
GPU Implementations for
Midsize Integer Addition and Multiplication

Cosmin E. Oancea1 and Stephen M. Watt2

1 DIKU, University of Copenhagen, Copenhagen 2100, Denmark
cosmin.oancea@di.ku.dk[0000−0001−5421−6876]

2 Cheriton School of Computer Science, University of Waterloo, Canada
smwatt@uwaterloo.ca[0000−0001−8303−4983]

Abstract. This paper explores practical aspects of using a high-level
functional language for GPU-based arithmetic on “midsize” integers. By
this we mean integers of up to about a quarter million bits, which is
sufficient for most practical purposes. The goal is to understand whether
it is possible to support efficient nested-parallel programs with a small,
flexible code base. We report on GPU implementations for addition and
multiplication of integers that fit in one cuda block, thus leveraging
temporal reuse from scratchpad memories. Our key contribution resides
in the simplicity of the proposed solutions: We recognize that addition
is a straightforward application of scan, which is known to allow effi-
cient GPU implementation. For quadratic multiplication we employ a
simple work-partitioning strategy that offers good temporal locality. For
FFT multiplication, we efficiently map the computation in the domain
of integral fields by finding “good” primes that enable almost-full uti-
lization of machine words. In comparison, related work uses complex
tiling strategies—which feel too big a hammer for the job—or uses the
computational domain of reals, which may degrade the magnitude of
the base in which the computation is carried. We evaluate the perfor-
mance in comparison to the state-of-the-art cgbn library, authored by
NvidiaLab, and report that our cuda prototype outperforms cgbn for
integer sizes higher than 32K bits, while offering comparable performance
for smaller sizes. Moreover, we are, to our knowledge, the first to report
that FFT multiplication outperforms the classical one on the larger sizes
that still fit in a cuda block. Finally, we examine Futhark’s strengths
and weaknesses for efficiently supporting such computations and find out
that the significant overheads and scalability issues of the Futhark im-
plementation are mainly caused by the absence of a compiler pass aimed
at efficient sequentialization of excess parallelism.

Keywords: Big integer arithmetic · cuda · Data-parallel programming
· GPGPU · High-level parallel languages · High-performance computing

2 Cosmin E. Oancea and Stephen M. Watt

1 Introduction

The work presented in this paper is ultimately aimed at extending already-
parallel programs, written in high-level languages such as Futhark [18], with
support for multi-precision arithmetic that runs efficiently on highly-parallel
hardware such as GPGPUs. Accelerating such computations would benefit algo-
rithms from various disciplines, such as computer algebra and cryptography.

The current work focuses on addition and multiplication of midsized inte-
gers, by which we mean integers of up to about a quarter million bits. While
there is in principle no size bound on integers that may be required in symbolic
computation, values of the size considered here account for almost all arithmetic
in systems such as Maple, Mathematica, Reduce and so on, even taking into ac-
count algorithms such as “GCDHEU” [9] that operate by evaluate polynomials at
integer points. Likewise, values of this size are adequate for most modern cryp-
tographic computations, though some older systems, e.g. [27], push this limit.

A second, important, observation is that integers of this size fit in one cuda
block of threads, or in a “work group” in OpenCL terminology. This hardware
level attention allows the implementation to leverage temporal reuse from fast
(register+scratchpad) memory, which has significantly lower latency than global
memory. In our experiments on Nvidia hardware, this range covers integers as
large as about a quarter million bits.

Normally, writing GPU software attending to this sort of hardware consid-
eration is time consuming, detailed and error-prone, with inflexible code using
specific machine instructions for a particular platform. Our main interest has
been to determine whether we may use a high level language to write GPU code
that is elegant and flexible while being sufficiently efficient. We have found this is
readily achieved. We have not at this stage been concerned with determining the
best algorithms for different integer sizes (i.e. classical, versus Karatsuba, versus
FFT), nor with using every trick to maximize performance (e.g. Montgomery
representation for FFT).

Related Work The most closely related work is the “Cooperative Groups Big
Numbers” (cgbn) library [34], authored by NvidiaLab, that offers a high-
performance implementation for integers up to 32K bits. The key technique
used by cgbn to achieve top performance is to map an instance of integer com-
putation on at most one warp of threads in order to leverage specialized Nvidia
hardware that allows values to be communicated directly between registers (of
the warp), i.e., without passing through scratchpad (shared) memory buffers
that have significantly higher latency. Other related work aimed at integer in
the target range implement

– the carry propagation of addition by mapping complex VLSI designs of hard-
ware adders into equivalent GPU operations [13,14],

– classical (quadratic time) multiplication using tiling strategies [13], but which
may require atomic updates to shared memory, or/and

– Strassen’s algorithm [49] for log-linear-time multiplication by applying FFT
in the domain of reals [2,13], which requires the computation to be carried
in bases unfriendly to the underlying machine arithmetic (e.g., base 10).

GPU Implementations for Midsize Integer Addition and Multiplication 3

There have been other, earlier implementations of multiple precision integer
arithmetic on cuda, but with different emphasis:

– CAMPARY [22,23] is a C library based on floating point arithmetic. The
main point is to extend precision by representing real numbers as the un-
evaluated sum of several standard machine precision floating-point values.

– CUMP [32,33] is an older work with a primary purpose of accessing cuda
with GMP. Its stated objective was to outperform the GARPREC library [26].
Other similar works were ancestors of the cgbn package, with which we
compare directly.

– Isupov [21] uses interval techniques to augment residue number arithmetic
for operations that rely on magnitude for numbers with upto 4096 bits.

– Chen et al [10] consider FFT using prime fields with generalized Fermat
prime characteristics of size 504 and 992 bits to handle integers of prac-
tically unbounded size. These numbers will generally span multiple cuda
blocks, hence the work is mostly concerned with making sure that access
patterns enable coalesced access to global memory. They aim to improve
spatial locality, but not temporal locality (re-use from shared memory).

We have recently assisted to a proliferation of Python-embedded DSLs aimed
at supporting ML practitioners—such as Tensorflow [1], PyTtoch [46] and Jax [15].
Similarly, we envision that a practically important direction refers to interfac-
ing languages supporting multi-precision arithmetic with mainstream computer-
algebra systems such as Maple [3] and Mathematica [20], thus enabling both ease
of scripting and high performance. Such solutions can build on prior interoper-
ability work aimed, for example, at supporting automatic differentiation [44,45]
or parametric polymorphism [11,41,42] across language boundaries.

Contributions This paper presents cuda and Futhark implementations3 for in-
teger addition and multiplication, including both quadratic and Strassen’s log-
linear time algorithms. The main contribution of our solutions mainly resides
in choosing the simplest tool that does the job: We recognize that addition is a
straightforward application of prefix sum [4]—a.k.a., scan: a basic-block of par-
allel programming—for which efficient GPU implementations are folklore [28].
For classical multiplication we use a simple partitioning technique that assigns to
each thread a load-balanced computation of entire elements of the result, so that
updates do not need to be atomic and are performed directly in low-latency reg-
isters. For Strassen (FFT) multiplication, we conduct the computation in the in-
tegral domain by using computer-algebra reasoning to find good prime fields that
maximize the utilization of machine-supported arithmetic. This allows for exam-
ple to represent integers using 15 bits of each half word or 31 bits of each word.

In comparison to cgbn, our implementation does not rely on specialized
hardware instructions and, we surmise, is likely to translate the performance
to other hardware from different vendors, such as AMD. Instead of mapping
integer operations to execute at warp level, our implementation allows them to
3 Implementations are available at https://github.com/coancea/midint-arithmetic/

https://github.com/coancea/midint-arithmetic/

4 Cosmin E. Oancea and Stephen M. Watt

occupy as much as an entire cuda block of threads, and relies on the classical
technique of efficiently sequentializing parallelism in excess4 to amortize each
access to shared memory across several register accesses.

We evaluate the performance of our implementations in comparison with
cgbn—on programs performing one addition, one multiplication and fusion of
such operations—and report that cgbn is faster on integer ranges up to 213 bits,
but our cuda implementation gains the upper hand on ranges of 215− 216 bits,
and outperforms cgbn on integers consisting of 217 and 218 bits. In fairness,
cgbn offers near-perfect scalability on fused operations.

Our Futhark implementation exhibits significant overheads in comparison to
our cuda prototype. The performance bottlenecks are caused by the absence
of a compiler pass that automatically performs efficient sequentialization. Im-
plementing it by hand is possible in Futhark, but still sub-optimal in several
ways: First, intermediate results are always mapped by the compiler to shared-
memory buffers and there does not exist a way for the programmer to change the
mapping to register memory. Second, the suboptimal shared-memory mapping
may restrict the maximal size of the integer that fits in a cuda block. Finally,
the user code implementing efficient sequentialization is likely to degrade the
performance of other semantically-equivalent code versions that, for example,
support execution even when the integer is too big to fit in one cuda block.

In summary, the contributions of this paper are:

– a demonstration that high level languages (C++ and Futhark) can be used to
implement big integer arithmetic concisely and efficiently for GPU compu-
tation,

– simple and efficient GPU implementations for multi-precision addition and
multiplication,

– an experimental evaluation that demonstrates significant performance gains
in comparison to cgbn library on integer sizes in the range of 215 to 218

bits,
– to our knowledge, the first demonstration that FFT-based multiplication

outperforms an efficient implementation of the quadratic algorithm on sizes
that fit in a cuda block (by factors as high as 5× on the largest size),

– a presentation that (we hope) allows to reproduce the implementations di-
rectly from the information in the paper.

Outline. This paper is structured in a straightforward fashion: Sections 2, 3 and 4
present our implementations of addition, quadratic and log-linear time multipli-
cation, respectively. Section 5 discusses the strengths and weaknesses of the cur-
rent Futhark compiler infrastructure for supporting multi-precision arithmetic.
Section 6 reports experimental results, and Section 7 concludes.

4 In simple words, this refers to having one thread compute in a sequential-efficient
fashion several elements of the result instead of just one.

GPU Implementations for Midsize Integer Addition and Multiplication 5

Sequential Addition

a

b

carry

r

255 255 255 · · · · · · 255 127

⊕ ⊕ ⊕ ⊕ ⊕
3 0 0 · · · · · · 0 2

⊕ ⊕ ⊕ ⊕ ⊕
0 1 1 · · · · · · 1 1 0

↗ ↗ ↗ ↗ ↗ ↗
= = = = = =
↓ ↓ ↓ ↓ ↓ ↓
2 0 0 · · · · · · 0 130

Parallel Addition
pStep 1:

map
(ov,mx)

Step 2:
scan scanexc carry_op_nice (f,t)

(ov′,mx′)

Step 3:
map

r

p

2 255 255 · · · · · · 255 129

t, f f, t f, t · · · · · · f, t f, f

f, t t, f t, f · · · · · · t, f t, f

↓ ↓ ↓ ↓ ↓
2 0 0 · · · · · · 0 130

↑ ↑ ↑ ↑ ↑
2 255 255 · · · · · · 255 129

Fig. 1. Sequential and parallel procedures for addition a+b base 28: linear vs log time.

2 Integer Addition

We represent a big unsigned integer—referred from now on as an integer—as
an array a containing M elements of type uint, which allows to store M · 8 ·
sizeof(uint) bits. The elements can be seen as the coefficients of a polynomial
in (base) x = 28·sizeof(uint), i.e., a = a0 + a1 · x + . . . aM−1 · xM−1. In our im-
plementation of addition and multiplication, the result has the same length and
element type as the input integers, e.g., add : [M]uint → [M]uint → [M]uint.

Adding two such integers can be accomplished by a (well known) iterative
procedure, illustrated on the left side of figure 1, that adds (in a bigger type of
double size) the corresponding elements of a and b together with the carry from
the previous operation, and then it computes the result element and the carry
for the next iteration as the remainder and quotient of the division of the sum to
the integer’s base. This is commonly implemented by performing the additions
within the domain of uint and by checking for overflow.

The procedure described above is inherently sequential, since the carry com-
putation gives rise to a cycle of cross-iteration true dependencies. Furthermore,
figure 1 shows a pathological case in which the carry of the first addition is
propagated all the way to the last element of the result, which, at first sight,
would seem that it does not allow any chunks of computations to be performed
in parallel, i.e., independently of each other.

However, Blelloch leaves it as an exercise [4]—that was solved by Topalovic,
Restelli-Nielsen and Olesen among others [50]—that a data-parallel implementa-
tion can be straightforwardly obtained by reasoning in terms of the basic blocks
of parallel programming—particularly scan [6], a.k.a., prefix sum. The proce-
dure, illustrated on the right side of figure 1 requires three parallel steps:

(1) a map operation that independently sums up corresponding elements within
the uint domain, and computes a partial result uint pi = ai + bi, together

6 Cosmin E. Oancea and Stephen M. Watt

with two booleans ovi and mxi that record whether (i) the addition has
overflow, i.e., there is a carry, and (ii) the result of the addition is the highest
element of uint, i.e., ovi = (pi < ai) and mxi = (pi == uint.highest).

(2) an exclusive scan that combines the overflow-highest pairs across elements, and
(3) another map that adds the partial result obtained in step (1) with the carry

(overflow) result obtained from the scan in step (2).

Before zooming on step (2), we recall the type and semantics of exclusive scan:

scanexc : (τ → τ → τ) → τ → [n]τ → [n]τ

scanexc ⊙ e⊙ [a0, . . . , an−1] ≡ [e⊙, a0, a0 ⊙ a1, . . . , a0 ⊙ . . .⊙ an−2]

where ⊙ is an arbitrary associative binary operator with neutral element e⊙.
Scan has parallel work O(n) and depth O(log n). Carries can be propagated by
means of a scan with an operator that is expressed in a friendly way as below:

-- neutral element is (false , true)
def carry_op_nice (ov1: bool , mx1: bool)

(ov2: bool , mx2: bool) : (bool , bool) =
((ov1 && mx2) || ov2 , mx1 && mx2)

The operator can be derived by human reasoning in the divide-and-conquer,
list-homomorphic style [17]: Assuming that (ov1,mx1) and (ov2,mx2) are the
partial results of two half problems, figuring out the operator comes down to
reasoning how to combine the half results into a full result. One can reason that:

– The whole addition overflows if and only if either (i) the second addition
overflows, i.e., ov2 holds, or (ii) the first addition overflows and the second
addition has resulted in the maximal element, i.e., (ov1 && mx2) holds.

– The whole addition results in the maximal element if and only if both half ad-
ditions have resulted in the maximal element (of half size), i.e., (mx1 && mx2).

Topalovic, Restelli-Nielsen and Olesen prove that the operator is associa-
tive [50] and accepts (false,true) as its neutral element, which is easy to see.

Figure 2 shows a more involved Futhark implementation, denoted badd,
which is intended to be mapped at the cuda-block level of parallelism, such that
all intermediate arrays are maintained and accessed from fast (scratchpad or reg-
ister) memory. The pseudocode specializes for simplicity uint to 32-bit unsigned
integer (u32) and computes IPB instances of additions in a cuda block—e.g.,
to optimize the case when M is too small for a good block size. Details are:

– carry_op_eff is very similar to carry_op_nice, excepts that it packs the
tuple of boolean values in the last two bits of an u32 value. The rationale
is that this (i) requires only one scratchpad buffer (instead of two), and (ii)
GPU hardware is optimized for u32 accesses; otherwise one can also use u8.

– However, since we aim to compute IPB (independent) instances within a
cuda block, step (2) needs to perform a segmented scan instead of a scan.
This is typically achieved by lifting the scan’s operator to operate over tuples
formed by the original datatype and a boolean which, when set, indicates
the start of a segment. carry_op_sgm encodes the lifted operator of the
segmented scan by encoding the start of the segment in the third-last bit.

GPU Implementations for Midsize Integer Addition and Multiplication 7

1 -- neutral element is 2 for both carry_op_eff and carry_op_sgm
2 def carry_op_eff (c1: u32) (c2: u32) =
3 (c1 & c2 & 2) | (((c1 & (c2 >> 1)) | c2) & 1)
4
5 def carry_op_sgm (c1: u32) (c2: u32) =
6 if (c2 & 4) != 0 then c2
7 else ((carry_op_eff c1 c2) | ((c1 | c2) & 4))
8
9 -- computes IPB instances but without efficient sequentialization

10 def badd [IPB][M] (as : [IPB*M]u32) (bs : [IPB*M]u32) : [IPB*M]u32 =
11 let f a b i =
12 let p = a + b
13 let b = ((u32.bool (i % M == 0)) << 2)
14 | ((u32.bool (p == u32.highest)) << 1)
15 | (u32.bool (p < a))
16 in (p, b)
17 let (part_res , carry_elms) = map3 f as bs (0..<IPB*M) ▷ unzip
18
19 let carries = scanexc carry_op_sgm 2 carry_elms -- carry propagation
20
21 let g r c = r + u32.bool (c & 1 == 1)
22 in map2 g part_res carries
23
24 def bbadd [N][IPB][M]
25 (ass : [n][IPB*M]u32) (bss : [n][IPB*M]u32) : [n][IPB*M]u32 =
26 map2 badd ass bss

Fig. 2. Futhark pseudocode for performing a batch of IPB additions of big numbers,
each represented as an array of M 32-bit unsigned integers. Function badd is supposed
to be mapped at CUDA-block level (where arrays are mapped to scratchpad memory).
Efficient sequentialization is not shown, albeit it is critical for good performance.

– the implementation of badd follows the three parallel steps mentioned be-
fore: the first corresponds to map3 f at line 17, which computes the partial
result and the input to the (segmented) scan, the second step corresponds to
scan carry_op_sgm 2 at line 19, which propagates the carries, and the third
step—map2 g at line 22—adds the resulting carries to each partial result.

– the bbadd function performs an arbitrary batch (N) of badd computations,
hence the map2 at line 26 is intended to be mapped on cuda’s grid of blocks.

A final optimization that we apply (not shown) is the classical efficient se-
quentialization of excess parallelism. In our case, this corresponds to having each
thread process independently a parametric (statically-known, smallish) number
of elements, rather than just one, as a way of reducing the inter-thread commu-
nication overhead for operators such as scan and reduce.5

The practical manner of implementing efficient sequentialization in cuda is
by mapping logical arrays to register (thread-private) memory whenever possible,
and by using shared memory preferably only as staging buffers—e.g., for copying
in a coalesced way to/from global to register memory or for storing intermediate
results (of reduced size) produced in the internal implementation of reduce and
scan. (Of course, some operations force manifestation of logical arrays in shared
5 Our cuda implementation of block-level scan and reduce follows the standard strat-

egy [28] that (de)composes the implementation hierarchically, at each level of the
hardware: cuda thread, warp and block level.

8 Cosmin E. Oancea and Stephen M. Watt

memory, e.g., when the same element is read by multiple threads, or in the
presence of gather/scatter operations that access statically unknown indices.)
This strategy has several well known advantages:

– it allows to maximize the utilization of both register and shared memory,
– it promotes accesses from registers, which has lower latency, do not suffer

bank conflicts, and are more numerous (in terms of bytes per thread) than
shared memory,

– it minimizes the live range of shared-memory buffers, thus promoting their
reuse, while register usage is automatically optimized by register allocation.

In summary, efficient sequentialization is a performance critical optimization
that reduces inter-thread communication and the latency of memory accesses,
generating significant speedups, higher than 2× in cases. More importantly, it
enables the implementation to efficiently support larger integers, since in our
context, their size is tied with that of the cuda block: On the one hand, the
quantity of resources utilized by a cuda block is typically proportional with its
size, hence a suboptimal mapping will lower the size of the cuda block that
can be launched and thus the magnitude of the integer. One the other hand, the
size of a cuda block is hard constrained to a maximal number of 1024 threads,
hence a one-to-one mapping would limit the integers to [1024]uint, while an
efficient sequentialization factor Q = 8 would support [8196]uint. In principle,
for addition, the integer size is constrained by registers, not by shared memory,
because all logical arrays can be mapped to register memory.

3 Classical, Quadratic Multiplication

Discussion is organized as follows: Section 3.1 provides the high-level rationale
of our implementation strategy in comparison with the popular approach of
applying tiling to optimize convolution-based code. Section 3.2 gives the birds-
eye-view of our cuda implementation, and section 3.3 zooms in on the main
computational step (the convolution).

3.1 Key Insights

The classical algorithm for multiplication corresponds to the formula:

Ck =
∑

i+j=k
0≤i,j,k<M

Ai ·Bj (1)

which assumes that the element type uint′ of the result C is large enough to
prevent overflow. Denoting with uint the element type of A and B, practical
implementations commonly perform the product Ai ·Bj inside a type ubig which
has double the size of uint, thus guaranteeing no overflow, and represent the
element type of C as a tuple (ubig, uint32) in which the second term denotes

GPU Implementations for Midsize Integer Addition and Multiplication 9

1 template <uint , ubig , uint32_t M, uint32_t T> __global__
2 void bmulTiled (uint* Aglb , uint* Bglb , ubig* Cglb) {
3 __shared__ uint Ash[T], uint Bsh[T]; __shared__ ubig Csh[2*T];
4 int ii = blockIdx.y*T, i = threadIdx.y; // 0 <= i < T
5 int jj = blockIdx.x*T, j = threadIdx.x; // 0 <= j < T
6 // copy A and B from global to shared memory & initialize Csh
7 if(threadIdx.y == 0) {
8 Ash[j] = Aglb[ii+j]; Csh[j] = 0;
9 Bsh[j] = Bglb[jj+j]; Csh[j + T] = 0;

10 }
11 __syncthreads ();
12 if(ii+jj + i+j < M) {
13 ubig prod = ((ubig)Ash[i]) * ((ubig)Bsh[j]);
14 atomicAdd (&Csh[i+j], prod); // atomic in shared memory
15 }
16 __syncthreads ();
17 int tid = i*T + j;
18 if(tid < 2*T && ii+jj + tid < M) // atomic in global memory
19 atomicAdd(&Cglb[ii+jj + tid], Csh[tid]);
20 }

Fig. 3. Sketch of a simple CUDA kernel for the tiled version of quadratic multiplication.

the carry that accounts for the potential overflow of summation. Alternatively,
one may use a triple (uint, uint, uint32) in which the first two terms correspond
to the low and high part of ubig. This section is aimed to highlight the key
differences between implementation choices and thus will work directly with
formula (1) and ignore the overflow details.

Tiling Approach. Related approaches [2,13,14] predominantly use block tiling
to implement formula (1); this results in C-like code similar to the one below,
which uses for simplicity the same tile size T that is assumed to evenly divide M:

for(int k = 0; k < M; k++) C[k] = 0;

for (int ii = 0; ii < M; ii+=T) // mapped on CUDA Grid.y
for (int jj = 0; jj < M; jj+=T) // mapped on CUDA Grid.x

for (int i = 0; i < T; i++) // mapped on CUDA Block.y
for (int j = 0; j < T; j++) // mapped on CUDA Block.x

if (ii+jj + i+j < M)
C[ii+jj + i+j] += A[ii+i] * B[jj+j];

The tiled code minimizes the temporal reuse distance of the accesses to A,
B and C. For example, the read indices of A are invariant to loop j (and jj). It
follows that the slice of A[ii : ii+T] can be remapped to a scratchpad memory
buffer of length T just inside the jj loop and reused from there within the body
of the loop, i.e., one access to global memory is amortized across T accesses to
scratchpad memory. Similar thoughts apply to arrays B and C. However, the
loop nest above is a generalized reduction [25,38], whose parallelization requires
inter-thread communication, because the same element of C may be updated by
different threads, hence the additive updates need to be atomic.

10 Cosmin E. Oancea and Stephen M. Watt

C0 = A0 ·B0 1 term
C1 = A0 ·B1 +A1 ·B0 2 terms
C2 = A0 ·B2 +A1 ·B1 +A2 ·B1 3 terms
.
CM−3 = A0 ·BM−3 + . . .+AM−3 ·B0 M-3 terms
CM−2 = A0 ·BM−2 + . . .+AM−3 ·B1 +AM−2 ·B0 M-2 terms
CM−1 = A0 ·BM−1 +A1 ·BM−2 + . . .+AM−2 ∗B1 +AM−1 ·B0 M-1 terms

Fig. 4. A load-balanced embarrassingly parallel partitioning is to assign thread 0 to
compute C0 and CM−1, thread 1 to compute C1 and CM−2, thread 2 to compute C2

and CM−3, and so on. All threads perform a total M multiply-fused add operations.

Figure 3 sketches a toy cuda kernel implementing the tiled version, which
assumes a two-dimensional block of size T×T. This approach optimizes temporal
locality and enables maximal parallelism but has two shortcomings:

– C is not only maintained in shared memory, which has higher latency than
registers, but its updates use expensive atomic operations: T·T times from
shared memory (line 14 in figure 3) and 2·T times from global memory (line 19).

– it prevents producer-consumer fusion—e.g., with following additions and
multiplications—because the atomic add in global memory requires a global
barrier across all blocks, which is not possible in cuda other than by ending
the execution of the current kernel.

Load Balanced Partitioning of the Result Across Threads. We choose
instead a strategy that partitions the elements of the result in a manner that is
load balanced, and assigns the computation of an entire partition to the same
thread. Figure 4 illustrates the partitioning that computes two elements of the
result with each thread, i.e., the identically coloured elements are computed by
the same thread and they require the same number (M) of terms. One could
increase the sequentialization degree, denoted Q, by computing Q = 4 or Q = 8
elements of the result per thread, which would result in 2 ·M and 4 ·M terms
computed by each thread, respectively. This strategy has the advantages that it:

– allows the result C to be mapped to register memory, and to be computed in
an embarrassingly parallel fashion, while enabling efficient sequentialization,

– allows multiple addition/multiplication operations to be fused within a cuda
block, such that intermediate results are reused from fast memory.

The downside is that it sequentializes completely an entire parallel dimension of
size M. We found however that this is a small price to pay, given the advantages,
especially when considering that

– we aim at integrating such arithmetic inside programs that are already par-
allel, which makes it unlikely that the parallel hardware will be starved,

– classical multiplication has suboptimal O(M2) work, in comparison with
the O(M logM) FFT algorithm, hence it makes sense to use it as a niche
specialization aimed at squeezing maximal performance from the hardware.

GPU Implementations for Midsize Integer Addition and Multiplication 11

1 template <class Base ,uint32_t IPB ,uint32_t M,uint32_t Q> __device__ void
2 bmulRegs(typename Base::uint*Ash , typename Base::uint*Bsh ,
3 typename Base::uint Areg [2*Q], typename Base::uint Breg [2*Q],
4 typename Base::uint Rreg [2*Q]
5) {
6 using uint = typename Base::uint;
7 using ubig = typename Base::ubig;
8
9 // 1. copy from register to shared memory

10 cpReg2Shm <uint , 2*Q>(Areg , Ash);
11 cpReg2Shm <uint , 2*Q>(Breg , Bsh);
12 __syncthreads ();
13
14 // 2. perform the convolution
15 uint lhcs [2][Q+2];
16 wrapperConv <uint , ubig , M, Q>(Ash , Bsh , lhcs);
17 __syncthreads ();
18
19 // 3. publish low parts & high and carry (hcs [:][Q:]) in Lsh & Hsh
20 typename Base::uint *Lsh = Ash , *Hsh = Bsh;
21 publishReg2Shmem <uint , M, Q>(lhcs , Lsh , Hsh);
22 __syncthreads ();
23
24 // 4. load back to register and perform the addition of the carries.
25 uint Lrg [2*Q], Hrg[2*Q];
26 cpShm2Reg <uint , 2*Q>(Lsh , Lrg);
27 cpShm2Reg <uint , 2*Q>(Hsh , Hrg);
28 __syncthreads ();
29 baddRegs <uint , M, 2*Q, Base::HIGHEST >(Lsh , Lrg , Hrg , Rreg);
30 }

Fig. 5. Main CUDA wrapper function that computes quadratic integer multiplication.

3.2 Birds-Eye View of Implementation

Figure 5 shows the core function bmulRegs that implements the quadratic multi-
plication algorithm. The implementation denotes by Q half the sequentialization
factor, i.e., each thread computes 2·Q elements of the result, and assumes that
2·Q evenly divides M, which has been (previously) ensured by padding the num-
bers to the closest multiple of Q. As before, IPB denotes the number of instances
solved within a cuda block, and the integer consists of M elements of type uint.
Thus the size of the cuda block of threads is: IPB*M / (2*Q).

The function input Areg and Breg and result Rreg are allocated in register
memory. Ash and Bsh are shared-memory staging buffers of length [IPB*M]uint.
It follows that one cuda block requires 2*IPB*M*sizeof(uint) bytes of shared
memory, and the maximal problem size M*sizeof(uint) that is computable for
IPB=1 is half the total size (in bytes) of the shared memory available on a SM.

Prior to calling bmulRegs, the kernel has copied (not shown) the input from
global to register memory in two stages: First, the input is copied from global
to shared memory in 2*Q sequential steps, such that consecutive threads read
consecutive elements of global memory, thus ensuring coalesced accesses. Second,
each thread packs 2*Q consecutive elements from shared to its register memory.

The implementation manifests numbers A and B in shared memory (at
lines 10-11), because computing the convolution (line 16) corresponding to for-
mula (1) requires multiple threads to access overlapping elements of A and B.

12 Cosmin E. Oancea and Stephen M. Watt

ℓti,j = lhcs[i][j] ht
i = lhcs[i][Q] cti = lhcs[i][Q+ 1] of thread t

L · · · · · · · · ·
+

H · · · · · · · · ·

ℓt0,0 ℓt0,1 ℓt+10,0 ℓt+10,1 ℓt1,0 ℓt1,1 ℓt+11,0 ℓt+11,1

ht
0 ct0 ht+1

0 ct+10 ht
1 ct1 ht+1

1 ct+11

Fig. 6. Illustrating the placement of thread-private array lhcs: [2][Q+2]uint in shared-
memory arrays L and H for Q = 2. L and H are then added to complete the algorithm.

The per-thread result of the convolution (line 16) is the array named lhcs
which has type [2][Q + 2]uint. The rationale is that each thread processes two
contiguous sub-partitions of Q elements: one from the first half of the integer
and its symmetric opposite across the midpoint. The result of each sub-partition
is represented as an array of size Q+2 of uints that addresses overflow concerns:

– the first Q elements are the low parts of the sequentially aggregated result,
– the next element corresponds to the high part of the aggregated result, and

the last one to an additional carry (in case the high part overflows).

Next, the function publishReg2Shmem manifests the per-thread aggregated
lhcs result into two shared-memory buffers denoted Lsh and Hsh in the manner
depicted in figure 6. (Note that these are in fact reusing the shared-memory
buffers of Ash and Bsh, which are dead after convolution). Finally, the low,
high and carry parts are aggregated across threads by simply adding together,
with the procedure from section 2, the integers represented by the arrays L and
H: This is accomplished by the call to baddReg at line 29, which requires its
arguments to be remapped as registers (at lines 26 and 27).

3.3 Implementing The Convolution

Figure 7 details the implementation of the convolution step:

– Function wrapperConv calls twice function convolution at lines 54 and 55,
each call processing one of the contiguous sub-partitions corresponding to Q
elements of the result,

– Function convolution computes each of the Q results independently in the
two loops at lines 35-44. The two loops are necessary since each element of
the result requires incrementally more terms.

– Function convIter, called at lines 39 and 43 adds one more term to the
result. We represent the result at this stage as a tuple between accum of
type ubig (which has double the size of uint) and a carry of type uint32_t.
The new term Ai ·Bj is computed in the ubig type (line 25), which prevents
overflow. However the additive update of accum may result in overflow, which
is accounted for at line 26.

GPU Implementations for Midsize Integer Addition and Multiplication 13

1 template <class uint ,class ubig , uint32_t M,uint32_t Q> __device__
2 void combine(ubig accums[Q], uint32_t carrys[Q], S lhcs[Q+2]) {
3 const uint32_t SHFT = 8 * sizeof(uint);
4 lhcs [0] = (uint) accums [0];
5 uint h_res = (uint) (accums [0] >> SHFT);
6 uint c_res = carrys [0];
7
8 for(int q=1; q<Q; q++) {
9 uint l = (uint) accums[q];

10 uint h = (uint) (accums[q] >> SHFT);
11 lhcs[q] = l + h_res;
12 h_res = h + (c_res + (lhcs[q] < l));
13 c_res = carrys[q] + (h_res < h);
14 }
15 lhcs[Q] = h_res;
16 lhcs[Q+1] = c_res;
17 }
18
19 template <class uint , class ubig > __device__ void
20 convIter(uint32_t i, uint32_t j, uint* Ash , uint* Bsh ,
21 ubig& accum , uint32_t& carry
22) {
23 const uint32_t SHFT = 8* sizeof(S);
24 uint accum_prev = (uint) (accum >> SHFT);
25 accum += ((ubig)Ash[i]) * ((ubig)Bsh[j]);
26 carry += (((uint)(accum >> SHFT)) < accum_prev);
27 }
28
29 template <class uint ,class ubig , uint32_t M,uint32_t Q> __device__
30 void convolution(uint32_t k1, uint* Ash , uint* Bsh , uint lhcs[Q+2]) {
31 ubig accums[Q]; uint32_t carries[Q];
32 for(int q=0; q<Q; q++) {
33 accums[q] = 0; carries[q] = 0;
34 }
35 for(int kk = 0; kk <= k1; kk++) {
36 uint32_t i = kk;
37 uint32_t j = k1 - i;
38 for(int q=0; q<Q; q++)
39 convIter <uint ,ubig >(i,j+q, Ash ,Bsh , accums[q],carries[q]);
40 }
41 for(int q=1; q<Q; q++) {
42 for(int i=0; i<Q-q; i++)
43 convIter <uint ,ubig >(k1+q,i,Ash , sh ,accums[i+q], carries[i+q]);
44 }
45 combine <uint ,ubig ,M,Q>(accums , carries , lhcs);
46 }
47
48 template <class uint , class ubig , uint32_t M, uint32_t Q> __device__
49 void wrapperConv(uint* Ash0 , uint* Bsh0 , uint lhcs [2][Q+2]) {
50 const uint32_t offset = (threadIdx.x / (M/(2*Q))) * M;
51 uint *Ash = Ash0 + offset , *Bsh = Bsh0 + offset;
52 uint32_t ltid = threadIdx.x % (M/(2*Q));
53
54 convolution <uint ,ubig ,M,Q>(Q * ltid , Ash , Bsh , lhcs [0]); //first half
55 convolution <uint ,ubig ,M,Q>(M-Q*(ltid+1), Ash , Bsh , lhcs [1]); // second half
56 }

Fig. 7. CUDA code for computing the per-thread convolution.

14 Cosmin E. Oancea and Stephen M. Watt

– After all results have been computed, they are aggregated together by the
call to combine at line 45 which computes half of the lhcs array—the other
half is computed by the second call to convolution.

The reported code allows for all but one loops to be unrolled—the exception
is the loop at line 35—thus enabling scalarization of the arrays lhcs, carries,
accum. We have found that the best performance is obtained when maximiz-
ing the size of uint, i.e., when uint and ubig are instantiated to uint64_t and
unsigned __int128, respectively. This is as expected, since their implementa-
tion is sequentially handcrafted for that specific size, and hence offers better
performance than our generic algorithm. Finally, our implementation:

– utilizes two shared-memory buffers of size IPB*M*sizeof(uint) bytes, which
are necessary in order to make the elements of arrays A and B available to
all threads during the convolution step.

– promotes fusion by holding the logical arrays to registers and using shared-
memory buffers transiently for each operation. It follows that fusion can only
be hampered by excessive register use.

4 FFT-Based Integer Multiplication

This section presents our implementation for the log-linear time integer multipli-
cation. Several related approaches use the domain of reals to perform the DFFT
transformation, which has the potential to affect the accuracy of the computa-
tion. Ensuring that errors do not manifest is often handled by restricting the
base in which the computation is carried [2,13] to values that are unfriendly to
the hardware (e.g., base 10 or 11). Section 4.1 presents the algebraic construction
of suitable prime fields that promote efficient DFFT implementation directly in
the integral domain by exposing bases that allow near-optimal utilization of the
underlying machine arithmetic. While this construction is not necessarily a nov-
elty in the computer-algebra domain, we believe that its application to integer
multiplication has merits and it is in the least instructive to the non expert.

Finally, section 4.2 sketches a relatively straightforward implementation of
the log-linear time integer multiplication based on the Cooley-Tukey Algorithm [12],
which, as before, performs an instance of multiplication with an entire (cuda)
block of threads, such as to allow reuse from fast memory.

4.1 Construction of Integer Prime Fields for DFFT

Strassen’s algorithm [49] builds on the intuition that integer multiplication:

Ck =
∑

i+j=k
0≤i,j,k<M

Ai ·Bj

can be translated in the DFFT domain by applying the convolution theorem:

DFFT (C) = DFFT (A) ·DFFT (B)

GPU Implementations for Midsize Integer Addition and Multiplication 15

1 template <typename P> class zmod_t {
2 using rep_t = typename P::uint;
3 using ubig_t = typename P::ubig;
4 static const rep_t modulus = P::p;
5 public:
6 __host__ __device__ static rep_t norm(const rep_t v) {
7 return (0 <= v && v < modulus) ? v : v % modulus;
8 }
9 __host__ __device__ static rep_t add (const rep_t x, const rep_t y) {

10 ubig_t r = ((ubig_t) x) + ((ubig_t) y);
11 if (r >= modulus) r -= modulus;
12 return (rep_t)r;
13 }
14 __host__ __device__ static rep_t sub (const rep_t x, const rep_t y) {
15 rep_t r = x;
16 if (x < y) r += modulus;
17 return (r - y);
18 }
19 __host__ __device__ static rep_t mul(const rep_t x, const rep_t y) {
20 ubig_t r = ((ubig_t) x) * ((ubig_t) y);
21 return (r % (ubig_t)modulus);
22 } . . .
23 };

Fig. 8. A sketch of the prime-field implementation that omits the negation, inversion
and power operators.

hence the result C can be computed in M · log(M) time as:

C = IDFT (DFT (A) · DFT (B))

Finding a good prime field that enables efficient DFFT computation in the
integral domain comes down to finding good prime numbers of shape:

p = k · 2n + 1

that accept 2n distinct roots of unity for a large enough n. Applying the Little
Theorem of Fermat, it follows that:

∀a, ak·2
n

≡ 1 (mod p) (2)

By denoting g = ak for some a, it follows from equation 2 that g2
n ≡ 1 (mod p).

To compute a g that is a 2n-th root of unity, one can iterate through the elements
a of Zp and chose the first one (if any) that also verifies gq ̸= 1, ∀q < 2n.

Once such a g was successfully found, one can easily construct a M -th root
of unity, named ω, for any M that is a power of 2 and M < 2n:

ω = g2
n/M = g2

n−log2(M)

for example, one can easily check that ωM ≡ g2
n

(mod p) ≡ 1 (mod p).
A simple Maple program has revealed in less than 15 minutes of computation

the following “good” primes that conform with the desired shape:

PrimeField32: (p = 3221225473, k = 3, n = 30, g = 13)

16 Cosmin E. Oancea and Stephen M. Watt

PrimeField64: (p = 4179340454199820289, k = 29, n = 57, g = 21)

PrimeField32 allows (i) to represent an integer (input) as an array of type
[M]uhlf with uhlf = unsigned short, in which only the first 15 out of 16
bits are utilized, (ii) the FFT computation to be carried on in extended repre-
sentation [M]uint, in which uint = uint32_t, and (iii) some of the prime-field
computation—such as addition, multiplication, division—need to be performed
in a double-sized type ubig = uint64_t. Similarly, PrimeField64 uses the fol-
lowing instantiations: uhlf = uint32_t such that only the first 31 out of 32 bits
are utilized, uint = uint64_t and ubig = unsigned __int128. The implemen-
tation of several of the prime-field operations is shown in figure 8.

4.2 Straightforward Acceleration of Cooley-Tukey Algorithm

Figure 9 gives a relatively-straightforward cuda implementation of the Cooley-
Tukey algorithm, adapted from [24] to use roots of unity in a finite field rather
than on the unit circle in the complex plane. The entry function, denoted
bmulFFT, assumes that M is a power of two and that the total sequentializa-
tion factor Q is greater or equal to 2 and it evenly divides M—this is ensured
by suitable padding. It follows that the cuda block size is M

Q . The arguments
are: invM is the (pre-computed) inverse of M in prime field P , lgM is the base-2
logarithm of M , omegas and omegas_inv are (pre-computed) arrays holding the
M -roots of unity, i.e.,

omegas = scanexc (P::mul) 1 (replicate M ω)
omegas_inv = scanexc (P::mul) 1 (replicate M ω−1)

Finally, shmem is a shared-memory staging buffer of type [M]uint, and Ahlf and
Bhlf represent the input arrays of element type uhlf , which were already copied
in coalesced way from global to register memory. Bhlf is the place-holder for the
result and it is mapped to register memory as well.

The implementation applies FFT to the input arrays (lines 52-56), then mul-
tiplies together the FFT results within the given prime field (line 58), and applies
the inverse FFT transform (line 59), whose result is stored in Rreg.

Function splitFftReg, whose implementation is not shown, is called at
line 62 to change the base in which the computation is carried from 28·sizeof(uint)

back to 28·sizeof(uhlf)−1:

– it first aggregates the Q per-thread results of element type uint into Q low
parts, one high part and a carry, all of element type uhlf ; the procedure is
similar to the one described in section 3.2 for classical multiplication,

– then it places the result in a shared-memory buffer in a manner similar to
the one depicted in figure 6—except that there is no “symmetrical” part,

– finally, it loads the results back again to register memory, denoted Rlw and
Rhc—such that each thread holds the elements at the same indices from the
logical arrays Rlw and Rhc.

GPU Implementations for Midsize Integer Addition and Multiplication 17

1 template <typename P, uint32_t M, uint32_t Q> __device__ void
2 fft (typename P:: uint_t* shmem , uint32_t lgM , typename P:: uint_t* omegas ,
3 typename P:: uint_t Areg [2*Q], typename P:: uint_t Rreg [2*Q]
4) {
5 using uint_t = typename P:: uint_t; using PF = zmod_t <P>;
6 cpReg2Shm <uint_t ,2*Q>(Arg , shmem);
7 __syncthreads ();
8
9 for(int32_t q = 0; q < 2*Q; q++) {

10 int32_t vtid = threadIdx.x + q*blockDim.x;
11 permute <uint_t >(vtid , lgM , shmem);
12 }
13 __syncthreads ();
14
15 for(int32_t t = 1; t <= lgM; t++) {
16 uint32_t L = 1 << t, Ld2 = L >> 1, r = M >> t;
17 for(int32_t q = 0; q < Q; q++) {
18 int32_t vtid = threadIdx.x + q*blockDim.x;
19 int32_t k = vtid >> (t-1);
20 int32_t j = vtid & (Ld2 - 1);
21 int32_t kLj = k*L + j;
22 uint_t omega_pow = omegas[r*j];
23 uint_t tau = PF::mul(omega_pow , shmem[kLj + Ld2]);
24 uint_t x_kLj = shmem[kLj];
25 shmem[kLj] = PF::add(x_kLj , tau);
26 shmem[kLj + Ld2] = PF::sub(x_kLj , tau);
27 }
28 __syncthreads ();
29 }
30 cpShm2Reg <uint_t ,2*Q>(shmem , Rrg);
31 __syncthreads ();
32 }
33
34 template <typename P, uint32_t M, uint32_t Q> __device__ void
35 ifft(typename P:: uint_t invM , uint32_t lgM ,
36 typename P:: uint_t* shmem , typename P:: uint_t* omegas_inv ,
37 typename P:: uint_t Areg [2*Q], typename P:: uint_t Rreg [2*Q]
38) {
39 fft <P,M,Q>(shmem , lgM , omegas_inv , Areg , Rreg);
40 for(int i=0; i<2*Q; i++) Rreg[i] = zmod_t <P>::mul(invM , Rreg[i]);
41 }
42
43 template <typename P, uint32_t M, uint32_t Q> __device__ void
44 bmulFFT (typename P::uint invM , uint32_t lgM ,
45 typename P::uint* omegas , typename P:: uint_t* omegas_inv ,
46 typename P::uint* shmem , typename P::uhlf Ahlf[Q],
47 typename P::uhlf Bhlf[Q], typename P::uhlf Rhlf[Q]
48) {
49 using uint = typename P::uint; using uhlf = typename P::uhlf;
50 uint_t Areg[Q], Afft[Q], Breg[Q], Bfft[Q], Treg[Q], Rreg[Q];
51
52 for(int q=0; q<Q; q++) Areg[q] = Ahlf[q];
53 fft <P,M,Q/2>(shmem , lgM , omegas , Areg , Afft);
54
55 for(int q=0; q<Q; q++) Breg[q] = Bhlf[q];
56 fft <P,M,Q/2>(shmem , lgM , omegas , Breg , Bfft);
57
58 for(int q=0; q<Q; q++) Treg[q] = zmod_t <P>:: mul(Afft[q], Bfft[q]);
59 ifft <P,M,Q/2>(shmem , invM , lgM , omegas_inv , Treg , Rreg);
60
61 uhlf_t Rlw[Q], Rhc[Q];
62 splitFftReg <P,Q>(Rreg , (uhlf*)shmem , Rlw , Rhc);
63 baddRegMul2Fft <P, M, 2*Q, 0>((uhlf*)shmem , Rlw , Rhc , Rhlf);
64 }

Fig. 9. Main CUDA wrapper function that computes FFT multiplication, where the
input (Ahlf, Bhlf) and result (Rhlf) are stored in register memory.

18 Cosmin E. Oancea and Stephen M. Watt

The numbers represented by logical arrays Rlw and Rhc are finally summed up
(carry propagation included) by the call to function baddRegMul2Fft at line 63.
Since the addition needs to be performed in base 28·sizeof(uhlf)−1, we multiply
all elements of Rlw and Rhc by two, perform the addition in the machine base
28·sizeof(uhlf), then divide back by 2 while reapplying the carries. (An element
resulted from addition was subject to a carry if its value is odd.)

The implementation of fft and ifft are standard. FFT-based multiplica-
tion can operate with integers having (close to) the same size as the classical
multiplication (CM): on the one hand its input uses half the element type of CM
(i.e., uhlf vs. uint), but on the other hand it uses only one memory buffer of size
M · sizeof(uint) instead of two buffers with CM. To be exact, the maximal
supported size is a bit smaller than the one of CM, because only 15 out of 16
bits can be used with PrimeField32 and 31 out of 32 bits with PrimeField64.

Short Discussion on Overflow. Exact multiplication of an integer of size M
by an integer of size N gives a result of size at most M + N . For FFT-based
methods, one pads both arguments to this size with leading zeros. Unlike classical
multiplication, if the area for the result is insufficient to hold the exact product
value, then the result will not give an approximation to a leading or trailing part
of the product.

The implementation we have presented is correct as long as the result is
exact in multi-precision, i.e., as long as the multiplication does not “overflow”.
The performance evaluation of section 6.3 uses the overflow-unsafe implementa-
tion. We consider that this version provides a more fair comparison to the CM
implementation because modifying the latter to compute the full result would
similarly double its shared-memory requirements and quadruple its work.

5 Futhark’s Strengths and Weaknesses

5.1 Futhark Optimizations Relevant for Big Integer Arithmetic

Incremental Flattening. Futhark supports expression of parallel programs
that operate on regular multi-dimensional arrays. The arbitrarily-nested appli-
cation parallelism is flattened [5,7], by a technique dubbed “incremental flatten-
ing” [19] that utilizes map fission and map-loop interchange to create semantically-
equivalent code versions that systematically map more and more levels of ap-
plication parallelism to the hardware. Essentially, when a new map f operation
is discovered in the top-down traversal of the program, the analysis adds the
new map to the parallel context—that represents an enclosing perfect nest of map
operations—and then it:

(1) maps the parallel context to the hardware by creating a first code version cor-
responding to a cuda kernel in which each thread executes (independently)
an application of f .

(2) creates a second code version in which the parallel context (i.e., the enclosing
map operations discovered so far) is mapped on the cuda grid, and the

GPU Implementations for Midsize Integer Addition and Multiplication 19

parallelism inside function f is recursively flattened and mapped to cuda
block level, such that intermediate arrays are stored in shared memory. This
is dubbed an intra-group kernel.

(3) incremental flattening continues recursively, by applying map-fission and
map-loop interchange on the body of f , such as to qualify more levels of
application parallelism to the hardware.

The resulting code versions are independently optimized and combined into
one program by guarding each of them with a predicate that compares a dynamic
program measure6 with a threshold. Threshold values are autotuned—so as to
select the best combination of code versions—based on a deterministic procedure
that is guaranteed to produce a near-optimal result in a minimal number of runs,
as long as the dynamic measure conforms with a monotonic property [30].

This compilation strategy has proved valuable in enabling high-performance
implementation of real-world applications from domains such as computer vi-
sion [43], remote-sensing [16,48] and computational finance [35], and, as well, in
optimizing code synthesized by program-level transformations such as automatic
differentiation [8,47]. As well, incremental flattening is essential to supporting
multi-precision computations in a high-level architecture-neutral language such
as Futhark: On the one hand, choice (2) produces the intra-group kernel that we
are aiming for, i.e., that leverages the use of fast (shared) memory and supports
efficient fusion of such operations. One the other hand, it provides a fail-safe
platform: the computation will still be carried on, albeit less efficiently so, on
large integers that do not fit the intra-group kernel, by means of the versions
generated by choices (1) and (3).

Memory Optimizations. A set of analyses that come handy in our context
refer to reducing the memory footprint [29] and at eliminating unnecessary copy
operations, dubbed short-circuiting analysis [31]. The former corresponds to ap-
plying register-like allocation to operate on memory buffers instead of registers,
thus allowing buffers’ reuse once their liveness ended. This reduces the shared-
memory requirements of the kernel and enables larger integers and fusion.

Short-circuiting analysis [31] addresses an inefficiency common to functional
languages whose type systems enforce correct-by-construction parallelism: some
parallel loops—e.g., appearing in LUD or Needleman-Wunsch algorithms—cannot
be expressed directly because they both read and write (non-overlapping slices
of) elements of the same matrix. The typical type system does not perform
dependence-analysis on arrays [39,40] and will demand to separate the parallel
loop into two parallel operations, typically: a map that reads from the original
matrix and results into a temporary buffer, and another parallel-write operation
that updates the corresponding slice of the matrix with the buffer elements.

The analysis introduces a notion of memory and attempts to map the memory
space of the buffer directly to the corresponding memory space of the matrix—
whenever it can guarantee safety—such that the parallel write becomes a noop

6 In practice, the dynamic measure is the degree of parallelism utilized by a kernel.

20 Cosmin E. Oancea and Stephen M. Watt

1 let badd [ipb][n] (as: [ipb *(4*n)]u32) (bs: [ipb *(4*n)]u32) : [ipb *(4*n)]u32 =
2 let g = ipb * n
3 let cpGlb2Sh (i : i64) = #[unsafe]
4 ((as[i], as[g + i], as[2*g + i], as[3*g + i])
5 , (bs[i], bs[g + i], bs[2*g + i], bs[3*g + i]))
6
7 let (ass , bss) = map cpGlb2Sh (0...<g) ▷ unzip
8 let (a1s , a2s , a3s , a4s) = unzip4 ass
9 let (b1s , b2s , b3s , b4s) = unzip4 bss

10 let ash = a1s ++ a2s ++ a3s ++ a4s
11 let bsh = b1s ++ b2s ++ b3s ++ b4s
12 ...

Fig. 10. Futhark code illustrating coalesced copying from global to shared memory for
an efficient sequentialization factor Q = 4.

and the buffer does not actually allocates any extra space. A trivial example is:

let x = concat a b

If a or b are lastly used in the above statement, then their memory is allocated
directly in the corresponding memory space of x and the concat becomes a noop.

We have used this compiler feature to support efficient sequentialization in
our Futhark implementations. Figure 10 shows the prelude of the function that
performs integer addition, which is intended to be mapped at cuda block level.
The map cpGlb2Sh operation on line 7 reads four elements of as and bs with
each of the g threads (of the block) in a coalesced way from global to shared
memory—i.e., consecutive threads access consecutive words in global memory.
The following concat operations at lines 10 and 11 put the results together
in the correct order in arrays ash and bsh, which will be mapped to shared
memory. Short-circuiting analysis ensures that only two shared-memory buffers
are allocated (for the final ash and bsh), and that the concat operation cost
nothing—since a1s. . .a4s are allocated directly in the memory space of ash.

5.2 Shortcomings of Futhark’s Compiler Infrastructure

The experimental evaluation, reported in the next section, shows that our Futhark
implementation has sub-optimal performance and scalability in comparison to
our cuda prototype and the cgbn library. The central reason is the absence
of a compiler pass aimed at supporting efficient sequentialization. Rationale is:

First, performing efficient sequentialization by hand is not only “un-natural”
and results in less elegant code, but, more importantly it has the potential of
degrading the performance of the other semantically-equivalent code versions.
For example, if the integer size is too large to fit in the intra-group kernel, then
the code in figure 10—which was intended to copy in coalesced way from global
to shared memory—performs in a convoluted way two expensive and completely
unnecessary copies (global-to-global memory).

Second, logical array created inside the intra-group kernel are currently mapped
by the compiler to shared-memory only, since this guarantees that their elements

GPU Implementations for Midsize Integer Addition and Multiplication 21

are accessible to any threads. This mapping has serious performance implications
since shared memory has higher latency than registers, and there is no manner
in which this mapping can be altered by the programmer. It also follows that
Futhark kernels will require more shared memory than necessary, which limits
the magnitude of the supported integer. For example, in the case of addition, our
cuda prototype utilizes one memory buffer (and this can be further reduced),
while Futhark requires twice as much.

Third, the Futhark FFT implementation currently uses a scatter (paral-
lel write) operation as the result of a loop (body), which requires two shared-
memory buffers that are aliased across the loop (double buffering). This circular
aliasing prevents the current compiler to reuse the space of these buffers for
subsequent operations, even when their liveness interval has ended. We observe
that if the corresponding array was mapped to register memory instead, then
only one shared-memory buffer would be necessary, and furthermore the double
buffering of that array would be efficiently supported by the register allocation
of the underlying compiler (e.g., nvcc).

Finally, Futhark does not yet supports an 128-bit integer, which would offer
a significant boost to the performance of the classical multiplication.

6 Experiments

This section evaluates the performance of our implementations for addition, mul-
tiplication and fusion of such operations. We compare our results with those of
the “Cooperative Groups Big Numbers” library,7 (cgbn) authored by NVlabs.
that offers a framework for performing unsigned multiple precision integer arith-
metic in cuda. The current release (XMP 2.0 Beta) offers state-of-the-art per-
formance on small to medium sized integers: 25 bits through 215 bits, but also
seems to support larger integers, albeit without top-performance guarantees.

The key design decision in cgbn is that one operation is performed within
(at most) one warp of threads, such that the implementation can leverage spe-
cialized hardware (instructions) that enable very efficient (low-latency) commu-
nication of register values within a warp. This also promotes the scalability of
fused operations. In comparison, our implementation does not rely on specialized
hardware instructions, and maps an integer instance to be solved by at most one
cuda block of threads. We thus expect to achieve higher performance on larger
integers, where cgbn is likely to be affected by high-register pressure.

6.1 Hardware, Benchmark, Performance Measures, Methodology

Our evaluation uses an Nvidia A100 GPU that offers 6912 cores, peak global-
memory bandwidth of 1.555 TB/sec and FP32 peak performance of 19.49 Tflops.

We evaluate our implementations in comparison with cgbn by running pro-
grams that perform batches of (i) one addition 1-Add, (ii) six additions 6-Add,

7 https://github.com/NVlabs/CGBN

https://github.com/NVlabs/CGBN

22 Cosmin E. Oancea and Stephen M. Watt

(iii) one multiplication 1-Mul, and (iv) a polynomial computation Poly involv-
ing four multiplications and two additions. All four programs correspond to the
execution of one kernel such that related sequences of additions and multiplica-
tions are performed inside the same cuda block—i.e., 6-ADD and Poly are
intended to evaluate the scalability of block-level fusion, in which intermedi-
ate results are maintained in fast memory. Ideally, the evaluation would include
bigger benchmarks that heavily use addition and multiplication, such as Poly.
However, constructing such practically-relevant programs requires to support at
least division (which we do not), e.g., which would enable GCD computations.

The target programs are evaluated on eight combinations of values for the
size in bits NumBits of the integer and the total number of (integer) instances
NumInsts, such that NumBits · NumInsts = 232. We report the performance of

addition: in GB/sec—because addition is memory bound—and we compute the
number of bytes accessed by 1-Add and 6-Add with the same formula:8

number-of-bytes-accessed = 3NumInsts · NumBits
8

multiplication: in terms of Giga 32-bit unit operations per second (Gu32ops/sec),
since multiplication is compute bound. 1-Mul uses as number of operations:

1-Mul-num-u32-ops = 300·NumInsts·m·logm, where m =
M · sizeof(uint)

4

For Poly we consider the number of unit operations to be four times that
of 1-Mul, i.e., we only consider the four multiplications and ignore the two
additions. The rationale for the constant 300 is that the algorithm performs
three FFT transformations, each of them using about 100 · m · logm unit
operations.9 However, the constant does not matter much: the key is that
the measure implements a normalized runtime that allows meaningful com-
parison across different implementations and also across different datasets.

Since all cuda programs consists of one kernel call, we measure the runtime
as the average of 500 kernel runs for 1-Add, 6-Add and 1-Mul and of 125
runs for Poly. For Futhark, we use the option bench –backend=cuda that (i)
measures all overheads except for device initialization, kernel compilation and
data transfers between host and device, and (ii) performs enough runs until the
95%-confidence percentile average stabilizes.

6.2 Performance of Addition

Table 1 shows the performance of integer addition expressed as memory band-
width, i.e., in GB/sec. The peak global-memory bandwidth of the Nvidia A100
8 Ideally, both programs read two integers from global memory and write one as result.
9 We have used test programs to measure the latency of 32 and 64 bit operations such

as addition, multiplication, modulo, in comparison with 32-bit integer addition (as
the unit), and we have counted that FFT multiplication instantiated to FftPrime32
requires about 100 units inside its M · logM loop nest. In fact one modulo operation
on uint64_t alone accounts for the time of ∼ 78 additions.

GPU Implementations for Midsize Integer Addition and Multiplication 23

Table 1. Performance of Addition in GB/sec. A100’s peak bandwidth is 1555 GB/s.

Num Num 1-Add 1-Add 1-Add 6-Add 6-Add 6-Add
Bits Insts cgbn Our-Cuda Futhark cgbn Our-Cuda Futhark
218 214 369 1320 737 362 570 294
217 215 368 1331 1172 353 803 350
216 216 376 1358 1343 353 853 313
215 217 329 1363 1363 321 856 431
214 218 581 1334 1370 546 836 434
213 219 1238 1350 1364 1207 816 435
212 220 1329 1359 1364 1189 856 435
211 221 1275 1366 1364 1167 855 435

hardware is 1.555TB/sec. The first two columns correspond to the number of bits
of the integer (NumBits) and the total number of instances performed NumInsts.
The columns denoted cgbn correspond to the performance of the cgbn library,
while the columns denoted by Our-cuda and Futhark correspond to the per-
formance of our cuda and Futhark implementations.

For cgbn we set the thread-per-instance parameter for NumBits equal to
211 and 212 to 16 and 8, respectively, and to 32 for the rest of NumBits values;
we have observed that best performance is achieved for these instantiations (for
both addition and multiplication). For our cuda and Futhark implementations,
we instantiate uint to uint64_t and the sequentialization factor Q to 4, i.e., each
thread computes 4 · 64 = 256 bits sequentially.

Key observations derived from table 1 are:

1-Add: both our cuda and Futhark implementations outperform cgbn on
integers whose number of bits are in the interval 214 . . . 218. For example,
cgbn commonly achieves less than 25% of the peak bandwidth, while our
implementations commonly achieve higher than 85% of the peak bandwidth.
cgbn offers competitive performance on NumBits = 211 . . . 213.

6-Add: cgbn offers near-perfect scalability, i.e., it takes about the same amount
of time to perform six addition as it takes to perform one. We attribute this
to the low-latency of specialized-register instructions for transferring values
within a warp of threads. However, while cgbn offers excellent performance
on integers of size 211 . . . 213 bits (up to 1.5× faster than ours), Our-cuda
still holds the upper hand on sizes 214 . . . 218 (up to 2.7× faster than cgbn).

6-Add: our cuda implementation offers decent scaling: except for 218 bits,
computing six additions takes less than 1.65× the time of one addition.

6-Add: the scalability of the Futhark implementation is severely handicapped
by the layout that maps intermediate arrays in shared-memory buffers rather
than registers: six additions require (more than) 3× the time of one addition.

24 Cosmin E. Oancea and Stephen M. Watt

Table 2. Performance of multiplication in Gu32ops/sec (the higher the better); the
number of 32-bit operations for 1-Mul is computed as 300 ·NumInsts ·m · logm, where
m = M·sizeof(uint)

4
. Poly computes (a·a+b)·(b·b+b)+a·b using four multiplications and

two additions; its number of operations is considered to be four times that of 1-Mul.

Num Num 1-Mul 1-Mul 1-Mul 1-Mul 1-Mul Poly Poly Poly Poly Poly
Bits Insts cgbn Cu-Q Fu-Q Cu-F Fu-F cgbn Cu-Q Fu-Q Cu-F Fu-F
218 214 72 ---- 1813 11590 ---- 49 ---- 1795 11351 ----
217 215 997 4471 3296 11789 ---- 192 4027 3259 12130 ----
216 216 6482 7843 5901 11466 ---- 5837 7148 5820 11679 ----
215 217 11640 13460 10091 12779 10187 12246 12247 9889 12621 8395
214 218 21461 21608 15856 14297 11259 21454 19455 15093 13899 10742
213 219 34004 31658 24267 15791 11651 34165 27876 20677 15173 11620
212 220 54465 49328 39861 15264 11051 53846 42673 30569 11189 9641
211 221 86252 70661 61333 13554 10099 86182 60819 44094 10884 8801

6.3 Performance of Multiplication

Table 2 shows the performance of multiplication expressed in Gu32ops/sec (see
section 6.1), where the best two numbers are displayed in bold text—the higher
the number the better the performance. Cells filled with ---- denote that kernel
launch failed due to running out of resources.10 As before, the first two columns
report the integer size in bits and the number of instances performed, and the
columns denoted cgbn correspond to the performance of the cgbn library. The
columns denoted Cu-Q and Cu-F correspond to our cuda implementation
for the classical (quadratic time) and FFT (log-linear time), respectively, and
similarly, the columns denoted Fu-Q and Fu-F correspond to Futhark.

Our implementation of classical multiplication specializes uint to uint64_t
and use a total sequentialization factor of 4, i.e., each thread computes two
elements from the first half and their two symmetric opposites across the middle,
as in figure 6. For FFT multiplication we use (i) the smallest sequentialization
factor (greater or equal than two) that allows the computation to fit in a cuda
block, which is constrained to 1024 threads, and (ii) the FftPrime32 field, in
which uint is uint32_t and ubig is uint64_t. Using FftPrime64 is a bit slower
mainly because it requires a modulo operation on 128-bit integers, which is very
expensive. Key observations derived from table 2 are:

(1) On both 1-Mul and Poly, our cuda implementation of classical (quadratic)
multiplication is faster than cgbn for integer sizes in the range 215 . . . 218.
Size 215 is also very close to the split point from which on, our cuda FFT
implementation starts outperforming the quadratic implementation.

(2) cgbn is faster on the smaller integer sizes 211 . . . 213 by factors as high as
1.2× and 1.4× on 1-Mul and Poly, respectively, but our Cu-Q is faster
on sizes 215 . . . 217 by factors as high as 4.5× and 21×.

10 We prevented Futhark from switching to the slower versions described in section 5.1.

GPU Implementations for Midsize Integer Addition and Multiplication 25

(3) Our cuda FFT implementation is faster than the best quadratic running
implementation (i) by factors of 6.3× on integer size 218, and (ii) by 2.6×
and 3.0× factors on integer size 217 on 1-Mul and Poly, respectively.

(4) cgbn demonstrates excellent (super-linear) scalability on integer sizes be-
tween 211 . . . 215, since its performance on Poly is very-close to or better
than the one on 1-Mul, even when the two additions are not counted.

(5) Our cuda FFT implementation also demonstrates excellent scalability on
sizes higher than or equal to 215, which is all that matters because 215 seems
to be the split point from which point on FFT gains the upper hand.

(6) We attribute the performance gap between our cuda and Futhark quadratic
implementations on 1-Mul to the fact that Futhark lacks support for 128-bit
integers, and hence it uses less-efficient 64-bit arithmetic that computes the
high and low parts. Similar to addition, Futhark’s scalability (for Poly) is
worse due to logical arrays being always mapped to shared memory.

(7) Finally, the Futhark FFT implementation runs out of resource for sizes of
216 to 218 bits, due to the last issue reported in section 5.2.

6.4 Brief Performance Discussion on GPUs other than A100

A systematic investigation of the performance of our implementations on GPU
hardware other than A100 is outside the scope of this paper. We can however
report that running the benchmark on an RTX A4500 Nvidia GPU results in
very similar performance metrics as the ones for A100, once we adjust to the
peak bandwidth, the peak-compute performance, and to the amount of shared
memory per SM of the RTX A4500 GPU. Notably, the scalability trends are the
same, and the maximal problem size is downgraded one level because the A100
provides more shared memory per SM.

We have not yet translated our cuda implementation to OpenCL or HIP,
and as such, we do not have results to report in this sense. However, we have run
the Futhark implementations using the opencl and hip compiler back ends on
an AMD MI100 GPU. The scalability trends are similar to the one of the A100.
We have observed that the performance is about half of the A100 performance
and the maximal problem size is downgraded by one or two levels. The latter
“makes sense” since MI100 offers only 48 KB of scratchpad memory per SM, while
the A100 offers up to 128 KB.

7 Conclusions

We have shown that high-level languages (C++ and Futhark) can be used to
implement big integer addition and multiplication concisely and efficiently for
GPU computation. These implementations are simple and efficient for big inte-
gers of practical size, comparing favourably to the cgbn library for integers of
size from 215 to 218 bits (i.e., up to about 79,000 digits). We have seen that an
FFT-based multiplication can, by factors as high as 5×, outperform an efficient
implementation of the classical multiplication on sizes that fit in a cuda block.

26 Cosmin E. Oancea and Stephen M. Watt

This is achieved using a naive implementation of finite field arithmetic — further
improvement would be expected using Montgomery representation. The paper
has presented the implementation in sufficient detail to be reproduced as desired
by others. For C++ template cuda code has been provided.

We have measured the performance of these implementations against the
high quality cgbn library, testing up to sizes of 218 bits. For addition, our
cuda code outperforms the cgbn library by a factor of about 2× to 4× for
integers of more than about 214 bits. For most tests, our functional Futhark
code also outperforms the cgbn library. For classical quadratic multiplication,
our simple cuda code is comparable to the cgbn library for numbers with up
to 214 bits and superior to cgbn for larger sizes. The Futhark implementation
is comparable over most of the range of sizes. The cuda FFT implementation
of multiplication is superior for sizes greater than 215 bits, becoming about
160 times faster at 218 bits. For tests involving a combination of operations
(the “Poly” tests), our cuda implementation using classical arithmetic performs
significantly better than cgbn for sizes above 215 bits and within a factor of
2 below that size. While the Futhark implementation meets the criterion of
being concise and flexible, further compiler support is required to approach the
efficiency of our cuda code. The present investigation has identified specific
areas of Futhark compiler enhancement that together may lead to performance
comparable to our cuda code.

Acknowledgments. The authors were originally inspired to consider non-uniform
memory architectures in a collaboration with Alan Mycroft [36,37], without whom we
never would have ended up here!

Disclosure of Interests. The authors have no conflicts of interest to declare.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: TensorFlow: A system for large-scale ma-
chine learning. In: 12th USENIX symposium on operating systems design and
implementation (OSDI 16). pp. 265–283 (2016)

2. Bantikyan, H.: Big integer multiplication with cuda fft(cufft) library. International
Journal of Innovative Research in Computer and Communication Engineering 2,
6317–6325 (2014), https://api.semanticscholar.org/CorpusID:14759606

3. Bernardin, L., Chin, P., DeMarco, P., Geddes, K.O., Hare, D.E.G., Heal, K.M.,
Labahn, G., May, J.P., McCarron, J., Monagan, M.B., Ohashi, D., Vorkoetter,
S.M.: Maple Programming Guide, Maplesoft, a division of Waterloo Maple Inc.,
1996-2023.

4. Blelloch, G.E.: Scans as Primitive Parallel Operations. Computers, IEEE Trans-
actions 38(11), 1526–1538 (1989)

5. Blelloch, G.E.: Vector models for data-parallel computing, vol. 75. MIT press Cam-
bridge (1990)

6. Blelloch, G.E.: Programming Parallel Algorithms. Communications of the ACM
(CACM) 39(3), 85–97 (1996)

https://api.semanticscholar.org/CorpusID:14759606

GPU Implementations for Midsize Integer Addition and Multiplication 27

7. Blelloch, G.E., Hardwick, J.C., Sipelstein, J., Zagha, M., Chatterjee, S.: Imple-
mentation of a Portable Nested Data-Parallel Language. Journal of parallel and
distributed computing 21(1), 4–14 (1994)

8. Bruun, L.M., Larsen, U.S., Hinnerskov, N.H., Oancea, C.E.: Reverse-mode ad of
multi-reduce and scan in futhark. In: Proceedings of the 35th Symposium on Imple-
mentation and Application of Functional Languages. IFL ’23, Association for Com-
puting Machinery, New York, NY, USA (2024). https://doi.org/10.1145/3652561.
3652575

9. Char, B.W., Geddes, K.O., Gonnet, G.H.: GCDHEU: Heuristic polynomial GCD
algorithm based on integer GCD computation. Journal of Symbolic Computation
7, 31–48 (1989)

10. Chen, L., Covanov, S., Mohajerani, D., Moreno Maza, M.: Big prime field FFT
on the GPU. In: Proc. 2017 International Symposium on Symbolic and Algebraic
Computation (ISSAC 2017). pp. 85–92. ACM Press (2017)

11. Chicha, Y., Lloyd, M., Oancea, C., Watt, S.M.: Parametric Polymorphism for
Computer Algebra Software Components. In: Proc. 6th International Symposium
on Symbolic and Numeric Algorithms for Scientific Comput. pp. 119–130. Mirton
Publishing House (2004)

12. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation 19(90), 297–301 (1965), http://www.
jstor.org/stable/2003354

13. Dieguez, A.P., Amor, M., Doallo, R., Nukada, A., Matsuoka, S.: Efficient high-
precision integer multiplication on the gpu. The International Journal of High
Performance Computing Applications 36(3), 356–369 (2022). https://doi.org/10.
1177/10943420221077964

14. Emmart, N., Weems, C.: High precision integer addition, subtraction and multi-
plication with a graphics processing unit. Parallel Processing Letters 20, 293–306
(12 2010). https://doi.org/10.1142/S0129626410000259

15. Frostig, R., Johnson, M.J., Leary, C.: Compiling machine learning programs via
high-level tracing. Systems for Machine Learning pp. 23–24 (2018)

16. Gieseke, F., Rosca, S., Henriksen, T., Verbesselt, J., Oancea, C.E.: Massively-
parallel change detection for satellite time series data with missing values. In: 2020
IEEE 36th International Conference on Data Engineering (ICDE). pp. 385–396
(2020). https://doi.org/10.1109/ICDE48307.2020.00040

17. Gorlatch, S.: Systematic extraction and implementation of divide-and-conquer par-
allelism. In: Kuchen, H., Doaitse Swierstra, S. (eds.) Programming Languages:
Implementations, Logics, and Programs. pp. 274–288. Springer Berlin Heidelberg,
Berlin, Heidelberg (1996)

18. Henriksen, T., Serup, N.G.W., Elsman, M., Henglein, F., Oancea, C.E.: Futhark:
Purely functional GPU-programming with nested parallelism and in-place array
updates. In: Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 556–571. PLDI 2017, ACM, New York,
NY, USA (2017). https://doi.org/10.1145/3062341.3062354

19. Henriksen, T., Thorøe, F., Elsman, M., Oancea, C.: Incremental flattening for
nested data parallelism. In: Proceedings of the 24th Symposium on Principles and
Practice of Parallel Programming. pp. 53–67. PPoPP ’19, ACM, New York, NY,
USA (2019). https://doi.org/10.1145/3293883.3295707

20. Research, Inc., W.: Mathematica, Version 14.0, https://www.wolfram.com/
mathematica, Champaign, IL, 2024

21. Isupov, K.: Using floating-point intervals for non-modular computations in residue
number system. IEEE Access 8, 58603–58619 (2020)

https://doi.org/10.1145/3652561.3652575
https://doi.org/10.1145/3652561.3652575
https://doi.org/10.1145/3652561.3652575
https://doi.org/10.1145/3652561.3652575
http://www.jstor.org/stable/2003354
http://www.jstor.org/stable/2003354
https://doi.org/10.1177/10943420221077964
https://doi.org/10.1177/10943420221077964
https://doi.org/10.1177/10943420221077964
https://doi.org/10.1177/10943420221077964
https://doi.org/10.1142/S0129626410000259
https://doi.org/10.1142/S0129626410000259
https://doi.org/10.1109/ICDE48307.2020.00040
https://doi.org/10.1109/ICDE48307.2020.00040
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3293883.3295707
https://doi.org/10.1145/3293883.3295707
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica

28 Cosmin E. Oancea and Stephen M. Watt

22. Joldes, M., Muller, J., Popescu, V., Tucker, W.: CAMPARY: Cuda multiple pre-
cision arithmetic library and applications. In: Greuel, G., Koch, T., Paule, P.,
Sommese, A. (eds.) Mathematical Software – ICMS 2016. LNCS 9725. pp. 232–
240. Springer Cham (2016)

23. Joldes, M., Muller, J., Popescu, V., Tucker, W.: CAMPARY library (2017), https:
//homepages.laas.fr/mmjoldes/campary/

24. van Loan, C.: Computational Frameworks for the Fast Fourier Transform. SIAM
(1992)

25. Lu, B., Mellor-Crummey, J.: Compiler optimization of implicit reductions for dis-
tributed memory multiprocessors. In: Proceedings of the First Merged Interna-
tional Parallel Processing Symposium and Symposium on Parallel and Distributed
Processing. pp. 42–51 (1998). https://doi.org/10.1109/IPPS.1998.669887

26. Lu, M., He, B., Luo, Q.: Supporting extended precision on grahics processors.
In: Proc. Sixth International Workshop on Data Management on New Hardware
(DaMoN ’10). pp. 19–26. ACM (2010)

27. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
Progress Report 44, 114–116 (1978)

28. Merrill, D., Garland, M.: Single-pass Parallel Prefix Scan with Decou-
pled Lookback. Technical report nvr-2016-002, NVIDIA Corporation
(March 2016), https://research.nvidia.com/sites/default/files/pubs/2016-03_
Single-pass-Parallel-Prefix/nvr-2016-002.pdf

29. Munksgaard, P.: Static and Dynamic Analyses for Efficient GPU Execution.
Ph.D. thesis, Department of Computer Science, Faculty of Science, University
of Copenhagen (2023), https://di.ku.dk/english/research/phd/phd-theses/2023/
Philip_Munksgaard_Thesis.pdf

30. Munksgaard, P., Breddam, S.L., Henriksen, T., Gieseke, F.C., Oancea, C.: Dataset
sensitive autotuning of multi-versioned code based on monotonic properties. In:
Zsók, V., Hughes, J. (eds.) Trends in Functional Programming. pp. 3–23. Springer
International Publishing, Cham (2021)

31. Munksgaard, P., Henriksen, T., Sadayappan, P., Oancea, C.: Memory optimizations
in an array language. In: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. SC ’22, IEEE Press
(2022). https://doi.org/10.1109/SC41404.2022.00036

32. Nakayama, T., Takahashi, D.: Implementation of multiple-precision floating-point
arithmetic for GPU computing. In: Proc 23rd IASTED International Conference
on Parallel and Distributed Computing and Systems (PDCS 2011). pp. 343–349.
IASTED (2011)

33. Nakayama, T.: CUMP library (2017), https://github.com/skystar0227/CUMP
34. NVlabs: Cooperative Groups Big Numbers (CGBN) Library (2018), https://

github.com/NVlabs/CGBN
35. Oancea, C.E., Andreetta, C., Berthold, J., Frisch, A., Henglein, F.: Financial soft-

ware on gpus: Between haskell and fortran. In: Proceedings of the 1st ACM SIG-
PLAN Workshop on Functional High-performance Computing. pp. 61–72. FHPC
’12, ACM, New York, NY, USA (2012). https://doi.org/10.1145/2364474.2364484

36. Oancea, C.E., Mycroft, A.: Set-congruence dynamic analysis for thread-level spec-
ulation (tls). In: Amaral, J.N. (ed.) Languages and Compilers for Parallel Com-
puting. pp. 156–171. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

37. Oancea, C.E., Mycroft, A., Watt, S.M.: A new approach to parallelising trac-
ing algorithms. In: Proc. 2009 International Symposium on Memory Management
(ISMM 2009). pp. 10–19. ACM Press (2009)

https://homepages.laas.fr/mmjoldes/campary/
https://homepages.laas.fr/mmjoldes/campary/
https://doi.org/10.1109/IPPS.1998.669887
https://doi.org/10.1109/IPPS.1998.669887
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://di.ku.dk/english/research/phd/phd-theses/2023/Philip_Munksgaard_Thesis.pdf
https://di.ku.dk/english/research/phd/phd-theses/2023/Philip_Munksgaard_Thesis.pdf
https://doi.org/10.1109/SC41404.2022.00036
https://doi.org/10.1109/SC41404.2022.00036
https://github.com/skystar0227/CUMP
https://github.com/NVlabs/CGBN
https://github.com/NVlabs/CGBN
https://doi.org/10.1145/2364474.2364484
https://doi.org/10.1145/2364474.2364484

GPU Implementations for Midsize Integer Addition and Multiplication 29

38. Oancea, C.E., Rauchwerger, L.: Logical inference techniques for loop paralleliza-
tion. In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 509–520. PLDI ’12, ACM, New York,
NY, USA (2012). https://doi.org/10.1145/2254064.2254124

39. Oancea, C.E., Rauchwerger, L.: A Hybrid Approach to Proving Memory Reference
Monotonicity. In: Rajopadhye, S., Mills Strout, M. (eds.) Languages and Compilers
for Parallel Computing. pp. 61–75. Springer Berlin Heidelberg, Berlin, Heidelberg
(2013)

40. Oancea, C.E., Rauchwerger, L.: Scalable conditional induction variables (civ) anal-
ysis. In: Proceedings of the 13th Annual IEEE/ACM International Symposium on
Code Generation and Optimization. pp. 213–224. CGO ’15, IEEE Computer So-
ciety, Washington, DC, USA (2015), http://dl.acm.org/citation.cfm?id=2738600.
2738627

41. Oancea, C.E., Watt, S.M.: Domains and expressions: an interface between two
approaches to computer algebra. In: Proceedings of the 2005 International Sympo-
sium on Symbolic and Algebraic Computation. p. 261–268. ISSAC ’05, Association
for Computing Machinery, New York, NY, USA (2005). https://doi.org/10.1145/
1073884.1073921

42. Oancea, C.E., Watt, S.M.: Parametric polymorphism for software component ar-
chitectures. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications. p. 147–166.
OOPSLA ’05, Association for Computing Machinery, New York, NY, USA (2005).
https://doi.org/10.1145/1094811.1094823

43. Oancea, C.E., Robroek, T., Gieseke, F.: Approximate nearest-neighbour fields via
massively-parallel propagation-assisted k-d trees. In: 2020 IEEE International Con-
ference on Big Data (Big Data). pp. 5172–5181 (2020). https://doi.org/10.1109/
BigData50022.2020.9378426

44. O’Malley, D., E. Santos, J., Lubbers, N.: Interlingual automatic differentiation:
Software 2.0 between pytorch and julia. In: Association for the Advancement of
Artificial Intelligence (11 2022)

45. Pascual, V., Hascoët, L.: Mixed-language automatic differentiation. Optimiza-
tion Methods and Software 33(4-6), 1192–1206 (2018), https://doi.org/10.1080/
10556788.2018.1435650

46. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., et al.: PyTorch: An imperative style, high-
performance deep learning library. Advances in neural information processing sys-
tems 32, 8026–8037 (2019)

47. Schenck, R., Rønning, O., Henriksen, T., Oancea, C.E.: Ad for an array language
with nested parallelism. In: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. SC ’22, IEEE Press
(2022). https://doi.org/10.1109/SC41404.2022.00063

48. Serykh, D., Oehmcke, S., Oancea, C., Masiliūnas, D., Verbesselt, J., Cheng, Y.,
Horion, S., Gieseke, F., Hinnerskov, N.: Seasonal-trend time series decomposi-
tion on graphics processing units. In: 2023 IEEE International Conference on Big
Data (BigData). pp. 5914–5923 (2023). https://doi.org/10.1109/BigData59044.
2023.10386208

49. Strassen, V., Schönhage, A.: Schnelle multiplikation großer zahlen. Computing 7(3-
4), 281–292 (1971)

50. Topalovic, A., Restelli-Nielsen, W., Olesen, K.: Multiple-precision Integer Arith-
metic. Final project of the “Data Parallel Programming" MSc-level course, Depart-

https://doi.org/10.1145/2254064.2254124
https://doi.org/10.1145/2254064.2254124
http://dl.acm.org/citation.cfm?id=2738600.2738627
http://dl.acm.org/citation.cfm?id=2738600.2738627
https://doi.org/10.1145/1073884.1073921
https://doi.org/10.1145/1073884.1073921
https://doi.org/10.1145/1073884.1073921
https://doi.org/10.1145/1073884.1073921
https://doi.org/10.1145/1094811.1094823
https://doi.org/10.1145/1094811.1094823
https://doi.org/10.1109/BigData50022.2020.9378426
https://doi.org/10.1109/BigData50022.2020.9378426
https://doi.org/10.1109/BigData50022.2020.9378426
https://doi.org/10.1109/BigData50022.2020.9378426
https://doi.org/10.1080/10556788.2018.1435650
https://doi.org/10.1080/10556788.2018.1435650
https://doi.org/10.1109/SC41404.2022.00063
https://doi.org/10.1109/SC41404.2022.00063
https://doi.org/10.1109/BigData59044.2023.10386208
https://doi.org/10.1109/BigData59044.2023.10386208
https://doi.org/10.1109/BigData59044.2023.10386208
https://doi.org/10.1109/BigData59044.2023.10386208

30 Cosmin E. Oancea and Stephen M. Watt

ment of Computer Science, University of Copenhagen (2022), https://futhark-lang.
org/student-projects/dpp21-mpint.pdf

https://futhark-lang.org/student-projects/dpp21-mpint.pdf
https://futhark-lang.org/student-projects/dpp21-mpint.pdf

