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Abstract—We consider the functional inverse of the Gamma
function in the complex plane, where it is multi-valued, and define
a set of suitable branches by proposing a natural extension from
the real case.

I. INTRODUCTION

Professor James Davenport, whose 70th birthday is being
celebrated at this conference, has been a prolific investigator
of multivalued functions. His work has covered several topics
in the area, dating back more than two decades—see, for
example, [1], [2], [3], [4]. The present article follows in this
tradition.

A recent review of the Gamma function and its properties
comments that the inverse function has received little study [5].
Some basic properties were given in [6] and [7], but the
structure of the branches in the complex plane has not been
considered. This article provides some results in this area.

The Gamma function for complex z can be defined by [9]

Γ(z + 1) = z! =

∫ ∞

0

tze−t dt for ℜz > −1 , (1)

together with Euler’s reflection formula

Γ(1− z)Γ(z) = π

sinπz
. (2)

The Γ notation shifts the argument with respect to factorial
by 1, as shown in (1); this shift, often called a minor but
continual nuisance [5], is usually blamed on Legendre; but in
fact Euler did this first [8]. We denote the inverse of Γ by
either w =

∨
Γk(z), or w = invΓk(z), where k will label the

branch, which will be defined here.
We remind the reader of some basic properties of Γ.

Figure 1 shows a plot of the Γ-function. The derivative of Γ
introduces the digamma function, Ψ, through the logarithmic
derivative:

d

dx
ln Γ(x) = Ψ(x) ,

thus making Γ′= ΨΓ. The complex conjugate is Γ(z) = Γ(z).

In [5], Stirling’s approximation is used to give an asymptotic
approximation to

∨
Γ0 using the Lambert W function.

∨
Γ(x) ≈ 1

2
+

ln
(
x/
√
2π

)
W

(
e−1 ln

(
x/
√
2π

)) . (3)

This approximation is remarkably accurate, even for relatively
small arguments. For example, it gives

∨
Γ(24) ≈ 4.99, where

Fig. 1: A graph of the Γ function. Note the poles at non-positive integers.

the exact answer is 5. Trying a smaller value, we see
∨
Γ(4) ≈

3.653. This can be checked by comparing Γ(3.653) = 3.948
with 4. Finally, we note that Pedersen [6] has shown that one
branch of the inverse can be extended to the complex plane,
and it can be represented as a Pick function.

II. DEFINITION OF REAL BRANCHES

We first consider the inverse of Γ as a function of the reals.
The graph of

∨
Γ is show in Figure 2, as produced using the

Maple parametric plot command:

plot([GAMMA(x),x,x=-4..3.5], discont=true);

The turning points of Γ define the boundaries of the branches,
and the partition of the range of

∨
Γ. To define the branches,

we introduce some notation. Since the Gamma function has
extremal points at

dΓ(z)

dz
= Γ(z)Ψ(z) = 0 , (4)

we denote the points (ψi, γi) by the definitions

Ψ(ψ0) = 0 , where ψ0 > 0 , (5)
Ψ(ψk) = 0 , where k < 0 and k < ψk < k + 1 , (6)

together with γk = Γ(ψk). Numerical values are displayed in
Table I. Further values are given in Table 5.4.1 of [9], with
our k corresponding to their −n.



Fig. 2: Inverse of the Γ function showing the critical points and the division
of the range into branches.

The branches are defined by their ranges as displayed in
Table II. For the general approach to branched functions, see
[10]. The numbering of the branches is chosen so that k = 0
is the principal branch, while the remaining branches receive
negative numbers so that the labels follow roughly the ranges
taken by the branches. Algorithm 1 determines the domain of
x values corresponding to a value of Γ(x) and branch number.

Some special cases are worth noting. Since Γ(2) = 1! =
Γ(1) = 0! = 1, the corresponding inverses must lie on
different branches. This requires

∨
Γ0(1) = 2 and

∨
Γ−1(1) = 1.

Some other special values of interest are
∨
Γ0(
√
π/2) = 3/2,

which lies very close to the branch point, and
∨
Γ−1(

√
π) = 1/2.

III. EXTENSION TO THE COMPLEX PLANE

We follow [11] and [12] in considering extensions to the
complex plane. We start with the domain of Γ(z), which will
become the range of

∨
Γ. We wish to partition C so that Γ is

injective on each element of the partition. We argue that the
parallel lines z = ψk + iy partition C in this way.

Theorem 1. Let D0 = {z | ψ0 ≤ ℜz} and Dk = {z | ψk ≤
ℜz < ψk+1} for k < 0. Then Γ : Dk → C is injective for
k ≤ 0.

Proof. We start with the observation that all zeros of Ψ are
real, and that Ψ is analytic everywhere except on the non-
positive integers. We show we cannot have two points z1, z2 ∈
Dk with z1 ̸= z2 but Γ(z1) = Γ(z2). Since Γ has no zeros, it
is useful to work with the entire function 1/Γ and we require
1/Γ(z1) = 1/Γ(z2). Consider 1/Γ restricted to {z | z =
L(λ) = (1−λ)z1 +λz2, λ ∈ [0, 1]}, that is a line in Dk from
z1 to z2. Then the real and imaginary parts of 1/Γ(L(·)) are
both C∞[0, 1] real-valued functions so N(λ) = |1/Γ(L(λ))|2
is a differentiable real function on [0, 1] with N(0) = N(1).
Bearing in mind that z1 ̸= z2, by Rolle’s theorem we must

k ψk γk

0 1.461632 0.885603

−1 −0.504083 −3.544644

−2 −1.573498 2.302407

−3 −2.610720 −0.888136

−4 −3.635293 0.245127

−5 −4.653237 −0.052780

Table I: Critical values for branches of
∨
Γk . These points are plotted as

(γk, ψk) in Figure 2.

k Range condition Argument range

0 ψ0 ≤ ∨
Γ0 g ≥ γ0

−1
0 <

∨
Γ−1 < ψ0

ψ−1 ≤ ∨
Γ−1 < 0

g > γ0

g ≤ γ−1

−2
−1 <

∨
Γ−2 < ψ−1

ψ−2 ≤ ∨
Γ−2 < −1

g < γ−1

g ≥ γ−2

Table II: Branches of inverse real Γ with notation g = Γ(x) and x =
∨
Γ(g).

If g falls outside the intervals shown, there is no real value for inverse Gamma.

Algorithm 1 Γ Real Domain Selection and Inverse by Index

▷ Determine the x domain given g = Γ(x) and index k.
▷ Returns bounds as pair (lo, hi), lo ∈ R, hi ∈ R ∪+∞.
function REALGAMMADOMAIN(g ∈ R, k ∈ Z≤0)

▷ Exclude nonexistent branches.
if k ≥ 1 or g = 0 or (k = 0 and g < 0) then error

▷ How much to adjust end points near k = 0.
if k = 0 then lo0 ← 1; hi0 ← +∞
else if k = −1 and g > 0 then lo0 ← 0; hi0 ← 1
else lo0 ← 0; hi0 ← 0

▷ Determine which side of the pole.
if k is even xor g > 0 then

lo← k + 1 + lo0

hi← solve Ψ(x) = 0 for x ∈ (lo, k + 2 + hi0)
if |g| < |Γ(hi)| then error

else
hi← k + 1 + hi0
lo← solve Ψ(x) = 0 for x ∈ (k + lo0, hi)
if |g| < |Γ(lo)| then error

return (lo, hi)

▷ Compute real inverse Γ on given branch.
function REALINVGAMMA(g ∈ R, k ∈ Z≤0)

(lo, hi)← REALGAMMADOMAIN(g, k)
return solve Γ(x) = g for x ∈ (lo, hi)

have N ′(λ) = 0 for some λ ∈ (0, 1). But N ′(λ) = 0 only
when Ψ(L(λ)) = 0, i.e. for z = ψk, which is the unique
point in Dk for which Ψ(z) = 0. So unless the line segment
L : [0, 1]→ Dk crosses ψk, Γ(z1) ̸= Γ(z2).

The segment L will cross ψk only if ℜz1 = ℜz2 = ψk. It
remains to show that we cannot have Γ(z1) = Γ(z2) in this



Fig. 3: The domains and ranges for Γ and
∨
Γ. On the real axes are marked

the values taken by the principal branch
∨
Γ0.

case. By the same argument as earlier, we cannot have ℑz1
and ℑz2 with the same sign, since that would require a zero of
Ψ off the real line. Therefore ℑz1 and ℑz2 must have opposite
signs. Without loss of generality, let z1 = ψk + iy1 and z2 =
ψk − iy2 with y1, y2 ∈ R>0. We observe that ℑΓ(ϕk + iη)
must have a fixed sign for all η > 0 and a fixed sign for all
η < 0. Otherwise, by continuity, Γ would have a real value
off the real line, which does not occur. Since

Γ(z2) = Γ(z2) = Γ(ψk + iy2),

we must have

signℑΓ(z1) = signℑΓ(z2) = − signℑΓz2
but Γ(z1) = Γ(z2) implies − signℑΓ(z2) = − signℑΓ(z1) so
y1 = y2 = 0 and z1 = z2, contradicting our hypothesis.

IV. GRAPHICAL REPRESENTATION

In order to obtain a graphical representation of the branches
of Γ, we begin by setting up two complex planes: the range of
Γ, which is also the domain of

∨
Γ, and vice versa. On these we

mark the intervals applying to the real values of the principal
branch. In Figure 3, the top axes are the domain of

∨
Γ (and

the range of Γ) and since
∨
Γ is real for x ≥ γ0 ≈ 0.886, this

interval is marked in red on the real axis. The bottom axes are
the range of

∨
Γ and the real axis is marked with the interval

∨
Γ ≥ ψ0 ≈ 1.46, in which the real values of

∨
Γ lie, both sets of

markings being in accord with Table II. We now draw contours
in the lower axes and map them using Γ to the domain in the
top axes.

Fig. 4: Contours in D0 to visualize the range of the
∨
Γ0 principal branch.

Fig. 5: Contours of Figure 4 after mapping with Γ. Where a contour intersects
itself is the edge of the branch of

∨
Γ in its range. By magnifying the region

around the origin, one can see that the red contour intersects itself and the
axis to the left of the origin.

To move from real values to complex values, we erect
contours on the plotted values of

∨
Γ, as shown in Figure 4.

The length of the contours is arbitrary at this stage (they are
straight for convenience). We now apply Γ to the contours
and obtain the curves in Figure 5 in the domain of

∨
Γ. We

notice that the curves self-intersect. Where they intersect is a
discontinuity in function values; in other words a branch cut.
The curves after the intersection are violating our requirement
that the function is injective. Therefore we return to the straight
contours in figure 4 and trim their lengths until their images
meet on the real axis without intersecting. This stage of the
construction is shown in figures 6 and 7.



Fig. 6: Corrected contours in D0 that visualize the range of the
∨
Γ0 principal

branch.

Fig. 7: Corrected contours of Figure 6 after mapping with Γ. The contours
no longer intersect and stop at the axis.

We have now established that additional contours stretching
to the right of those shown in figure 6 will account for all of
the complex plane outside the contours shown in figure 7. This
leaves the region inside the innermost (red) curve unaccounted
for. In order to place contours inside the red curve, we have to
add contours to Figure 6 and them map them as before; there
is, however, a difficulty. The values taken by the principal
branch obey

∨
Γ ≥ γ0, and those values have already been

used to build contours. Looking at figure 4, we see we cannot
use the segment of the real axis that is not marked in red.
We can, though, add contours there for exploration. These
are shown in figure 8 and their mapping in figure 9. Now
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Fig. 8: Exploring the domain of the principal branch by contours which
include forbidden parts of the domain of

∨
Γ (principal branch).

Fig. 9: Contours from figure 8 showing intersections from sections of the
contour touching the real axis. The contours in figure 8 must be trimmed
both near the axis and at the upper end.

the mapped contours self-intersect in two places, indicating
that the contours need trimming at two places. The trimmed
contours are shown in figure 10, and the resulting inner region
of the map is shown in figure 11.

Combining the results above, we obtain the complete
description of the range, and hence the definition, of the
principal branch; see Figure 12. The construction we have
been compiling has now revealed two things. In the domain
of

∨
Γ0 we have two lines of discontinuity, where we had to

avoid self-intersections. In other words, there are two branch
cuts: (−∞, 0) and (0, γ0), as shown in Figure 13.



Fig. 10: The contours of figure 8 trimmed to avoid self-intersections.

Fig. 11: The contours in figure 10, mapped using Γ. Note that the left sides
of the contours intersect the negative real axis.

K

K

Fig. 12: The range in D0 of
∨
Γ0 as revealed by the contours constructed

extending from the real data. The boundary curves (dashed) are obtained from
mapping the branch cuts shown in Figure 13 using

∨
Γ. Note that the colours

of the boundaries correspond to the colours of the branch cuts.

K K

K

K

Fig. 13: The branch cuts for the principal branch
∨
Γ0. Note that although the

two cuts appear to form a continuous line, they are separated by a singularity
at the origin.
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Fig. 14: The domains and ranges for branch k = −1. In contrast to
∨
Γ0, now

∨
Γ−1 takes values between 0 and ψ0.

K

K

Fig. 15: The range in D−1 of
∨
Γ−1 as revealed by the contours constructed

extending from the real data. The range fits with Figure 12 and the two regions
share a boundary.

We can now map the branch cuts into the range of
∨
Γ using

a crude Maple function for
∨
Γ, and the result is a plot of the

boundaries to the range of
∨
Γ0. It should be noted that it is

tempting to treat the two branch cuts as one, and simply say
that there is a cut −∞ < x ≤ γ0.

To show that the approach applies to all branches, we briefly
consider branch k = −1. This branch shares a singular point

with branch k = 0, namely (ϕ0, ψ0), but now values of
∨
Γ−1

decrease to zero. Thus we replace Figure 3 with Figure 14.
Similarly, Figure 12 is replaced by Figure 15, and we note
that the two figures fit together like tectonic plates, and share
a boundary.

V. CONCLUSION

In this paper, we have continued to develop the principle that
a discussion of the branches of a multivalued function should
start in the range of the function. This is in contrast to the
traditional treatments, for example, in [9], where discussion
starts by defining branch cuts in the domain of the function
(see, for example, [9, Chap. 4] and their sections on logarithm
and arctangent). For functions such as

∨
Γ or W , where the

branch ranges are not regular, the branch cuts in the domain
alone are not sufficient for understanding the structure of the
branches. It is clear that the inverse Γ function still possesses
many interesting properties, which have not been touched yet.
These issues are being explored in depth at present.
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