
Computing Clipped Products

Arthur C. Norman1 and Stephen M. Watt2

1 Trinity College, Cambridge CB2 1TQ, UK
acn1@cam.ed.uk

2 Cheriton School of Computer Science, University of Waterloo, N2L 3G1 Canada
https://cs.uwaterloo.ca/∼smwatt

smwatt@uwaterloo.ca

Abstract. Sometimes only some digits of a numerical product or some
terms of a polynomial or series product are required. Frequently these
constitute the most significant or least significant part of the value, for
example when computing initial values or refinement steps in iterative
approximation schemes. Other situations require the middle portion. In
this paper we provide algorithms for the general problem of computing
a given span of coefficients within a product, that is the terms within
a range of degrees for univariate polynomials or range digits of an inte-
ger. This generalizes the “middle product” concept of Hanrot, Quercia
and Zimmerman. We are primarily interested in problems of modest size
where constant speed up factors can improve overall system performance,
and therefore focus the discussion on classical and Karatsuba multipli-
cation and how methods may be combined.

Keywords: integer product, polynomial product, convolution subrange,
product approximation

1 Introduction

The classical discussion of integer multiplication concentrates on forming the
product of a pair of N -digit numbers to form a 2N digit result. The techniques
used apply also to dense univariate polynomials or to truncated power series.
We start by pointing out what a limited viewpoint this represents.

There are three use-cases where at first it seems that balanced multiplication
(i.e. ones where the two inputs are the same size) will be central in large com-
putations. The first is in fixed but extended precision floating point arithmetic
where N -digit floating values are handled as N -digit integers alongside an expo-
nent value. But here it is not really appropriate to use full general multiplication
because only the top N of the product digits are retained, so computing the low
N digits will represent a waste. The same issue arises (but minus the complica-
tion of carries) in work with truncated power series where it is the low half of
the full polynomial product that has to be kept. The second is in cryptography
where there is some large modulus p and all values worked with are in the range

1

https://cs.uwaterloo.ca/~smwatt

0 to p−1. But hereafter any multiplication that generates a double-length prod-
uct there needs to be a reduction mod p. This has the feel of (even if it is not
exactly the same as) just wanting the low N digits of the full 2N digit product.
Often the cost of the remaindering operation will be at least as important as the
multiplication, and we will refer later to our thoughts on that. The third may
be in computation of elementary constants such as e and π to extreme precision
where the precision of all the computational steps is very rigidly choreographed,
but again at least at the end it is liable to have much in common with the
extended precision floating point case.

Other real-world cases are more liable to be formingM×N products whereM
and N may happen to be close in magnitude but can also be wildly different, and
where the values of M and N are liable to differ for each multiplication encoun-
tered. Such a situation arises in almost any computation involving polynomials
with exact integer coefficients — GCD calculations, Gröbner bases, power series
with rational coefficients, quantifier elimination. Many of these tasks have both
broad practical applicability and can be seriously computationally demanding
so that absolute performance matters. We expand on these arguments in [10].

Part of our motivation for this work was that, when considering division (and
hence remainder) using a Newton-style iteration to compute a scaled inverse of
the divisor, we found that in a fairly natural way we were wanting to multiply an
N digit value by one of length 2N but then only use the middle N digits of the
full 3N -length product. Failing to exploit both the imbalance and the clipping
there would hurt the overall performance of division.

This specific problem of computing the middle third of a 2N×N product has
been considered previously [3], where it has been used to speed up the division
and square root of power series. In this situation, the middle third is exactly
the part of the product where the convolution for each term uses all terms of
the shorter factor. This allows a Karatsuba-like recursive scheme to compute the
middle third of the product, or to use FFTs of size 2N instead of 4N , saving a
factor of 2 multiplying large values. This reduces the Newton iteration time for
division from 3M(N) + O(N) to 2M(N) + O(N), where M(N) is the time for
multiplication of size N .

Another important case is that of computing the initial terms of a product.
Mulders’ algorithm [9,4] produces the first N terms of a power series product,
called a “short product”. This is done by selecting a cut off point k and com-
puting one k× k product and two (N − k)× (N − k) short products recursively.

These “middle third of a 2N×N product” and “prefix” situations are impor-
tant cases but proper code needs to allow for additional generality. So we view
the proper general problem to address is the formation of an M × N product
where only digits (or terms) from positions a to b are required. We call this a
clipped product.

A clipped product can obviously be implemented by forming the full M ×N
product, or indeed by padding the smaller of the two inputs to get the N×N case
(and sometimes going further and padding the size there to be a power of 2!) and
then at the end just ignoring unwanted parts of the result. From an asymptotic

2

big-O perspective that may suffice, but we are interested in implementations
where even modest improvements in absolute performance on “medium sized”
problems matters. So can we do better? Achieving certified lower bounds on
cost becomes infeasible both with the large number of input size and size-related
parameters and with the fact that for medium sized problems overheads matter,
and they can be platform- and implementation-sensitive. But despite that we
will show we can suggest better approaches than the näıve one.

The main results of this paper are algorithms for clipped multiplication of
integers and polynomials over a general ring, adapting both the classical O(N2)
and Karatsuba O(N log23) methods. An analysis is given to show how much look-
back is required in order to have the correct carry in for the lowest digit in the
classical integer case.

The remainder of the article is organized as follows: Section 2 provides some
notation and gives a definition of clipping. Section 3 shows some straightforward
methods to compute clipped products. The main idea is that one can compute
a lower part by multiplying only the lower terms and clipping afterwards. For
polynomials, one can use reversed polynomials to get a higher part. Section 4
shows how to adapt polynomial multiplication algorithms so that only the re-
quired part is calculated. Section 5 shows how to adapt integer multiplication so
that only the required part is calculated. The difference from polynomial multi-
plication is in dealing with carries. Section 6 discusses some issues that arise in
combining sub-multiplications. Finally, Section 7 presents some further thoughts
and conclusions. The algorithms are presented in high-level Maple code, though
in practice a lower-level language like C or Rust may be used.

2 Preliminaries

For many algorithms, integers and univariate polynomials behave similarly, how-
ever especially when losing low order digits is called for integer calculations are
complicated by the need to allow for carries up from those discardable parts of
the results. We use the notation of [12,13] to allow generic discussion of concepts
relating to both:

[a..b], [a..b), etc integer intervals, i.e. real intervals intersected with Z
precB n number of base-B digits of an integer n, ⌊logB |n|⌋+ 1
precx p number of coefficients of a polynomial p, degx p+ 1
M(n,m) the time to multiply two values with prec n and m.

The integer interval notation, “[a..b]” etc, is used by Knuth, e.g. [8]. In discussions
that apply to both integers and polynomials we may use t as a generic base, which
may stand for a integer radix or a polynomial variable, in which case we may
write, e.g., prect u. We write the coefficients of u as ut,i, where

u =
∑

i∈[0..prect u)

ut,it
i.

In the integer case, it is required to have 0 ≤ uB,i < B for uniqueness. If i < 0 or
i ≥ prect u, then ut,i = 0. When the base for integers or variable for polynomials

3

is understood, then we may simply write precu and ui. To refer to part of an
integer or polynomial, we use the notation below and call this the clipped value.

clipt,I u
∑

i∈I ut,it
i, I an integer interval,

As before, when the base for integers or the variable for polynomials is under-
stood, we may simply write clipI u.

Examples
Letting p = a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0,

precx p = 6

clipx,[2..4) p = a3x
3 + a2x

2

Letting n = 504132231405,

prec100 n = 6

clip100,[2..4] n = 4132230000.

3 Straightforward Methods

We begin with the obvious methods to compute the clipped value of a product.

Direct Clipped Product

The simplest approach is simply to compute the whole product and extract the
desired part. The clipped product clipt,[a..b] (f × g) may be computed as shown
in Figure 1. Here, clip(p, t, a, b) computes clipt,[a..b] p. The computation
time is M(prec f, prec g) +O(|r|).

Example With

f = 4x3 + 83x2 + 10x− 62, g = 82x5 − 80x4 + 44x3 − 71x2 + 17x+ 75

we have

f×g = 328x8+6486x7−5644x6−2516x5−425x4−1727x3+10797x2−304x−4650

so

clipx,[2..3] (f × g) = −1727x3 + 10797x2.

4

Bottom Clipped Product

It is possible to improve on the direct clipped product when only the lower
index coefficients are required. In this case integers and polynomials can be
treated identically since carries out from the calculated range have no impact on
the final result. If the clipped product range is [0..b] then no coefficient of index
greater than b of the operands can affect the clipped product. Therefore those
coefficients can be discarded prior to computing the product. Then, as shown in
Figure 1, one proceeds as before. The computation time is

Mbot(prec f, prec g, b) = M(min(prec f, b),min(prec g, b)) +O(b).

Example With f and g as before, we may compute clipx,[0..3] (f×g) by multiply-

ing clipx,[0..3] f = 4x3+83x2+10x−62 and clipx,[0..3] g = 44x3−71x2+17x+75 to

get 176x6+3368x5−5385x4−1727x3+10797x2−304x−4650 which is then clipped
to retain the terms of degrees in [0..3], namely −1727x3+10797x2−304x−4650.

General Clipped Product from Bottom

If it is desired to compute a clipped product with a range with lower bound
other than zero, it is possible to do so with one call to BottomClippedProduct,
as shown in Figure 1. The computation time is

Mgbot(prec f, prec g, a, b) = M(min(prec f, b),min(prec g, b)) +O(b− a).

Example To compute clipx,[2..3] (f × g) we obtain clipx,[0..3] (f × g) using the
bottom clipped product, and clip it as clipx,[2..3] .

Top Clipped Product From Reverse

As the upper limit of the clipping range approaches the precision of the multipli-
cands, BottomClippedProduct loses its computational advantage. In particular,
if the top part of the product is desired, then there is no advantage at all. While
the previous methods apply equally to integers and polynomials, here carries
complicate the integer case. It is possible to compute polynomial clipped prod-
ucts with higher ranges only using polynomial reversal. Let

revx p = xdegx pp(1/x).

Then the product clipped to [a..deg f + deg g], i.e. the top, may be computed
as shown in Figure 2. The time is determined by the BottomClippedProduct

computation,

Mbot(prec f, prec g,prec f + prec g + a− 2).

5

DirectClippedProduct := proc(f, g, t, a, b)
local p, r;
p := f * g;
r := clip(p, t, a, b);
return r

end;

BottomClippedProduct := proc(f, g, t, b)
local clipf , clipg , p, r;
clipf := clip(f, t, 0, min(b, prec(t,f) -1));
clipg := clip(g, t, 0, min(b, prec(t,g) -1));
p := clipf * clipg;
r := clip(p, t, 0, b);
return r

end;

ClippedProductFromBottom := proc(f, g, t, a, b)
local rb , r;
rb := BottomClippedProduct(f, g, t, b);
r := clip(rb , t, a, b);
return r

end;

Fig. 1. Straightforward clipped products.

TopClippedPolynomialProduct := proc(f, g, x, a)
local degf , degg , revf , revg , p, r;
degf := degree(f, x); degg := degree(g, x);
revf := rev(f, x); revg := rev(g, x);
p := BottomClippedProduct(revf , revg , x, degf+degg -a);
r := x^a * rev(p, x);
return r

end

Fig. 2. Top clipped product using polynomial reversal

Example To compute clipx,[6..8] (f × g), we first compute

revx f = −62x3 + 10x2 + 83x+ 4, revx g = 75x5 + 17x4 − 71x3 + 44x2 − 80x+ 82.

Then degx f + degx g − a = 3 + 5− 6 = 2. So we compute

p = clipx,[0..2] (revx f × revx g) = −5644 ∗ x2 + 6486 ∗ x+ 328

and the result is
x6revx p = 328x8 + 6486x7 − 5644x6.

Disadvantage of Straightforward Methods

These straightforward methods provide clipped products that generally cost less
than clipping a full product, but they still perform significant extra work. Form-
ing the [a..b] clipped product via BottomClippedProduct on 0..b computes 2b+1
coefficients where only b− a+ 1 are required. This is a significant difference for
O(Np) multiplication methods such as the classical or Karatsuba algorithms.
We therefore consider how to improve on this.

6

ClippedClassicalPolynomialProduct := proc(f0, g0, x, a, b)
local f, g, df , dg , s, k, t, i, i0;

Ensure dg <= df
f := f0; df := degree(f, x);
g := g0; dg := degree(g, x);
if dg > df then f,g := g,f; df ,dg := dg,df fi;

Form column sums.
s := 0; # Note A
for k from a to b do

if k <= dg then i0 := 0
elif k <= df then i0 := k-dg
else i0 := k-df
fi;
t := 0;
for i from i0 to k do t := t + coeff(f,x,i) * coeff(g,x,k-i) od;
s := setcoeff(s,x,k,t) # Note A. s + t*x^k

od;
return s

end

Fig. 3. Clipped classical polynomial multiplication

Mulders [9] provides a more sophisticated method to compute products clipped
to [0..b] and hence the others. Mulders’ method is discussed further in Section 6.
If we do not require the entire prefix, that is for general [a..b], then we can
compute only what is needed, as shown in the next sections.

4 Clipped Polynomial Products

For the moment we concentrate on polynomial products, since this avoids the
technicalities of dealing with carries. In practice, different multiplication algo-
rithms give best performance for ranges of problem size. We therefore consider
modified classical, Karatsuba and FFT multiplication.

Clipped Classical Polynomial Multiplication

Classical multiplication of univariate polynomials f and g requires prec f×prec g
coefficient multiplications and a similar number of coefficient additions. It is easy
to compute only the desired coefficients, as shown in Figure 3. This is Maple
code, so coeff(f,x,i) computes fi, the coefficient of xi. The statement s :=

setcoeff(s,x,k,t) uses an auxilliary function to set the coefficient of xk in s
to be t. Depending on the implementation language, the lines annotated Note

A would typically be setting values in a coefficient array indexed from zero. A
suitable representation would be as a pair of the integer value a and a coefficient
array coeffs, where coeffs[i] was the coefficient of xa+i.

The greatest number of coefficient operations occurs when a and b both
are in [deg g..deg f], in which case (b − a + 1) ∗ (deg g + 1) multiplications and
(b− a+ 1) ∗ (deg g) additions are required. We therefore have the bound

Mcclip(prec f, prec g, a, b) ≤ (b− a+ 1)× (min(deg f, deg g) + 1).

7

Example Let deg f = 7, deg g = 4, a = 5 and b = 7. Then the multiplication
table looks like the following with the bold face entries calculated:

f7g0 f6g0 f5g0 f4g0 f3g0 f2g0 f1g0 f0g0
f7g1 f6g1 f5g1 f4g1 f3g1 f2g1 f1g1 f0g1

f7g2 f6g2 f5g2 f4g2 f3g2 f2g2 f1g2 f0g2
f7g3 f6g3 f5g3 f4g3 f3g3 f2g3 f1g3 f0g3

f7g4 f6g4 f5g4 f4g4 f3g4 f2g4 f1g4 f0g4

So here 15 multiplications and 12 additions are required rather than the 40 and
28 that would be required by ClippedProductFromBottom.

Clipped Karatsuba Polynomial Multiplication

The Karatsuba multiplication scheme [7] splits the multiplicands in two and
forms the required product using three recursive multiplications and four addi-
tions. For simplicity, assume prec f = prec g = p = 2n. Let f = fhx

p/2 + fl,
g = ghx

p/2 + gl, fm = fh + fl and gm = gh + gl. For Karatsuba multiplication
the three products fh · gh, fm · gm and fl · gl are required. Then the product
f · g = zhx

p + zmxp/2 + zl where

zh = fhgh, zm = fmgm − fhgh − flgl, zl = flgl.

We show that using clipping while computing a product by Karatsuba mul-
tiplication can significantly reduce the cost compared to clipping after the prod-
uct is computed. Let K(p) denote the number of required coefficient multi-
plications for Karatsuba multiplication of polynomials of prec = p. We have
K(p) = 3K(p/2) for p > 1 so K(p) = plog2 3. If only a top (or bottom) part of
the product is needed, then less work is required. Suppose only a top portion
of the coefficients are required. Instead of computing all the required smaller
products in full, some may be ignored and some may require only their upper
parts. This reasoning leads to the following result.

Theorem 1. When multiplying polynomials of degree p−1 by Karatsuba’s method,
if only the top (or bottom) 1/2ℓ fraction of the coefficients are required, with 2ℓ <
p, then the number of required coefficient multiplications is at most K(p)/3ℓ−1.

Proof. Let f and g be the two precision p polynomials to be multiplied and let
T (p, ℓ) denote the number of coefficient multiplications required for the top 1/2ℓ

fraction of the product. If ℓ = 1, then the full product zh is needed, as is the top
half of zm. This requires all of fhgh and the top half of fmgm and flgl, so

T (p, 1) = K(p/2) + 2T (p/2, 1)

≤ K(p).

If ℓ > 1, then only the top 1/2ℓ−1 fraction of the coefficients of zh are required
and neither zm nor zl are needed. So

T (p, ℓ) = T (p/2, ℓ− 1)

≤ K(p/2ℓ−1) = K(p)/3ℓ−1.

8

ClippedKaratsubaPolynomialProduct := proc(f, g, x, a, b, gmul)
local df , dg , p, fh,gh , fl ,gl,fm, gm, restrict ,

zha , zhb , zma , zmb , zla , zlb , zh, zm, zl;

df := gdegree(f, x); dg := gdegree(g, x); # Note A

if a > df+dg then return 0 fi;
if a > b then return 0 fi;
if b = 0 then return gmul(coeff(f,x,0),coeff(g,x,0)) fi; # Note A

Size of z parts.
p := max(df, dg)+1;
p := p + irem(p, 2); # Make even

Product factors.
fh := clip(f,x,p/2,p-1)*x^(-p/2); fl := clip(f,x,0,p/2 -1); # Note A
gh := clip(g,x,p/2,p-1)*x^(-p/2); gl := clip(g,x,0,p/2 -1); # Note A
fm := fh + fl; gm := gh + gl;

Cases where zm is not needed.
if b < p/2 then

return ClippedKaratsubaPolynomialProduct(fl ,gl,x,a, b, gmul)
elif a > 3*p/2-2 then

return ClippedKaratsubaPolynomialProduct(fh ,gh,x,a-p,b-p,gmul)
* x^p

fi;

Need all products.
restrict := # return i or the closest interval endpoint.

proc(i) if i < 0 then 0 elif i > p-2 then p-2 else i fi end:
zha := restrict(a - p); zhb := restrict(b - p);
zma := restrict(a - p/2); zmb := restrict(b - p/2);
zla := restrict(a); zlb := restrict(b);

Expand high and low product ranges as needed for zm.
zha := min(zha , zma); zhb := max(zhb , zmb);
zla := min(zla , zma); zlb := max(zlb , zmb);
zh := ClippedKaratsubaPolynomialProduct(fh ,gh,x,zha ,zhb ,gmul);
zl := ClippedKaratsubaPolynomialProduct(fl ,gl,x,zla ,zlb ,gmul);
zm := ClippedKaratsubaPolynomialProduct(fm ,gm,x,zma ,zmb ,gmul)

- zh - zl;

Combine and clip
return clip(zh*x^p + zm*x^(p/2) + zl, x, a, b) # Note A

end

Fig. 4. Clipped Karatsuba polynomial product

Together, these cases give the result for the top 1/2ℓ fraction. A similar argument
gives the result for the bottom. □

Note that for p = 2N , we have K(p)/3ℓ−1 = 3N−ℓ+1 + 1, an integer.

The idea of pushing the clipping range down onto the Karatsuba sub-products
is straightforward to implement, as shown in Figure 4. As for the classical case,
if polynomials are represented using arrays, the lines annotated with Note A

are performed with array operations. The parameter gmul is the coefficient mul-
tiplication function and gdegree gives the degree of the polynomial in what-
ever representation is used. In practice, one would have a cut over to classical

9

Table 1. Coefficient multiplications count for f×g by clipped Karatsuba multiplication

a\b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0 1 3 5 9 11 15 19 27 29 33 37 45 49 56 64 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
1 3 5 9 11 15 19 27 29 33 37 45 49 56 64 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
2 5 9 11 15 19 27 29 33 37 45 49 56 64 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
3 9 11 15 19 27 29 33 37 45 49 56 64 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
4 11 15 19 27 29 33 37 45 49 56 64 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
5 15 19 27 29 33 37 45 49 56 64 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
6 19 27 29 33 37 45 49 56 64 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
7 27 29 33 37 45 49 56 64 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
8 29 33 37 45 49 56 64 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
9 33 37 45 49 56 64 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80

10 37 45 49 56 64 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
11 45 49 56 64 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
12 49 56 64 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
13 56 64 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
14 64 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
15 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
16 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
17 56 56 56 56 56 56 56 56 56 56 56 56 56 56
18 48 48 48 48 48 48 48 48 48 48 48 48 48
19 44 44 44 44 44 44 44 44 44 44 44 44
20 36 36 36 36 36 36 36 36 36 36 36
21 32 32 32 32 32 32 32 32 32 32
22 28 28 28 28 28 28 28 28 28
23 26 26 26 26 26 26 26 26
24 18 18 18 18 18 18 18
25 14 14 14 14 14 14
26 10 10 10 10 10
27 8 8 8 8
28 4 4 4
29 3 3
30 1

multiplication for small sizes rather than recursing all the way down to single
coefficients.

Table 1 shows how many coefficient multiplications are required by the above
implementation to multiply the two polynomials

f =

[
−89 56
−96 72

]
x15 +

[
−8 64
−32 61

]
x14 +

[
45 66
69 76

]
x12

+

[
−96 47
15 −85

]
x11 +

[
−96 62
−74 −65

]
x10 +

[
−92 54
−18 −64

]
x9 +

[
−56 −28
56 −8

]
x8

+

[
23 −31
−85 94

]
x7 +

[
−45 −58
73 −70

]
x6 +

[
−6 −7
72 4

]
x5 +

[
−64 61
10 45

]
x4

+

[
−29 −43
−95 16

]
x3 +

[
31 −9
−42 28

]
x2 +

[
−52 −87
−51 −27

]
x+

[
−48 −33
−55 −22

]

10

g =

[
1 75
7 −15

]
x15 +

[
−22 43
85 25

]
x14 +

[
−29 −90
−38 3

]
x13 +

[
39 −92
0 18

]
x12

+

[
56 41
−53 6

]
x11 +

[
−10 53
−8 83

]
x10 +

[
58 −98
61 1

]
x9 +

[
−28 7
17 36

]
x8

+

[
−64 16
−58 64

]
x7 +

[
−76 −66
83 76

]
x6 +

[
6 3
34 8

]
x5 +

[
−80 −71
−15 88

]
x4

+

[
−9 −83
77 28

]
x3 +

[
59 −28
48 94

]
x2 +

[
40 −91
−34 32

]
x+

[
8 39
9 −28

]
We see the cost of the clipped Karatsuba depends on how close the clipping
interval is to the center of the product. If a ≤ b ≤ p then, it depends on b, and if
p ≤ a ≤ b it depends on a. If the interval spans the center, then no savings are
achieved.

Clipped FFT Polynomial Multiplication

The basic scheme for FFT-based multiplication of polynomials f and g starts
with zero padded coefficient vectors for f and g of dimensionN = 2⌈log2(deg f+deg g+1)⌉,

vf = [f0, . . . , fdeg f , 0, . . . 0]

vg = [g0, . . . , gdeg g, 0, . . . 0].

Then FFTs in an appropriate field are computed

ṽf = FFT(vf)

ṽg = FFT(vg).

The FFT of the product is computed as

ṽfg = [(ṽf)0 × (ṽg)0, . . . , (ṽf)N−1 × (ṽg)N−1],

where × denotes multiplication in the chosen field. The coefficient vector for the
product is then the inverse FFT of ṽfg. Asymptotically, an FFT requires fewer
than 3

2N log2 N coefficient multiplications. This yields a polynomial multiplica-
tion cost triple that, from the two forward and one inverse FFT.

Whereas with classical and Karatsuba multiplication, computing unneeded
terms has an O(Np) cost, computing extra FFT terms has only a quasi-linear
cost. So in many situations the straightforward methods of Section 3 may be
used. To compute a clipped multiplication it will sometimes be possible to avoid
computing some of the coefficients of ṽfg. The butterfly transformation of the
Cooley-Tukey algorithm [2] does not have every coefficient of FFT−1(ṽ) depend
on every coefficient of ṽ. For example, for N = 16 the dependencies are shown in
Table 2. Thus, depending on the clipping range it is possible to avoid computing

some coefficients of f̃g.
We do not pursue this in detail here since our focus in this paper is on

products from general purpose applications — but our observation shows that

11

Table 2. Coefficient dependencies for inverse FFT on 16 elements

i FFT−1(ṽ i) dependencies

0 ṽ0
1 ṽ0, ṽ1
2 ṽ0, ṽ2
3 ṽ1, ṽ2, ṽ3
4 ṽ0, ṽ4
5 ṽ1, ṽ4, ṽ5
6 ṽ2, ṽ4, ṽ6
7 ṽ3, ṽ5, ṽ6, ṽ7
8 ṽ0, ṽ8
9 ṽ1, ṽ8, ṽ9
10 ṽ2, ṽ8, ṽ10
11 ṽ3, ṽ9, ṽ10, ṽ11
12 ṽ4, ṽ8, ṽ12
13 ṽ5, ṽ9, ṽ12, ṽ13
14 ṽ6, ṽ10, ṽ12, ṽ14
15 ṽ7, ṽ11, ṽ13, ṽ14, ṽ15

even for extreme precision there is scope for special treatment where clipped
products are required.

In the situation where f × g is of size 2N ×N , if only the middle third of the
product is required, then the method of Hanrot, Quercia and Zimmerman [3]
may be applied, saving a factor of 2. It remains an open question how far this
technique can be generalized. Nonetheless, there will be clipping ranges and
argument lengths where it is worthwhile to pad the factors to use this method.

Additionally, the concept of a truncated FFT [5] can be useful. It computes
all of the terms, but avoids unnecessary multiplications. Other work [6] shows
how multiplication may be performed when the arguments may be decomposed
into blocks.

5 Clipped Integer Multiplication

The methods for clipped polynomial products can be adapted for the computa-
tion of clipped integer products by an analysis of the required number of lower
guard digits for carries. We show how this can be done for classical multiplica-
tion.

Clipped Classical Integer Multiplication

The idea here is really simple. To clip the product to digits from a to b you form
a näıve clipped product from a − G to b and then only keep digits from a up.
So G is a number of guard digits. The sole issue is selecting a value for G. And
indeed understanding if there is any value of G that guarantees correct results.

12

This amounts to a need to understand how far carries can propagate through
the process of the addition that combines partial products. While in general
addition there is no limit to how far carries can propagate, here there are limits,
and they flow from the fact that if B is the base the largest a coefficient product
can be is (B − 1)2 and the high half of that is quite a lot smaller than B.

Theorem 2. To compute the [a..b] clipped product of two base-B integers f and
g to within 1 unit in position a using classical multiplication with partial products
f · giBi requires at most G = min(a, ⌈logB prec g⌉+ 1) guard digits.

By this we mean that the [a..b] clipped product requires summing only the
columns for (fg)i, for a − G ≤ i ≤ b, and the columns [a − G..a − 1] are used
solely to determine a carry.

Proof. Let prec f = s + 1 and prec g = t + 1, and let ck be the carry into the
k-th column in the full multiplication tableau,

cs+t+1 cs+t cs+t−1 · · · cs cs−1 · · · c0 = 0
fs · g0 fs−1 · g0 · · · f0 · g0

. .
.

. .
.

. .
.

. .
.

fs · gt−1 fs−1 · gt−1 · · · · · · f0 · gt−1

fs · gt fs−1 · gt · · · · · · f0 · gt

The sum for the k-the column is

sk = ck +

k∑
i=0

figk−i ≤ ck + prec g · (B − 1)2.

The equation uses the fact that ui = 0 for i /∈ [0..precu), and the inequality
takes into account both that figj ≤ (B − 1)2 and that gk−i = 0 when i > k
(i.e. the empty lower right hand triangle in the tableau). The carry into the next
column is

ck+1 = ⌊sk/B⌋ ≤ sk/B

so
B ck+1 ≤ ck + prec g · (B − 1)2.

If there is a maximum carry, cmax, then it must satisfy

B cmax ≤ cmax + prec g · (B − 1)2

so we have
cmax ≤ prec g · (B − 1).

It follows that at most ⌈logB prec g⌉ + 1 guard digits are required to guarantee
the correct value carried into the clipping range. No guard digits can be taken
before position 0, therefore clipped classical multiplication for integers needs
to sum columns [a − G..b], for G = min(a, ⌈logB prec g⌉ + 1), and the columns
[a−G..a− 1] are used only to compute ca. □

13

ClippedClassicalIntegerProduct := proc(f0 , g0, B, a, b)
local f, g, pf , pg , nGuard , carry , s, k, t, i, i0;

Ensure pg <= pf
f := f0; pf := iprec(f, B);
g := g0; pg := iprec(g, B);
if pg > pf then f,g := g,f; pf ,pg := pg,pf fi;

Compute number of guard digits
nGuard := min(a, ceil(log[B](iprec(g, B))) + 1);

Form column sums
carry := 0;
s := 0;
for k from a - nGuard to b do

if k < pg then i0 := 0
elif k < pf then i0 := k - pg
else i0 := k - pf
fi;

t := carry;
for i from i0 to k do t := t + icoeff(f,B,i) * icoeff(g,B,k-i) od;

carry , t := iquo(t, B), irem(t, B);
if i >= a then s := isetcoeff(s, B, k, t) fi;

od;
return clip(s, B, a, b)

end:

These would be O(1) or O(b-a) array operations in C.
iprec := (n, B) -> ceil(log[B](n+1)):
icoeff := (n, B, i) -> irem(iquo(n, B^i), B):
isetcoeff := (n, B, i, v) -> n + v*B^i:
clip := (n, B, a, b) -> irem(iquo(n, B^a), B^(b-a+1)):

Fig. 5. Clipped classical integer product

Note that in general a carry can have multiple digits. With modern comput-
ers, the base can be chosen to be large (e.g. 264) so ⌈logB prec g⌉ will be 1 for
all practical problems and 2 guard digits will suffice. The details are shown in
Figure 5.

6 Combining Methods

Some of the methods we have described require recursive multiplications of parts.
The recursive calls need not use the same multiplication method. So there will
be platform-dependent thresholds to determine when to use which method. We
note some additional considerations below.

Issues in Mulders Multiplication

Mulders [9] considered short multiplication of power series, i.e. keeping just the
top N terms of the product of two series each of length N . His scheme could save
perhaps 20% to 30% of the time that would have been spent had the result been

14

generated by using Karatsuba to form a full product and then just discarding
the unwanted low terms.

Full multiplication of the two inputs computes unwanted parts of the re-
sult that correspond to half the partial products that classical multiplication
would use. Mulders performs a smaller full multiply that still computes many
unwanted terms, and which also leaves some necessary parts of the result incom-
plete. Henriot and Zimmermann [4] investigated just what proportion of the full
multiplication would be optimal, but for our purposes it will suffice to approx-
imate that as 0.7N by 0.7N . The parts of the result not computed by this will
have the form of a couple of additional instanced of the short product problem,
so get handled by recursion.

When this scheme is used for integer multiplication the issue of carries from
a discarded low part of a product arise. As with the same issue when using
simple classical multiplication this can be handled by using some guard digits,
and because Mulders works with and then discards low partial products beyond
those used in a classical scheme a bound that is good enough for classical can
be applied here.

The idea of using a fast complete multiplication that computes somewhat
more of a product than will be needed and discarding the excess, but then
needing to fill in some gaps, can be generalized beyond N ×N cases and beyond
the case where exactly the top (or bottom) half of a product is needed, and
the original Mulders overlap fraction can in general guide usage – however all
additional cases could need fresh analysis to find the exact optimal value for that
parameter.

Different Methods for Different Ranges

We now return to a discussion on our motivating problem, computing clipped
integer products in the approximation scheme described in [12]. There, at various
points, it is desired to compute clipped products for the most significant, least
significant and middle parts of an asymmetric multiplication. Depending on the
size of the prefix or suffix, we can use clipped classical, Karatsuba or FFT for
these. For the middle third, a more complex scheme may be used, as shown in
Figure 6, illustrating a product f × g. (Diagonal lines from upper left to lower
right are multiples of g by a term of f . Diagonal lines from upper right to lower
left are multiples of f by a term of g.) This is motivated by Mulders but needs to
clip at both high and low ends. Use of a 3N by 2N variant of Toom-Cook [1,11]
gives rather close to the levels of overlap at each and that would be good for
Mulders.

A different and somewhat extreme case would be where the number of output
digits (say h) required is much smaller than the size of either input. In that case
a classical multiplication can clearly deliver a result in something like h×N but
a decomposition of the strip as in Figure 7 turns out on analysis to start to win
once h is significantly larger that the threshold at which Karatsuba breaks even
for all the tiled sub-products.

15

required

N

2N

3N/2

Fig. 6. The desired region of the asymmetric N × 2N product. Horizontal lines are
terms of equal degree, and the dashed lines show the range of terms desired. The
N × 3N/2 rectangle is calculated and the cross hatched area is used and the dotted
area is not used. The solid gray areas are calculated separately.

required

Fig. 7. A scheme to compute the middle digits. The squares are calculated by a size-
appropriate method (classical, Karatsuba, FFT). The hatched areas of overlap are
double counted, so must be subtracted. The solid areas are calculated sparately.

16

7 Further Thoughts and Conclusions

We have studied the problem of computing a specified portion of integer and
polynomial products, giving some algorithms, cost analysis, bounds on carry
propagation and examples.

We have shown a number of methods, and which is least costly depends on
the size of the values to be multiplied and on the interval of the product desired.
For example, if a very few digits of the middle of an integer product are desired,
then clipped classical multiplication will give the result in time linear in the input
with a good constant factor. On the other hand, if a substantial fraction of the
leading terms of a huge polynomial product are desired, then a straightforward
bottom clipped FFT product of the reverse polynomials may be best.

In general, one needs a polyalgorithm that reduces to specific schemes in
particular regimes. We believe the boundaries between these regimes, and the
remaining gaps, have not been particularly well explored, and the present work
is a step toward filling them.

References

1. Cook, S.A.: On the Minimum Computation Time of Functions. Ph.D. thesis, Har-
vard University (1966)

2. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Mathematics of Computation 19(90), 297–301 (1965)

3. Hanrot, G., Quercia, M., Zimmermann, P.: The middle product algorithm I: Speed-
ing up the division and square root of power series. Applicable Algebra in Engi-
neering, Communication and Computing 14, 415–438 (2004)

4. Hanrot, G., Zimmermann, P.: A long note on Mulders’ short product. J. Symbolic
Computation 37, 391–401 (2004)

5. van der Hoeven, J.: The truncated Fourier transform and applications. In: Proc.
ISSAC 2004. pp. 290––296. ACM, New York (2004)

6. van der Hoeven, J., Lecerf, G.: On the complexity of multivariate blockwise polyno-
mial multiplication. In: Proc. ISSAC 2012. pp. 211––218. ACM, New York (2012)

7. Karatsuba, A., Yu., O.: Multiplication of many-digital numbers by automatic com-
puters. Proceedings of the USSR Academy of Sciences 145, 293–294 (1962), trans-
lation in the academic journal Physics-Doklady, 7 (1963), pp. 595–596

8. Knuth, D.E.: The Art of Computer Programming, Volume 4b: Combinatorial Al-
gorithms, Part 2. Addison-Wesley, Boston (2022)

9. Mulders, T.: On short multiplication and division. In: Proceedings AAECC 11, 1.
pp. 69–88 (2000)

10. Norman, A.C., Watt, S.M.: A symbolic computing perspective on software systems
arxiv:2406.09085, 1–18 (2024)

11. Toom, A.L.: The complexity of a scheme of functional elements realizing the mul-
tiplication of integers. Soviet Mathematics Doklady 3, 714–716 (1963)

12. Watt, S.M.: Efficient generic quotients using exact arithmetic. In: Proc. Interna-
tional Symposium on Symbolic and Algebraic Computation (ISSAC 2023). pp.
535–544. ACM, New York (2023)

13. Watt, S.M.: Efficient quotients of non-commutative polynomials. In: 25th Interna-
tional Workshop on Computer Algebra in Scientific Computing (CASC 2023). pp.
370–392. Springer Cham LNCS 14139, New York (2023)

17

