
A Symbolic Computing Perspective
on Software Systems

Arthur C. Norman1 and Stephen M. Watt2

1 Trinity College, Cambridge CB2 1TQ, UK
acn1@cam.ed.uk

2 Cheriton School of Computer Science, University of Waterloo, N2L 3G1 Canada
https://cs.uwaterloo.ca/~smwatt

smwatt@uwaterloo.ca

Abstract. Symbolic mathematical computing systems have served as a
canary in the coal mine of software systems for more than sixty years.
They have introduced or have been early adopters of programming lan-
guage ideas such as dynamic memory management, arbitrary precision
arithmetic and dependent types. These systems have the property of
being highly complex while at the same time operating in a domain
where results are well-defined and clearly verifiable. These software sys-
tems span multiple layers of abstraction with concerns ranging from in-
struction scheduling and cache pressure up to algorithmic complexity of
constructions in algebraic geometry. All of the major symbolic mathe-
matical computing systems include low-level code for arbitrary precision
arithmetic, memory management and other primitives, a compiler or in-
terpreter for a bespoke programming language, a library of high-level
mathematical algorithms, and some form of user interface. Each of these
parts invokes multiple deep issues.
We present some lessons learned from this environment and free flowing
opinions on topics including:

– Portability of software across architectures and decades;
– Infrastructure to embrace and infrastructure to avoid;
– Choosing base abstractions upon which to build;
– How to get the most out of a small code base;
– How developments in compilers both to optimise and to validate

code have always been and remain of critical importance, with
plenty of remaining challenges;

– The way in which individuals including in particular Alan Mycroft
who has been able to span from hand-crafting Z80 machine code
up to the most abstruse high-level code analysis techniques are
needed, and

– Why it is important to teach full-stack thinking to the next
generation.

The key message is that the real world is often messier than presentation
in papers and we need to be able to cross between very low and very high
levels of abstraction to deal with this, as Alan Mycroft has done in his
work.

1



1 Introduction

This paper is to celebrate and illustrate some of the threads that have pervaded
Alan Mycroft’s work across the years. He has combined skill in the sort of low
level detailed code constructions covered in Hakmem [2] and the Hacker’s De-
light [17, 18] with some of his skills there honed through his support for the BCPL
compiler for the Z80 and also on, perhaps particularly, the string-processing
parts of the C library that accompanied the Norcroft C compiler [15]. But he has
also put much energy into higher level code optimization using various styles
of global analysis, so it is proper to look at the consequences that flow from
developments in that area. He has also focused on ways that compile-time anal-
ysis can help with getting code correct — some of that will have grown out of
association with Edinburgh Standard ML [13] where one starts with a language
where näıve implementation may be inefficient but where the semantics are clean
enough that even radical code transformations can be safe. An ideal that flows
from is that users should express their needs with the very greatest clarity and
generality and that the language implementation should (ideally!) arrange that
performance ends up satisfactory.

We try here to look at an area that illustrates the fact that if one looks at a
problem from only a single perspective, only thinking in terms of a single level of
abstraction, then important aspects of a practical implementation will be lost.
And a part of what we observe is that developments in optimizing compilers over
the last say 30 years have made it possible to express code in a much cleaner
way that had previously been possible. Our case study is the apparently simple
task of long division of multi-precision integers.

In many contexts, algorithmic performance is looked at through the prism of
big-O notation. It is only in special areas the improvements by less than perhaps
a factor of two are viewed as worthy of discussion, and speeding things up by just
a few percent is usually thought of as immaterial. But Alan has had involvement
in precisely such special areas: one is compiler optimisation where over the years
a succession of incremental improvements make life better for everybody. The
second is in low level libraries, where even small enhancements (for instance in
being able to copy strings using word not byte operations) help all users. Finally,
as compilers improve, those limited areas where machine-code implementation
wins have shrunk and compiler-based analysis has allowed use of higher levels
of abstraction in even performance critical code. This higher abstraction has
improved the prospect of static reporting of errors as well. Alan has contributed
either directly or indirectly to all of these.

The particular case study we cover here is at almost the lowest level of any
symbolic computation systems — exact arbitrary precision arithmetic. Software
that is to manipulate algebraic expressions needs arbitrary precision integer
arithmetic. Unlike the situation for those concerned with cryptography this has
to cover numbers whose size can not be predicted in advance. Unlike the situation
for those concerned with breaking records for high precision values of elementary
constants, it almost never calls for the ultimate asymptotically best algorithms.

2



Because this arithmetic underpins all other activity, even small improvements
to it impact the whole system.

The current market-leader for big integer arithmetic is “gmp” — the GNU
multi-precision library [5]. It is notable as a widely used library that still has
heavy reliance on machine code to achieve its objectives. The first version of
gmp was released only in 1991, well after we became involved in implementing
arithmetic, and so we started from code-bases and mind sets that predated
it. Since then we have valued abstraction and readily portable code (gmp has
separate bodies of assembly code for perhaps a couple of dozen architectures,
all calling for maintenance) above absolute performance. But recently we have
wanted to consider two questions

1. How close to gmp performance can high-level code now come?
2. Are the algorithms from Knuth Volume 2 still close enough to the the last

word?

Our stance is also that low-level underpinnings for a system deserve serious
review every decade or so, this view having emerged over around 50 years of
experience.

2 Acceptable Absolute Performance Given Good
Compilers

Going back to the times when Alan Mycroft was a student, one of us (ACN) had
multiple-precision arithmetic using base 109 (arguing that a power of 10 base let
input and output happen in linear time but left the asymptotic cost of arithmetic
unchanged). Around 1989 that was replaced by a version using 231 and coded in
C rather that BCPL. Twenty five or so years later, that needed to be replaced
by a version using 64-bit digits and built using C++. These were not capricious
changes — one was triggered by the need to move from a BCPL base to a C base
(for instance using Norcroft C [15] developed along with Alan!) and the other to
keep up to date using C++ in a 64-bit world. Many serious long-lasting systems
will need their foundations dramatically re-worked over similar time-scales.

Meanwhile the other of us (SMW) became involved in the Scratchpad [6],
Axiom [10] and Aldor [19, 20] symbolic computation work at IBM after initial
work on the Maple [3, 4] system. Coincidentally, at its very start Scratchpad
included parts of Reduce [8] which was the driver for the first work thread.
Axiom was seriously concerned with generality, and this led SMW to consider
both the extent to which big-number code could be written neatly parameterised
by the width of digits, and how the algorithms used could be expressed so as to
be directly usable in a range of other domains that were not purely numeric. His
sequence of papers on “shifted inverses” [21, 22] triggered the current work.

Pleasingly, by using C++ templates to achieve specialization for small cases
and with the highest level of optimization using current compilers — and a
certain amount of care reading the Hacker’s Delight [17] — the unsigned multi-
plication code written in C++ could match or even beat gmpmultiplying numbers

3



with up to around 130 decimal digits. From there on gmp, starts to win mostly
by a factor of up to two, in part due to its use of hand-written assembly code.
This suggests that there remains some scope for further compiler development
to help us claw back that discrepancy! At some stage beyond where Karat-
suba [11] becomes the preferred scheme, gmp switches to the Toom [5] family of
algorithms, before eventually moving to use of the FFT. Rather than that, the
competing C++ code switches to using three threads for the three top-level sub-
multiplications that Karatsuba performs, making that transition once thread
management overhead is properly balanced by concurrency savings. The means
that comparison between the two platforms is not quite straightforward, but
of the measurement is of elapsed time on an otherwise lightly loaded system
it allows the portable C++ code to be at least competitive against gmp out to
well over 30000 decimals. This is typically as far as general purpose symbolic
computation cares for — calculations needing more than that are not liable to
terminate in a sensible amount of time anyway. This confirms what one might
have hoped, that modern compiler optimisation can diminish the need for as-
sembly code even in extreme cases. But it also confirms one’s uncomfortable
suspicion that it is not yet perfect so continued work in the area is called for.

With multiplication code stable and prompted by the SMW work on shifted
inverses, our attention re-focused on division and this forms the main core of
this paper. The observations below arise from re-working two arbitrary precision
integer libraries, seen through the lens of our own experience.

3 Long Division

Way back in 1969 Knuth explained to the world how to do fast long division.
His procedure is based on wanting to compute a quotient q = u/v of N digit
numbers. Since he is actually considering fractional values rather than integers
all the numbers concerned have just N digits and his explanation will be most
directly relevant to the implementation of high precision floating point.

Jebelean [9] in a paper on practical integer division stated in the introduction
to his report that a scheme designed along the lines of the Knuth method would
lead to long division being around 30 times as costly as a multiplication. This
would render it of little practical value. We set out to see if use of a modern
code-base (Jebelean’s arithmetic used a base of 229), shifted inverses and a fresh
round of consideration could change that judgment.

Knuth starts by computing w = 1/v using an iteration w ← w+w×(1−v×w)
performing only the last step to full precision N . The previous to N/2 and so
on. The total cost of finding the reciprocal is then 4 ×M(N), where M(N) is
the cost of a single multiplication of two N digit fractions to obtain an N digit
result. Next compute q′ = u × w and it is an approximation to the final result
and with care it will be correct within 1 (as the fraction is truncated) and can
only be an underestimate. Finally compute r = u− v × q′ and compare against
v — if necessary do a minor correction. In all this has used time 6×M(N) [plus

4



some linear cost work]. Students have been taught this scheme for generations,
but in reality every single simple tiny step has greater depth.

We will look at this in detail and show the extra considerations that emerge
when looking at the algorithm from a perspective where absolute rather than
just asymptotic costs matter. We also have some comments on code expressive-
ness and compile-time validation and to make, and believe that both concern
for fine-detail issues that impact performance and higher level ones relevant to
correctness and maintainability are relevant here.

The domain of computation

A first thing to note is that Knuth’s explanation is in terms of numbers with an
implicit leading binary point (base 2 decimal point), in other words fractions.
Even though at times this may still provide a convenient way to think, it means
that the code for integer division diverts into a different domain for much of
what is done. SMW properly viewed this as unsatisfactory not just on aesthetic
grounds but because it complicates any attempt to have one body of code (with
an associated single proof of correctness) that is applicable across multiple do-
mains. Axiom and Aldor try hard to keep all code such that the characteristics of
underlying domains (rings, fields, vector spaces, polynomials, non-commutative
versions of all those. . . ) can be used to parameterise algorithmic code. He set
about re-formulating fast division so that all intermediate values were in the same
domain as the inputs, but “shifted” [21, 22]. The work reported here started with
the idea of implementing fast division within the ACN code body (which just
used classical methods for that operation), both to enhance that code and to
further test and demonstrate the SMW variant of the algorithm.

We next note that given that calculation is going to be done using digits (in
this case 64-bits wide) rather than just abstract numbers it is desirable to align
all values to make full use of each digit. Thus the notation 1/v is taken as an
invitation to left-shift v until its top digit is almost full. Informally this can be
thought of as normalization to the range [0.5, 1). Then we compute 0.5 divided
by this shifted value rather than 1/v and obtain a nicely normalised reciprocal
also in the range [0.5, 1], save for the case where v is exactly a power of 2 which
just gets treated specially. Of course the shifting has to be allowed for and in
effect undone at a later stage, but that is easy so we will not mention it again,
even though it represents a number of extra lines of code. Also the explanation
here in terms of fractional values has to be interpreted as talking about integers
with associated shift values. This is not quite like use of floating point where
every intermediate value tends to be re-normalised to have its top bit set, and
it is not quite like most scaled arithmetic were there will often be scaling by a
fairly fixed amount — here, as we go, the amount of shifting will end up varying
from step to step.

In the calculation q = u/v, many in the past have spoken of working with
N digits. Well u and v in general have unrelated sizes, so a single parameter
N here is an over-simplification. It is more probable that the sizes of v and

5



q are what should be thought about and performance predictions can not be
uni-dimensional.

In real code, if numbers are reasonably small, it will be proper to drop back
to classical methods. When an iteration is called for a starting approximation
will be needed and there has to be a judgment about how accurate that should
be because even if a single digit would suffice it is not obvious that such a choice
will be best.

Sub-operations

We now consider the important iterative step w ← w +w × (1− v ×w) and we
assert that it has issues in every sub-operation!

At any stage we want to calculate using only values that are meaningful
and we only want to generate outputs that will be necessary. So consider the
inner v×w. At any stage w will have (say) k digits correct, so there is no merit
in looking at more digits of w than that. However the updated value we are
computing will have 2k digits correct, and those depend on 2k digits from v. So
in that multiplication we multiply a 2k digits value by a k digit one and that
yields a 3k digit result. However, because w is already a k-digit approximation
to the reciprocal of v, we know in advance that (almost) the top k of those digits
will exactly cancel with the 1, and so those do not need computing. Furthermore
(almost) the lower k digits of that result are not needed because they would
contribute to digits beyond 2k in the next value of w. So what we need is an
unusual form of multiplication that forms the product of a 2N digit number by
an N digit one and just return the middle N digits on the result. But it is even
messier because we actually need those middle N digits with extra guard digits
surrounding them!

These cases of looking at just some of the digits of a product and the issues
of looking at different numbers of digits within different values amount to just
what SMW was expressing at a higher level in his papers. They are explained in
grim detail here to illustrate just how much care has to be taken throughout the
implementation, and how much might be lost by viewing everything at a higher
and more mathematical level.

Now consider the “w+w×” part. The multiplication is of a k digit w by only
k digits from the term just computed because it is (almost) the case that this
is not added to the existing value if w but merely concatenated on its end to
(almost) double the number of correct digits. So only (almost) the top k digits of
that product are required. There are two driving issues behind the repeated uses
of the word “almost” here. One is that when one computes the top half (say) of
the product of a pair of numbers by a scheme other than forming a full product
and discarding low digits there are liable to be carries from the omitted low
part of the calculation that are missed so the value formed will be slightly low.
It is therefore necessary to bound that level of inaccuracy and maintain guard
bits sufficient that it does not hurt the end result. The second issue is that in
the Newton Raphson iteration even if at one step a value may have all bits of
k digits correct and then at the next we expect to get 2k digits correct, there

6



can be rounding or truncation errors relative to the full result both in the initial
k digits and in the calculation that obtains the updated value. Tiny errors can
escalate. This issue interacts with the fact that the eventual number of digits
required may not be a power of 2, and so for instance if 2k+1 digits are required
in an end result the iteration that leads to it is liable to be starting with values
stored as k + 1 digits but where the least significant of those digits could afford
to have almost half its low digits incorrect. This adds extra depth to the simple
sounding statements about use of precision N,N/2, N/4 . . .

Another place where only high digits from a product are needed is q′ = u×w.
The magnitude of the quotient can be estimated from the sizes of divisor and
dividend. At this stage we only need to use high digits from u, and at this stage
we can see that the reciprocal w needed to be computed to a number of digits
to match q. Note that this level of precision may be either greater or less than
the size of the divisor, and coping with that adds further detail to the iterative
process — in particular the operation described above as multiplying a 2k digit
by a k digit one will sometimes have to allow for (and take advantage of) the
divisor v not having fully 2k digits.

The final step that Knuth presents forms r = u−v ∗q′. He has arranged that
q′ is either the correct quotient or just one too small, and as a result r will be in
the range 0 ≤ r < 2v. That means that we can tell in advance that many high
digits in the subtraction there will cancel exactly, and so this is a case where
only low parts of the product are required. If we require the remainder as part
of our output, this is as far as we can go, but there are occasions when division
is performed and only the quotient is wanted. In such cases, computing even the
full low part of w × q′ is usually unnecessary.

If we did the full calculation of r and then compared it against v, that would
be done by inspecting its top digit first and only working down to check lower
digits if the issue had not been resolved. One might hope that, when using 64-bit
digits, testing only the top digit would almost always be sufficient. That means
we may be able to get away with finding just a single digit from some well-chosen
place towards the middle of v × q′. This can be done with controllable error in
linear time rather than M(N) time. However three issues intervene. The first
is that the top relevant full digit of w × q′ may have either almost all its bits
in use or only a few. In the latter case, testing just those few bits does not
provide as reliable a test as would be ideal. This can be coped with by using
code that extracts a digit-sized value from a product but aligned by a bit-address
rather than a digit address. This is not obviously a primitive operation widely
discussed in the literature. The second issue is that a one-digit part product can
have inaccuracies because carries that would have contributed to a perfect value
have been missed out. Those errors need bounding and allowing for. And finally
there is the issue of what the most challenging cases might be. Here that will be
when u−v× q′ is very close to v in value, in which case the comparison may not
be resolved by inspecting just one high digit. In particular this can be the case
when the division is going to prove to be exact (and q′ was one too low). Exact
division seems a really bad case to have badly handled in a version of division

7



code that will not be returning a remainder! To mitigate that we round q′ rather
than truncate. This means that r has to be tested not just to see if it is less
than v but also to see if it was negative, but it moves the case where this one-
digit check for correction is insufficient from near exact divisions to one where
the remainder is around v/2. Obviously, if the one-digit test is inconclusive, it
makes sense to drop back and use the original low-half-of-product scheme. We
have considered elsewhere the general case of “clipped products” in which only
some of a product’s digits are desired [16].

All the above makes use of a version of multiplication code that delivers some
but not all the digits of the full result. Mulders [14] pioneered this. He was con-
cerned with multiplying power series and so naturally he looked at keeping the N
low terms from the product of two series each of which had N terms. He showed
that he could form the product in time that was say 70% to 80% of the cost
of performing a full Karatsuba style multiplication. Hanrot and Zimmerman [7]
considered his scheme in some depth and in particular looked into the optimal
value for his parameter β, the proportion of the product computed. There were
also associated with its use in the mpfr multi-precision floating point library,
where they will have just been concentrating on the top half of a multiplication
of two equal-sized numbers, but they will have considered carry propagation
carefully.

Tying it together

For general use, it is necessary to adapt things so that the two inputs do not
have to have the same number of digits, to allow for carry operations and to
have versions that keep flexible numbers of high, middle or low digits from the
product. That of course all depends on having underlying fast full multiplication,
and so the Karatsuba procedures have to be bolstered with code that allows for
inputs not balanced in terms of their digit counts. At yet lower levels performance
can depend on just how carry detection and propagation is implemented, how
the temporary workspace that Karatsuba and Mulders need is managed and
on overheads that arise when the resulting library is built so it can work in a
threaded environment.

As an implementation became close to complete, it became possible to start
some performance assessment.

The first observation is that in general the cost of a classical long division
u/v is only modestly greater than that of classical multiplication of v by the
quotient q. This should probably not come as a big surprise! It also makes sense
that when the quotient has fairly few digits any chance for the Newton-Raphson
“fast” division to shine has to depend on even q being rather large and hence
the two inputs u and v will be enormous.

If the divisor and quotient are about the same size, the fast method can be
a winner with the cost of u/v being only about 4 times that of v × q, but the
various overheads mean that with the current code-base a division of a 100-digit
number by a 50-digit one is still faster using classical methods. Note the ratio
of the cost of clever division to Karatsuba multiplication is still not much more

8



than 4 — a long way short of the 30 that Jebelean had projected, but that of
course does not invalidate the merits of the alternative scheme that he presents.

The case that we had not initially expected arises when the quotient has many
more digits than the divisor and there the Newton-Raphson shows disastrously
poor performance. This is of course because it is needing to compute a value
of 1/v to the number of digits precision set by q. It becomes clear that when q
is going to be significantly larger than v that the division should be conducted
as if by short division by v, partitioning u into appropriate sized super-digits.
That will result in all the internal divisions being of the 2N/N variety where the
asymptotically good method actually pays off.

4 Correctness and Abstraction

It should be apparent from the above explanation of our division code that it
ends up complicated enough that correctness can not be a given. In particular
are all stages we want to compute with only the minimal number of digits to
maintain accuracy — the closer to the wind we can sail the faster the code will
be.

There are two components to the task of getting things right. The first is
illustrated by a need for a bound on the error due to ignoring some potential
carries when we compute just the top half of a product. In some of the work
we were involved in required properly detailed coding: for instance we write
(-(from>=M+1))&(from-M) rather than from>=M+1?0:from-M because, using
certain compilers, the former tuned into branch-free code and ran measurably
faster than the latter. But then we need to switch into mathematician mode and
derive and then prove a bound on the impact carries could have on a partial
product. We believe that Alan Mycroft is the sort of person with the breadth to
contribute at both ends of this abstraction stack, and to all levels in between.

With regard to the low-level hackery we are very aware that compiler im-
provements over the years have made it possible to achieve results that pre-
viously called for lower level code. For instance some compilers now recognize
fairly natural-looking idioms and generate machine code that makes proper use
of carry flags and “add-with-carry” operations. But our case, where we want
to generate branch-free code, shows that such a line of work has not fully run
its course. But we are also strongly appreciative of compiler work that in-lines
functions, maps variables onto registers and all the other clever things that allow
us to write code in a cleaner and more abstract way than in the past.

We also note that way in which compilers can increasingly propagate infor-
mation through code and and detect issues. We very much want that to continue
to improve. The experience developing this fairly densely detailed code all in-
tended to implement (in the end) very clear cut mathematical operations has
shown that at least with the compilers currently in general use there is still
plenty to be done. In a better future world all of the off-by-one and not-quite-
enough-bits-for-accuracy bugs we had to detect by fairly traditional methods

9



might ideally be spotted based on static code analysis. This of course can in-
volve continuing the merge of proof technology with compilation.

The final issue of language design and compilation that we feel that this
effort has highlighted for us is the need to be able to express actions at the
highest possible level of abstraction while still maintaining fine detailed control
of issues that impact performance. In some ways, this is reminiscent of of other
findings [1]. As an example of a conflict we faced in this style consider the fact
that most of the more elaborate big-number functions need workspace sized
as per their inputs. A clean way of allocating this space might be use of C++

std::vector, and then a reasonably plausible compiler can lead to unchecked
indexed access being as efficient as use of simple C-style arrays. However in library
code that is liable to allocate and release memory very frequently the potential
costs of new and delete operations are a worry — leading us to provide our
own scheme exploiting all our understanding of sharing and lifetime properties
of our workspace. We obviously try to implement that with an interface that
makes its use seem as high-level and abstract as possible (thank you templates,
overloading,. . . ) but, all in all, we find the gulf between the around 3 lines of
explanation that Knuth provides and the several thousand lines of code we end
up with to be rather horrifying. We are very aware that if we had coded all of
this some decades ago it would have been even worse, but we very much want
compiler work (including language design and code proof technology) to continue
even after the retirement of one of its contributors.

5 Results

Part of the thesis behind the paper is that the real world is messier than the
presentations in most research papers. For integer division we believe that most
explanations of procedures have been characterised by a single parameter that
gives “the number of digits involved”. We observe that if an N digit number is
to be divided by an M digit one that there are certainly three domains of perfor-
mance — the straightforward one where N is close to 2×M but also ones where
the divisor or the quotient is much smaller than the dividend. In the extreme
cases the Knuth scheme — applied in a näıve manner — is unsatisfactory. If the
divisor is small relative to the dividend but large enough to justify non-classical
treatment, it is much better to perform an operation in the style of classical
short division treating the divisor as defining a sort of digit. If the quotient is
going to be small, a scheme that uses an iteration to generate a shifted inverse
of the divisor is extremely good provided that all calculation is done only to a
precision based on the number of quotient digits. In this case, the dominant cost
of the full calculation will be multiplying quotient by divisor and subtracting to
find the remainder. If the user does not actually need the remainder, almost all
of that cost can be avoided most of the time, leading to dramatic savings.

As well as there being thresholds based on the relative magnitudes of divisor
and quotient, there also have to be ones that reflect that until numbers become
large there is no merit in abandoning the classical algorithms. Just where these

10



will lie will depend on the relative performance of the classical division used
as a baseline and on the fast multiplication used for larger products. Of course
multiplication has performance that varies for inputs that are not the same size
and here waters are further muddied by the use of Mulders-style multiplication
that generates only some of the digits from a full product. In our case an ad-
ditional complication arises. Karatsuba multiplication works by decomposing a
product so that to multiply a pair of N digit values one performs three multi-
plications on N/2 ones. For large enough N that synchronization overheads are
balanced by concurrency savings these three sub-products are calculated in sep-
arate threads, giving a reduction in elapsed time but not in the total number of
CPU cycles executed. This certainly brings into focus the issue of whether tim-
ing reports should show elapsed or CPU time, and in the latter case how much
system as distinct from user time needs to be accounted for. It also means that
our multiplication cost grows in a somewhat lumpy way rather than meeting the
asymptotic prediction at all early.

We need per-platform tuning within a Karatsuba multiplier, for just how
Mulders-style decomposition is used for inputs that do not match in size and
when it is not exactly the top of bottom half of a product needed and for the
changeover from classical to notionally faster division. At this stage we have
not completed all that tuning, and anyway the main focus here is to expose
complicated detail rather than to claim ultimate performance. So we provide
here some measurements that can at least give an idea of behaviour.

Because our division code sits firmly atop multiplication, we start with mea-
surements for regular simple integer multiplication where the two numbers being
combined each have the same number of digits. We report elapsed time on am
Intel i7-8086k system running Windows 10 and using the Cygwin C++ compiler.
The bit-patterns of the numbers multiplied are set up as random in such a way
that successive test runs will use different random seeds (so as to avoid optimiza-
tion artefects based on the exact test cases). Timings for our code are reported
against those for gmp and the key inner loop is essentially

clk1 = std::chrono::high_resolution_clock::now();

for (std::size_t m=0; m<REPEATS; m++)

mpn_mul((mp_ptr)c,

(mp_srcptr)a, lena*

(sizeof(std::uint64_t)/sizeof(mp_limb_t)),

(mp_srcptr)b, lenb*

(sizeof(std::uint64_t)/sizeof(mp_limb_t)),

for (std::size_t i=0; i<lena+lenb; i++)

gmp_check = gmp_check*MULT + c[i];

clk2 = std::chrono::high_resolution_clock::now();

where the value gmp_check both serves to give a weak confirmation that our re-
sults and those from gmpmatch and to reduce the changes of an over-enthusiastic
compiler omitting everything because its output was unused. As well as my_time
for the multiplication code that transitions to Karatsuba and to the gmp fig-
ure there is a reference time that is the timing for a simple version of classical
long multiplication with quadratic cost (and no special casing for short values).

11



Table 1. Multiplication of two integers of the same length. Times are reported in
seconds per multiplication.

Length Our time gmp time Ref time Ours/gmp Ref/Ours

2 0.010 0.017 0.075 0.577 7.830
3 0.015 0.034 0.087 0.439 5.749
4 0.024 0.036 0.103 0.665 4.260
5 0.034 0.045 0.124 0.753 3.681
6 0.049 0.056 0.147 0.873 2.990
7 0.092 0.071 0.176 1.301 1.915
8 0.151 0.085 0.213 1.780 1.409
9 0.172 0.105 0.248 1.638 1.441

10 0.185 0.123 0.292 1.498 1.580
20 0.721 0.432 1.043 1.667 1.447
29 1.505 0.820 2.184 1.835 1.451
39 2.399 1.309 3.802 1.833 1.585
50 3.700 1.998 6.738 1.852 1.821
78 7.764 4.083 15.965 1.901 2.056

102 12.051 6.301 29.201 1.912 2.423
120 16.015 7.523 39.678 2.129 2.478
235 42.043 22.819 152.726 1.842 3.633
260 44.692 26.515 186.394 1.686 4.171
429 72.350 54.386 509.029 1.330 7.036
607 98.855 87.958 1024.906 1.124 10.368
740 120.235 120.761 1523.879 0.996 12.674

1043 217.381 189.216 2939.518 1.149 13.522
1546 400.686 328.835 6583.968 1.218 16.432

Number lengths are expressed in terms of 64-bit digits so for instance the line
for length 1546 relates to multiplying a pair of integers each of around 30000
decimals. The lengths are not all at neat multiples of ten because this table is
extracted from a larger one which uses a set of samples that grow geometrically
not arithmetically. This is shown in Table 1.

We are of course very pleased with the results for length up to 6 (ie around
100 decimals) and for many calculations in Computer Algebra we view that
range as important. We are frustrated that so far we have not been able to coax
our code and compilers into matching gmp speed there. From 20 up we will be
using Karatsuba and at least we manage to be within a factor of 2 of gmp. At
around 200 digits (say 4000 decimals) we start to be able to use concurrency and
that keeps us reasonably competitive against gmp as far as we fuss. Even though
by that stage gmp will be using variants on Toom rather than just Karatsuba.
We do not measure and do not really concern ourselves cases with millions of
decimals.

Next we report on Mulders multiplication, and again to simplify the pre-
sentation we multiply two equal sized random numbers and keep either the full
product or the top half or the bottom half. Our Mulders code is capable of

12



Table 2. Time to compute lower half of product of two N place values.

N Class Kara Fast Kara/Class Fast/Class Fast/Kara

10 0.07 0.10 0.07 132.57% 96.42% 72.73%
14 0.13 0.20 0.12 148.17% 89.80% 60.61%
18 0.21 0.29 0.18 139.22% 88.17% 63.33%
20 0.25 0.36 0.22 144.48% 88.76% 61.44%
24 0.37 0.42 0.37 114.31% 99.15% 86.74%
50 1.63 1.80 1.30 109.98% 79.73% 72.50%
55 2.04 2.17 1.59 106.62% 77.74% 72.91%
70 3.19 3.38 2.21 106.04% 69.44% 65.49%
80 4.14 3.98 2.99 96.04% 72.09% 75.06%
90 5.29 4.87 3.72 92.02% 70.37% 76.48%
95 5.78 4.69 4.02 81.13% 69.41% 85.56%

100 6.39 5.65 4.44 88.53% 69.50% 78.51%
105 7.02 6.68 4.67 95.17% 66.47% 69.84%
110 7.70 6.88 5.08 89.40% 66.02% 73.85%
135 11.51 9.71 6.65 84.30% 57.78% 68.54%
240 36.49 20.25 19.70 55.50% 53.99% 97.27%
250 39.29 21.23 20.53 54.02% 52.25% 96.72%
300 56.69 23.96 26.36 42.27% 46.50% 110.00%
700 302.47 60.42 72.48 19.97% 23.96% 119.96%
750 359.93 63.92 81.34 17.76% 22.60% 127.26%

1400 1228.45 177.73 180.51 14.47% 14.69% 101.57%
1600 1562.67 261.09 207.99 16.71% 13.31% 79.66%
1800 2033.82 337.94 314.95 16.62% 15.49% 93.20%

10000 60694.30 3520.00 3558.90 5.80% 5.86% 101.11%

delivering an arbitrary slice from the product and so any overhead associated
with that generality is present. We use our Karatsuba-based multiplication as
underpinning. We have code that can produce a slice of digits from a product
using simple classical code, so we compare this use of Karatsuba to form a com-
plete product (and then merely discard unwanted digits) and then Mulders. For
generating a complete product our code degenerates to just use of Karatsuba
with a few initial extra tests that are irrelevant by the time Karatsuba makes
sense. And our comparisons show that we can compute the top half of a product
in times broadly similar to those for the bottom half, so the only section of our
full test results included here are for calculating the lower half of the product of
two N digit values. The results are shown in Table 2.

It can be seen that for reasonably big numbers the fast methods are indeed
faster than simple classical code, and for huge cases they are better by a large
factor. Up to a couple of hundred (64-bit) digits, the Mulders code delivers a
really useful speedup compared against just using Karatsuba and then throwing
away half of the result. But at about the point where our Karatsuba implemen-
tation goes multi-threaded that benefit gets lost — perhaps because Mulders in
its recursion uses a sequence of smaller full multiplications that do not use paral-

13



lelism. At present we find it hard to explain why our implementation of Mulders
does not do better on truly huge numbers. It perhaps means that pragmatically
we should add in additional thresholds so that for numbers with a really large
number of digits it does not try to be clever! Our “top half of product” code
matches the bottom half performance up to around 70 (64-bit) digits but then
degrades in an even worse way than the bottom-half code, so further tuning is
called for – or perhaps more sophisticated optimization in the compiler.

We collected similar measurements for the “shifted inverse“ code that com-
putes a sort of scaled reciprocal. For that we could use our existing classical long
division as a baseline, then code that used Newton-Raphson but performed all
arithmetic to full precision and finally our version using precision that adjusted
as the iteration proceeded and Mulders multiplication. As an additional assess-
ment for this we timed multiplying the input by its computed inverse, so we
can compare our best time with that of a single multiplication. Here the table
of results is tidy enough that we do not need to present much of it. Using re-
stricted precision for intermediate results and Mulders can save serious amounts
of time as against using full precision everywhere (as expected). The iterative
code is never slower than finding the reciprocal using classical division, but we
needed to get as far as 500 digits before it was faster by a factor of 5. The shifted
inverse is found in a time that in the best cases is slightly under twice as long
as multiplication, is usually between 2 and 3 times and at worst still under 4
multiplies.

By this stage the multiple opportunities to adjust thresholds in the underly-
ing code made optimization rather hard even on a single system! Note that in
the above comparisons the various simpler schemes were being used not just as
performance baselines but also for confirmation of output values, and with input
data generated with distinct random seeds for each test run our confidence tends
to grow.

Finally we come to division. Here the calculation will be to evaluate the
quotient q and remainder r when a value u is divided by v. In each case we will
use the corresponding lower case letter for the number of 64-bit digits in a value.
We use u = 10000 as a case large enough that we can hope that asymptotic
effects will dominate, and then consider v = 100, 500, 5000 and 9500 to cover the
regimes of relative divisor lengths. These of course lead to quotients taking the
same range of lengths.

Rather than showing absolute times we report timing ratios. We scale against
the cost of (our code) multiplying v by q, and then report the cost of repeating
that using classical long multiplication, using classical long division for u/v,
using our shifted-inverse code to calculate quotient and remainder and finally
our scheme that just finds the quotient.

Table 3 shows how behaviour changes fairly radically for divisions where
the numbers have different lengths. The more traditional Table 4 only considers
2N ×N divisions but observes what happens as N varies.

This of course confirms that eventually fast division beats classical, but the
cross over point is perhaps higher than would be nice! The final row here is the

14



Table 3. Scaled multiplication and division

v, q 100,9900 500,9500 5000,5000 9500,500 9900,100

classical mul 1.96 7.07 24.30 6.92 1.97
classical div 2.16 6.43 20.55 5.89 2.01

fast div+rem 3.99 6.86 4.16 1.32 1.04
fast quot only 4.00 6.80 3.20 0.29 0.04

Table 4. 2N ×N multiplication and division

size classical classical fast divide
in digits multiply divide divide no rem

20 1.33 3.24 5.98 5.22
40 1.67 2.63 4.58 3.81
60 1.82 2.42 3.96 3.28
80 2.06 2.36 4.45 3.65

100 2.18 2.41 4.34 3.54
150 2.39 2.47 4.09 3.27
200 2.63 2.64 4.16 3.36
300 4.45 4.22 6.33 5.17
500 7.51 6.99 7.15 5.81

1000 11.39 9.79 6.05 4.96
5000 24.99 20.91 4.25 3.27

same test as the 5000, 5000 case above and the slightly different numbers serve
to remind us that measurements on modern computers are subject to all sorts of
variation — an additional obstacle to refined optimization. In particular cache
consequences of running a single test repeatedly so as to have a long enough
time period to measure risk leading to results that may not be representative
of real-world usage. These figures also make it clear that a version of division
that does not compute a remainder can help with time savings when working at
higher precisions.

Given that results can be sensitive to the computer used the same tests were
run on a second system. A Raspberry Pi 5 was used with this choice partly
motivated by Alan Mycroft’s involvement in the start-up of Raspberry Pi.

For multiplication on the Raspberry Pi the C++-coded multiplication beats
GPM up to 7 digits, but only by a small fraction and it would probably be fairer
to declare a dead heat. From there on up to around 200 digits the speed ratio
remains at worst 1.4 and our code is mostly no more than 15% slower than gmp.
From 200-1546 digits where we use parallel Karatsuba beat gmp where the best
observation was taking 65% of the gmp time to multiply a pair of 740 digit
numbers.

The Mulders multiplication to find the low half of a product shows a more
repeatable speed-up so that Mulders costs about 75% of Karatsuba for a wide
range of number sizes, but again with ugly behaviour where a full Karatsuba

15



Table 5. Division with shifted inverses

v, q 100,9900 500,9500 5000,5000 9500,500 9900,100

classical mul 1.93 7.57 26.71 7.38 1.69
classical div 2.21 7.81 26.85 7.49 1.73

fast div+rem 4.09 7.86 4.28 1.73 0.94
fast quot only 4.09 7.74 3.51 0.31 0.04

goes parallel but the sub-multiplications done within Mulders are smaller and do
not. In our current implementation Mulders loses from around 200-3000 digits,
but beyond there it starts to be a winner again — albeit with less stability in the
speed ratio. A hypothesis is that the heavy use of starting and stopping threads
makes timings sensitive to internal timing in operating system thread-scheduling
and given that the subsidiary tasks are fairly small this generates delays.

Shifted inverses show a pattern similar to that observed on the PC.
For division we obtain Table 5. Given the significant differences in architec-

ture it is perhaps amazing how similar to the Intel table this is.
Looking at how well “fast” division works as input sizes grow, on the ARM

we have the shifted-inverse based division matching classical somewhere between
500 and 1000 digits again just as on Intel.

The main observation is that the Raspberry Pi figures as collected on Linux
look a little less scattered and incoherently variable than the Intel ones on Win-
dows and this may in part reflect the i7-8086k having a more complicated instruc-
tion processing scheme where, while average performance is excellent detailed,
timing can be very sensitive to all sorts of hard to predict interactions.

One thing which is clear from all this is that integer division following the
Knuth explanation can have a cost less than 4 times that of multiplying back to
recover the dividend — at least in the case where only a quotient is required not
both a quotient and remainder. While this includes the special case of divisions
known in advance to be exact it does not rely on that situation applying. This
is very much faster than the factor of 30 that Jebelean suggested would apply
but nevertheless his paper claims to achieve a factor of about 2 and so would be
even better – future work should implement that and consider how it applies to
quotients other than the tidy 2N ×N case. The other thing that emerges is that
our “fast” code only really begins to shine for integers sufficiently large that we
would rather avoid them arising in the first place, for instance by using modular
arithmetic with a word-sized modulus. But despite these practical reservations
we are very pleased with the manner in which this exercise highlights how much
depth can arise when one attempts to optimise even simple-seeming schemes.

6 Conclusions and Further Thoughts about Education

All the above explains some of the additional mess that a typical implementer
who is keen to achieve high performance may face. A properly pedantic imple-
menter will be fixated both on performance and on correctness, so will need to

16



deploy a mathematician’s skills and mind-set to prove that errors never intrude
as well as a low level hacker’s understanding of performance issues. With caches,
multiple-issue CPUs, speculative execution and various memory models that can
impact how multiple cores may or may not observe that the others are up to, this
has continued to become more and more challenging. Performance engineering
can often involve a desire to sail as close to the wind as possible, and in this case
error bounds on the “top half of an unbalanced product” will interact with the
exact manner in which errors propagate through the iterative step, and careful
analysis of just how accurate the initial approximations to the shifted inverse
are. So the difficulty of attaining correctness has perhaps grown too.

Clearly very many programmers respond by taking the line that delivery of
a product on time trumps correctness and correctness trumps performance. For
many purposes their stance is completely proper, but compilers and libraries rep-
resent special cases where correctness is vital and optimization impacts enough
users that it becomes truly important — perhaps especially now that machines
have by and large ceases speeding up substantially and their manufacturers chase
benchmarks with a combination of more cores (which will often not all be ac-
tivated) and with special instructions to support important but possible niche
applications.

We note that, as system developers, our own approaches start in some sense
from opposite perspectives—one as specific as possible and one as generic as
possible. However, we both consider the consequences of decisions on the full
software stack, and end up with designs with a great deal of similarity.

Our illustration has involved integer division, which might be viewed as fairly
low level and fundamental building block where there are carefully documented
solutions that go back at least as far back as Knuth Volume 2 [12]. But we
assert that proper implementation calls for a style of computer “renaissance”
individual, able to span consideration from mathematical and abstract down to
the finest detail of how to implement carry detection while combining multi-
word integers. And indeed ideally one who could know how then to tune code
to exploit the hardly intuitive performance consequences of modern complicated
instruction execution strategies. For the future we can not count on performance
improvements (and hence resource use reduction) based on raw CPU improve-
ments. We need a new generation of programmers who — against the teaching
style of several decades — value compactness and efficiency, and continue work
to keep improving compilers so that they can deliver that with clearly expressed
source code that can be validated effectively. If long division is messy consider
almost any “real scale” challenge! We need more Mycrofts.

References

1. Agaram, K.: Bicycles for the mind have to be see-through. In: Companion Pro-
ceedings of the 4th International Conference on the Art, Science, and Engineering
of Programming (Programming ’20 Companion). pp. 173–186. ACM (2020)

2. Beeler, M., Gosper, R., Schroeppel, R.: Hakmem. Tech. Rep. AI memo 239, Arti-
ficial Intelligence Laboratory, MIT, Cambridge Massachusetts (1972)

17



3. Char, B.W., Fee, G.J., Geddes, K.O., Gonnet, G.H., Monagan, M.B., Watt, S.M.:
On the design and performance of the Maple system. In: Proceedings of the 1984
Macsyma Users’ Conference. pp. 199–219. General Electric Corporation (1984)

4. Char, B.W., Geddes, K.O., Gonnet, G.H., Watt, S.M.W.: Maple User’s Guide.
Watcom Publications (1985)

5. GMP Development Team: The GNU Multiple Precision Arithmetic Library (ver-
sion 6.2.1). Free Software Foundation (2020), https://gmplib.org

6. Griesmer, J., Jenks, R.: Scratchpad/1: An interactive facility for symbolic mathe-
matics. In: Proceedings of the second ACM symposium on Symbolic and algebraic
manipulation. pp. 42–58 (1971)

7. Hanrot, G., Zimmermann, P.: A long note on Mulders’ short product. J. Symbolic
Computation 37, 391–401 (2004)

8. Hearn, A.C.: REDUCE: A user-oriented interactive system for algebraic simpli-
fication. In: Klerer, M., Reinfelds, J. (eds.) Interactive Systems for Experimental
Applied Mathematics. pp. 79–90. Academic Press, New York (1968)

9. Jebelean, T.: Practical division with Karatsuba complexity. In: Proc. 1997 Inter-
national Symposium on Symbolic and Algebraic Computation (ISSAC 1997. pp.
339–341. ACM, New York (July 1997)

10. Jenks, R.D., Sutor, R.S.: AXIOM: The Scientific Computation System. Springer
Verlag, New York (1992). https://doi.org/https://doi.org/10.1007/978-1-4612-
2940-7

11. Karatsuba, A., Yu., O.: Multiplication of many-digital numbers by automatic com-
puters. Proceedings of the USSR Academy of Sciences 145, 293–294 (1962), trans-
lation in the academic journal Physics-Doklady, 7 (1963), pp. 595–596

12. Knuth, D.E.: The Art of Computer Programming, Volume 2: Seminumerical Al-
gorithms. Addison-Wesley, Boston, third edn. (1997)

13. MacQueen, D., Harper, R., Reppy, J.: The history of standard ml. In: ACM on
Programming Languages: Issue HOPL. vol. 4 – 86, pp. 1–100. ACM, Washington
DC (2020)

14. Mulders, T.: On short multiplication and division. In: Proceedings AAECC 11, 1.
pp. 69–88 (2000)

15. Mycroft, A., Norman, A., Fitch, J.: The Norcroft C compiler. Tech. rep., Codemist
Ltd (1985), http://www.codemist.co.uk/ncc

16. Norman, A.C., Watt, S.M.: Computing clipped products. In: 26th International
Workshop on Computer Algebra in Scientific Computing (CASC 2024). pp. 273–
291. Springer Cham LNCS 14938 (2024)

17. Warren Jr., H.S.: The Hacker’s Delight. Addison Wesley (2003)
18. Warren Jr, H.S.: Hacker’s Delight, 2ed. Addison Wesley–Pearson Education, Inc,

Boston (2013)
19. Watt, S.M., Broadbery, P.A., Dooley, S.S., Iglio, P., Steinbach, J., Sutor, R.S.: A

first report on the A♯ compiler. In: Proc. International Symposium on Symbolic and
Algebraic Computation (ISSAC 1994), pp. 25–31. ACM Press, New York (1994)

20. Watt, S.M.: Aldor. In: Grabmeier, J., Kaltofen, E., Weispfenning, V. (eds.) Hand-
book of Computer Algebra, pp. 265–270. Springer Verlag (2003)

21. Watt, S.M.: Efficient generic quotients using exact arithmetic. In: Proc. Interna-
tional Symposium on Symbolic and Algebraic Computation (ISSAC 2023). pp.
535–544. ACM, New York (2023)

22. Watt, S.M.: Efficient quotients of non-commutative polynomials. In: 25th Interna-
tional Workshop on Computer Algebra in Scientific Computing (CASC 2023). pp.
370–392. Springer Cham LNCS 14139, New York (2023)

18


