝑓 , 𝑓 ⟩𝑇.. (15)



If 𝑓 (𝑠) and 𝑔(𝑠) are polynomials of degree 𝑑 written in a Chebyshev basis as

𝑓 (𝑥) =
𝑑
∑
𝑖=0

𝑓𝑖𝑇𝑖(𝑥) 𝑔(𝑥) =
𝑑
∑
𝑖=0

𝑔𝑖𝑇𝑖(𝑥), (16)

then, using (14), we have

⟨𝑓 , 𝑔⟩𝑇 = ∫
1

−1
(

𝑑
∑
𝑖=0

𝑑
∑
𝑗=0

𝑓𝑖𝑇𝑖(𝑥)𝑔𝑗𝑇𝑗(𝑥))
𝑑𝑥

√1 − 𝑥2

= ∫
1

−1
(

𝑑
∑
𝑖=0

𝑓𝑖𝑔𝑖𝑇𝑖(𝑥)𝑇𝑖(𝑥) + cross terms) 𝑑𝑥

√1 − 𝑥2

= 𝜋
2
(2𝑓0𝑔0 +

𝑑
∑
𝑖=1

𝑓𝑖𝑔𝑖) . (17)

The coefficients 𝑓𝑖 may be obtained as

𝑓𝑖 =
⟨𝑓 , 𝑇𝑖⟩𝑇
⟨𝑇𝑖, 𝑇𝑖⟩𝑇

. (18)

3.2. Chebyshev-Sobolev Inner Product

We now consider the first order Sobolev inner product for Chebyshev polynomials,

⟨𝑓 , 𝑔⟩𝐶𝑆 = ∫
1

−1

𝑓 (𝑥)𝑔(𝑥)

√1 − 𝑥2
𝑑𝑠 + 𝜆 ∫

1

−1

𝑓 ′(𝑥)𝑔′(𝑥)

√1 − 𝑥2
𝑑𝑠 (19)

where 𝜆 > 0. We call this a Chebyshev-Sobolev inner product with corresponding norm

||𝑓 ||2𝐶𝑆 = ⟨𝑓 , 𝑓 ⟩𝐶𝑆. (20)

Applying Gram-Schmidt orthogonalization with respect to ⟨⋅, ⋅⟩𝐶𝑆 to monomials {1, 𝑥, 𝑥2, ....}
gives a dgree-graded family, we call Chebyshev-Sobolev polynomials. Lets denote by 𝑆𝜆 𝑖. We
take the same normalization as for Chebyshev polynomials so 𝑆0 𝑖 = 𝑇𝑖.
An analytic function 𝑓 (𝑥) may be written as a series using the basis 𝑆𝜆 𝑖

𝑓 (𝑥) =
∞
∑
𝑖=0

𝑓𝑖𝑆𝜆 𝑖(𝑠),

where the coefficients 𝑓𝑖 satisfy

𝑓𝑖 =
⟨𝑓 , 𝑆𝜆 𝑖⟩𝐶𝑆
⟨𝑆𝜆 𝑖, 𝑆𝜆 𝑖⟩𝐶𝑆

.

Approximations to 𝑓 (𝑥) may be obtained by summing only up to some degree 𝑑.



4. A Matching Algorithm

Comparing a sample input handwritten character to a set of model characters to find the best
match can now be done as follows:

1. Receive as inputs points (𝑥𝑖, 𝑦𝑖), 𝑖 ∈ [0..𝑁 ].
2. Compute piece-wise polynomial splines (e.g. piece-wise-linear or piece-wise-cubic) inter-

polating the sequences 𝑥𝑖 and 𝑦𝑖.
3. Compute arc lengths 𝑠𝑖, 𝑖 ∈ [0..𝑁 ] from the point (𝑥0, 𝑦0) to (𝑥𝑖, 𝑦𝑖) along the interpolating

splines.
4. Shift and scale so that 𝑠0 = −1 and 𝑠𝑁 = 1. This scales the character to a standard size.
5. Let 𝐶𝑋(𝑠) and 𝐶𝑌(𝑠) be the piece-wise splines such that 𝐶𝑋(𝑠𝑖) = 𝑥𝑖 and 𝐶𝑌(𝑠𝑖) = 𝑦𝑖.
6. Compute the coefficients 𝑋𝑖 and 𝑌𝑖, 𝑖 ∈ [1..𝑑] such that 𝐶𝑋(𝑠) = ∑𝑑

𝑖=0 𝑋𝑖𝑇𝑖(𝑠) and 𝐶𝑌(𝑠) =
∑𝑑

𝑖=0 𝑌𝑖𝑇𝑖(𝑠). This requires 2𝑁 low-degree polynomial integrations done by formula. The
coefficients of 𝑇0 are to be dropped to center the character.

7. At this point, we have a resolution-independent representation of the character that is
centered and scaled to a standard size. This representation requires 2𝑑 numbers.

8. Compare this sample character against the model characters one by one. For each model
character 𝐺 compute the euclidean norm as follows:

𝐷2
𝐺 = ||𝐶𝑋 − 𝐺𝑋||2 + ||𝐶𝑌 − 𝐺𝑌||2

and return the character model that gives the minimum.

We remark on a few things:

• All the approximation comes from choosing the truncation degree 𝑑 of the series.
• The choice of order of the interpolating spline should ideally be the same for the sample
character as for all the models, but in practice it might not matter very much. The step
that scales 𝑠 is important.

• The integrations to obtain the coefficients in 𝐶𝑋 and 𝐶𝑌 can be done by polynomial
formulas and do not require numerical integration techniques.

• If the summations to compute the Chebyshev basis coefficients of the derivative poly-
nomials becomes computationally significant, then we can consider using Clenshaw
summation [10].

• This whole procedure could use shifted Chebyshev polynomials 𝑇 ∗𝑛 (𝑥) = 𝑇𝑛(2𝑥 − 1) on
[0, 1], in which case 𝑠 would be scaled to [0, 1].

The main point with this, and with the Legendre-Sobolev method, is that it is possible to
compare efficiently against a great many models, since the computation for each depends only
on the degree 𝑑 of the approximation and in particular does not depend on the number of sample
points 𝑁.



5. Experiments on Digital Ink

To give a first assessment of the suitability of the Chebyshev-Sobolev polynomials, we have run
tests on Ink ML dataset [11] and UCI pendigits dataset [12]. The ink dataset consist of traces of
different letters and UCI pendigits dataset contain samples of handwritten digits (0-9) of multiple
users. We started the experiment by approximating the digital ink using Chebyshev-Sobolev
polynomials. For the sake of comparison, we have also considered Legendre, Chebyshev, and
Legendre-Sobolev polynomial. We perform the following experiments:

5.1. Handwriting representation using Chebyshev-Sobolev series

In this experiment, we plot the approximated curve considering different degrees for the
orthogonal polynomials. We have considered the hyper parameter 𝜆 as 1

8 and compare the
approximated curve with the original trace by increasing degree. It can be observed that the
quality of approximated curve improves with increase in degree. Figure 1a shows the letters in
original trace of Ink ML dataset. In this figure, we can observe large number of points resulting
in shorter distance between the adjacent curves. From figure 1b,1c, and 1d it can be seen that
the approximated curve are able to accurately and smoothly represent the letters. Additionally,
with Chebyshev-Sobolev polynomials, we are able to accurately represent the self overlapping
letters like ”e”, and ”o”.

Figure 2a shows the 10 digits selected at random from the UCI pen digits dataset. In this figure
we can observe that each digit has exactly 8 points and we connected these points considering
them as linearly separable. Due to limited number of points and equal distances in the points,
the handwritten digits are coarsely represented. From figure 2b, 2c and 2d, it can be seen that the
approximated curve are able to accurately represent the handwritten digits. The gaps between
the point is smooth and there are no vibrations near the end points.

(a) Orignal (b) Approximated with degree = 5

(c) Approximated with degree = 7 (d) Approximated with degree = 10

Figure 1: Handwriting representation test on Ink ML dataset



(a) Original

(b) Approximated digits with degree = 5

(c) Approximated digits with degree = 7

(d) Approximated digits with degree = 10

Figure 2: Handwriting representation test on UCI pen digits dataset

5.2. Representation error of approximated curve using Chebyshev-Sobolev
series

In this test, we measure the representation error by calculating euclidean distance from the
original points and approximated points. The error can be represented as:

𝐸𝑟𝑟𝑜𝑟 ∶=
𝑁
∑
𝑖=0

√(𝑥𝑖 − 𝑥̂𝑖)2 + (𝑦𝑖 − ̂𝑦𝑖)2 (21)

where, N is the total number of points in the original trace, (𝑥𝑖, 𝑦𝑖) are the original points,
and (𝑥̂𝑖, ̂𝑦𝑖) are the approximated points in the trace. Figure 3a, 3b, 3c, and 3d represents the
points generated by considering Chebyshev-Sobolev polynomials upto degree 3, 7, 10, and 15
respectively. For the sake of comparison we have joined the points with the straight line to see
likelihood with the original trace. The approximated points for some traces like of ”1” are very
close with degree 7, while some self looping traces like ”9” need higher degree polynomials for
approximation. These findings are also justified in Figure 5b which is plot of representation
error in equation (21) vs degree of polyomial. Similarly, the Figure 4a, 4b, 4c, and 4d shows
approximated points of Ink ML dataset considering polynomials upto degree 3, 7, 10, and 20.
Additionally, figure 5a and 5b shows the plot of representation error vs degree.

5.3. Handwriting recognition using 𝑘 nearest neighbours

In order to evaluate the effectiveness of handwriting recognition using Chebyshev-Sobolev
series we perform a test using UCI pendigits dataset from [12]. The dataset consist of 10992



(a) Approximated digits with degree = 3

(b) Approximated digits with degree = 7

(c) Approximated digits with degree = 10

(d) Approximated digits with degree = 15

Figure 3: Representation error on UCI pen digits dataset

(a) Approximated with degree = 3 (b) Approximated with degree = 7

(c) Approximated with degree = 10 (d) Approximated with degree = 15

Figure 4: Representation error on Ink ML dataset



(a) Representation error vs degree on InkML dataset

(b) Representation error vs degree on UCI pendigits dataset

Figure 5: Representation error using Chebyshev-Sobolev series

samples of 10 different classes of numerical digits (0-9). Each digit consist of equal 8 points and
each class has approximately 1000 samples. In order to examine the classification performance of
Chebyshev-Sobolev series, we used two third of the handwritten digits in the data set for training,
the remaining ones for testing, and then computed the coefficients of these handwritten digits
respectively. We have truncated the series upto 𝑑=10 and used 𝜆 = 1

8 . Afterwards, Euclidean
distance was used as the metric to perform k-nearest neighbours classification of the test set
from the training set, where 𝑘 ranges from 1 to 10. Fig. 6a and Fig. 6b shows the accuracy
and error rate for 𝑘 ranging from 1 to 10 for Legendre , Chebyshev, Legendre- Sobolev, and
Chebyshev-Sobolev Polynomial. The accuracy remains high, but decreases with increase in 𝑘
for all the methods. The error rates increases with increase in 𝑘. This is an expected behaviour
of 𝑘-NN method where the smaller 𝑘 captures the best trends of the data. It can be Observed
that Chebyshev-Sobolev polynomials performs the best for all the values of 𝑘. Also, Legendre-
Sobolev has the accuracy higher than Chebhyshev Polynomial and Legendre Polynomials. The
decrease in accuracy with 𝑘 is comparatively gradual for Chebyshev-Sobolev polynomial.



(a) Accuracy vs 𝑘 for Different Polynomials

(b) Error Rate vs 𝑘 for Different Polynomials

Figure 6: Handwriting recognition using 𝑘 nearest neighbours

6. Conclusions

We have defined the family of Chebyshev-Sobolev polynomials in analogy to the Legendre-
Sobolev polynomials studied by Althammer and used in earlier work in mathematical hand-
writing recognition. Some initial results show that they can be superior to Legendre-Sobolev
polynomials in some circumstances. This motivates us to study their properties in more detail
and their effectiveness on more varied symbol corpora.
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