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Abstract

Two generic methods to compute multiplicative inverses are presented. These meth-
ods apply to integers, polynomials and matrices and are asymptotically faster than
classical algorithms. The first method is to use a modified Newton iteration to com-
pute quotients via shifted inverses in a not-necessarily commutative Euclidean domain.
The second method is to use the Moore-Penrose inverse to avoid pivots and whole-row
operations in block matrix inversion.

1. Introduction

In computer algebra it is desirable to find algorithms that can be expressed over abstract
algebraic domains and to implement these generically. For example, programs to multiply
polynomials in R[x] or perform Gaussian elimination on matrices in F n×n can be expressed
as programs that use the ring and field operations from R and F . This avoids multiple
implementations of the same algorithms and allows flexible composition of domains. Systems
such as Axiom are built around this principle, and others can support it through mechanisms
such as the Maple Domains package. Most modern programming languages, such as C++,
C#, Go, Java, Rust and Typescript, support generic programming in one form or another.

In mathematical computing it is required to find quotients or inverses of various types
of objects, including integers, polynomials and matrices. In this paper we summarize some
earlier results showing how to compute these quotients and inverses efficiently and gener-
ically. Section 2 shows a generic algorithm to compute integer and polynomial quotients.
This algorithm is both useful in practice and can be asymptotically fast (depending on the
multiplication method) and performs all operations without leaving the original domain.
Section 3 shows how matrix inverses may be computed on a block representation without
breaking the block abstraction.

2. Modified Newton Iteration for Euclidean Domains

On a Euclidean domain D with valuation N : D → R≥0, we define the quotient and
remainder of u by v as the unique values q and r such that u = q × v + r, N(r) < N(v)
and write q = u quo v and r = u rem v. For both integers and polynomials it is well known
how to compute quotients efficiently using a Newton iteration. For u, v ∈ Z, the quotient
of u by v may be found by first computing v−1 in R to sufficient precision with a Newton
iteration solving f(x) = 1/x − v = 0. For u, v ∈ F [x], F a field, the quotient may be
computed in F [x]/⟨xm+1⟩ using Newton iteration to find the inverse of the reverse polynomial
revkv = xkv(1/x), where k and k+m are the degrees of v and u respectively. In both cases,
the computation leaves the original domain, which can complicate library structure. In
earlier work [8], we have shown how to compute these quotients using only ring operations
and shifts with values remaining in the original domain. We summarize those results here.
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We define the operations “prec”, “shift” and “shinv” on base-B integers and polynomials
in x as follows:

Number of coefficients: precB(w) = ⌊logB |w|⌋+ 1 precx(p) = degreexp+ 1

Whole shift: shiftn,B(w) = ⌊wBn⌋ shiftn,x(p) =
∑

i+n≥0

pix
i+n

Whole shifted inverse: shinvn(w) = ⌊Bn/w⌋ shinvn,x(p) = xn quo p

where p =
∑h

i=0 pix
i, n ∈ Z and B ∈ Z≥2. When the base B or variable x are clear from

context, they may be omitted and we simply write shiftn and shinvn. Depending on the
implementation, the shift operation can be performed in time O(1) or O(n). With these
definitions, efficient quotients may be computed generically by the following theorems.

Theorem 1. Let D be Z or F [x], F a field. Given u, v ∈ D, and precu ≤ h+ 1,

u quo v = shift−h(u · shinvh v) + δ, (1)

where δ = 0 when D = F [x] and δ ∈ {0, 1} when D = Z.

Theorem 2. Let D be Z or F [x], F a field. Given v ∈ D, prec v = k + 1 < h + 1 and
suitable starting value w(0), the sequence of iterates

w(i+1) = w(i) + shift−h

(
w(i)(shifth 1− vw(i))

)
converges to shinvh v + δ in ⌈log2(h− k)⌉ steps.

The δ = 1 integer case causes no problems, as it is easy to first check whether u < v + v.
After dispensing with special cases, the shifted inverse of the first two places for integer v
may be computed as

V := vkB
2 + vk−1B + vk−2 w0 := (B4 − V ) quoV + 1,

assuming B ≥ 16 and prec v − 1 = k ≥ 2. The quotient to produce w0 is obtained by
dividing a 4-place quantity by a 2-place quantity. If the base B is less than 16, then digits
may be grouped to give a sufficiently large base. For polynomials, the shifted inverse of the
first two places of v will be

w0 := x/vk − vk−1/v
2
k.

In both cases, the h-shifted inverse of v may then be computed generically as
Shinv(v, h, k, w0, 2), as shown in Algorithm 1. Note that for polynomials a 1-place ini-
tial value would be sufficient to start the iteration, but the generic algorithm takes a simpler
form when two places are given. The function HasCarries indicates whether addition can
cause carries from one coefficient place to another in the arithmetic of the domain. It gives
“true” for integers and “false” for polynomials. The details of this algorithm are justified by
the following theorems in the integer case. They relate to iterates of the function SZ, defined
as

SZ(h, v, w) := w +
⌊
w(Bh − vw)B−h

⌋
, (2)

which has fixed points at 0, 1, ⌊Bh/v⌋− 1 and ⌊Bh/v⌋. Together they show how to compute
intermediate iterates with shorter quantities using two guard digits. For polynomials the
situation is simpler and these shorter intermediate results may be used without guard digits.
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Algorithm 1 Generic iteration to compute shinvh(v) in D given initial approximation w0

1: function Shinv (v, h, k, w0, ℓ)
2: ▷ w is the current approximation. ℓ is the number of leading correct places of w.
3: ▷ g is the number of guard places. d is the precision doubling shortfall.
4: if HasCarries(D) then g ← 2; d← 1 else g ← 0; d← 0
5: w ← shift(w, g)
6: while h− k + 1− d > ℓ do
7: m← min(h− k + 1− ℓ, ℓ); s← max(0, k − 2ℓ+ 1− g)
8: w ← shift−d

(
Step

(
k + ℓ+m− s− 1 + d+ g, shift−s v, w, m, ℓ− g

))
9: ℓ← ℓ+m− d
10: return shift−g(w)

11: function Step (h, v, w,m, ℓ) = shiftm w + shift2m−h

(
w ×PowDiff(v, w, h−m, ℓ)

)
12: function PowDiff (v, w, h, ℓ) ▷ Compute shifth 1− v × w efficiently.
13: c← if HasCarries(D) then 1 else 0
14: L← prec v + prec w − ℓ+ c ▷ c for coeff to peek
15: if v = 0 ∨ w = 0 ∨ L ≥ h then return shifth 1− v × w
16: else
17: P ← multmod(v, w, L) ▷ Lower L places of product vw.
18: if HasCarries(D) ∧ coeff(P,L− 1) ̸= 0 then return shiftL 1− P
19: else return −P

Theorem 3 (Shift Extension). Let w = shinvh v, Bk ≤ v < Bk+1 ≤ Bh and let w[n] =
shiftnℓ−h+k(w) be the leading nℓ digits of w, with nℓ ≤ h− k. Then

0 ≤ w[2] − SZ(k + 2ℓ, v, shiftℓ w[1]) ≤ B.

Theorem 4 (Divisor Sensitivity). Let w[n] be as in Theorem 3 and let ∆ be the change
obtained by perturbing the divisor v by δ in SZ(k + 2ℓ, v, shiftℓ w[1]), i.e.

∆ = SZ(k + 2ℓ, v − δ, shiftℓ w[1])− SZ(k + 2ℓ, v, shiftℓ w[1]).

Then
B2ℓ−k−2δ − 1 < ∆ < B2ℓ−kδ + 1.

In particular, if δ ≤ Bk−2ℓ+1, then 0 ≤ ∆ ≤ B.

Theorem 5 (Close Differences). When
∣∣Bh − vw

∣∣ ≤ Be, e < h, only the lower e digits
of the product vw need be computed since the upper h − e digits will be determined. The
quantity e satisfies

e ≤ k + t− ℓ+ g,

where prec v = k+ 1 and prec w = t+ 1, ℓ is the number of known correct places in w and
g is the required number of guard digits.

Theorems 3 and 4 together show two guard digits are required when the domain is Z.
None are required for polynomials since there cannot be carries. Theorem 5 shows how to
compute the difference shifth 1 − vw, using only a suffix of vw. This will give a savings for
some multiplication algorithms, but not for the asymptotically fastest ones.
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These results can be extended to non-commutative polynomials with left and right quo-
tients [9]. Define “lquo” and “rquo” by u = v × (u lquo v) + rL = (u rquo v) × v + rR,
where each of rL and rR either zero or with degree less than v. For R[x], where R
is not necessarily commutative, shinv is remains well-defined, that is it can be shown
shinvn,x(v) = xn lquo v = xn rquo v. It remains the case that shinv may be computed in
a logarithmic number of steps and quotients may be computed according to the following:

Theorem 6 (Left and right quotients from the whole shifted inverse in R[x]). Let u, v ∈ R[x],
R a ring, with degree v = k and vk invertible in R. Then for h ≥ degreeu,

u lquo v = shift−h(shinvh(v)× u) u rquo v = shift−h(u× shinvh(v)). (3)

To have a well-defined notion of degree for polynomials where the variable does not
commute with the coefficients, we are led to skew polynomials as Ore extensions [2, 4]. In
this case, we may define the left (right) whole shift by multiplying on the left (right) by
xn and left (right) whole shifted inverse as the left (right) quotient of xn and we have the
following theorem, though the computation is no longer asymptotically fast.

Theorem 7 (Right quotient from the whole shifted inverse in R[x;σ, δ]). Let u, v ∈ R[x, δ],
R a ring, k = degree v, and vk invertible in R. Then, for h ≥ degreeu,

u rquo v = rshift−h(u× lshinvhv). (4)

3. Inversion without Pivots for Block Matrices over Division Rings

As has been noted by Abdali and Wise [1], a useful computational representation of
matrices over a ring R is with a recursive 2× 2 block structure. This representation allows
efficient implementation of sub-n3 multiplication and related operations [6]. It supports
row-based and column-based traversal equally well, it is reasonably efficient in representing
dense, sparse and structured matrices, and it can provide good locality of reference for block
algorithms. Most algebraic operations can be expressed naturally in terms of a recursive
abstract data type represented as quadtrees with leaves in R and, if desired, these may be
stored densely without using pointers [5].

Most ring operations on block matrices may be performed in a straightforward manner

using only block operations. That is, for a block matrix M =

[
A B
C D

]
, only ring operations

involving A, B, C andD are required. Computing the matrix inverse is less obvious, however.
If all of the blocks of M are invertible, the inverse of M may be computed as

M−1 =

[
(A−BD−1C)−1 (C −DB−1A)−1

(B −AC−1D)−1 (D − CA−1B)−1

]
.

In practice, the usual approach is to compute only two inverses—that of A and that of its
Schur complement, SA = D − CA−1B,

M−1 =

[
I −A−1B
0 I

] [
A−1 0
0 S−1

A

] [
I 0

−CA−1 I

]
=

[
A−1 +A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

]
. (5)

If A is not invertible, then a similar formula involving the inverse of another block and
its Schur complement may be used, perhaps after a permutation of rows or columns. The
problem with this approach is that M may be invertible even when all of A, B, C and D are
singular. In this situation, permuting the blocks is of no help. One approach is to break the
block abstraction and use operations on whole rows of M viewed as a flat 2k× 2k matrix [3].
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In earlier work [7], we have shown how to compute inverses using only block operations,
without pivots and without breaking the block abstraction. The technique is to use the
Moore-Penrose inverse so that the principal minors are guaranteed to be invertible and
equation (5) may be used. We summarize those results here. We use the notation R(2×2)k to
mean the ring of 2k × 2k matrices with elements in R, structured in recursive 2× 2 blocks.
Any n× n matrix may be easily be embedded in such a ring.

Theorem 8. If R is a formally real division ring and M ∈ Rn×n is invertible, then it is
possible to compute M−1 as (MTM)−1MT using only block operations. By block operations,
we mean ring operations in R(2×2)k .

Examples of formally real rings are Q, R, Q[
√
2] and R[x, ∂] for formally real R.

Theorem 9. Let C be a division ring with a formally real sub-ring R and involution “∗”,
such that for all c ∈ C, c∗× c is a sum of squares in R. If M ∈ Cn×n is invertible, then it is
possible to compute M−1 as (M∗M)−1M∗ using only block operations. Here, block operations
are ring operations in C(2×2)k .

Examples of such rings are the complexification of a formally real ring R as R[i]/⟨i2 + 1⟩ or
quaternions over R with the involution (a+ bi+ cj + dk)∗ = a− bi− cj − dk.

Theorem 10. Let K be a field. If M ∈ Kn×n is invertible, then it is possible to compute
M−1 as (M◦M)−1M◦ using only block operations, that is ring operations in K(t)(2×2)k .

Here M◦ = Q−1
n MTQn is a group conjugate of MT , with Qn = diag(1, t, . . . , tn−1).

4. Conclusion

We have shown two generic techniques to compute multiplicative inverses efficiently in
algebraic domains of importance to computer algebra. These methods are supported by
theorems stated here and proven in earlier work.
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