
Efficient Quotients of
Non-Commutative Polynomials

Stephen M. Watt

Cheriton School of Computer Science, University of Waterloo
https://cs.uwaterloo.ca/~smwatt

smwatt@uwaterloo.ca

Abstract. It is shown how to compute quotients efficiently in non-
commutative univariate polynomial rings. This extends earlier work where
efficient generic quotients were studied with a primary focus on commu-
tative domains. Fast algorithms are given for left and right quotients of
polynomials where the variable commutes with coefficients. These algo-
rithms are based on the concept of the “whole shifted inverse”, which is
a specialized quotient where the dividend is a power of the polynomial
variable. It is also shown that when the variable does not commute with
coefficients, that is for skew polynomials, left and right whole shifted in-
verses are defined and may be used to compute right and left quotients.
In this case their computation is not asymptotically fast, but once ob-
tained, they may be used to compute multiple quotients, each with one
multiplication. Examples are shown of polynomials with matrix coef-
ficients, differential operators and difference operators. In addition, a
proof-of-concept generic Maple implementations is given.

1 Introduction

In symbolic mathematical computation it is important to have efficient algo-
rithms for the fundamental arithmetic operations of addition, multiplication
and division. While linear time algorithms for additive operations are usually
straightforward, considerable attention has been devoted to find efficient meth-
ods to compute products and quotients of integers, polynomials with integer
or finite field coefficients and matrices with elements from a ring. For these,
both practically efficient algorithms and theoretically important bounds are well
known.

For integer and polynomial division, efficient algorithms based on Newton it-
eration allow the computation of quotients in time proportional to multiplication.
Until recently, these algorithms left the original domain to perform arithmetic
in related domains. For integers, this involved computing an approximation to
the inverse of the divisor in extended precision approximate arithmetic or in a

1

https://cs.uwaterloo.ca/~smwatt

residue ring, and for polynomials it involved computing the inverse of the reverse
of the divisor polynomial in ideal-adic arithmetic.

We have recently shown how these quotients may be computed without
leaving the original domain, and we have extended this to a generic domain-
preserving algorithm for rings with a suitable whole shift operation [10]. For inte-
gers the whole shift multiplies by a power of the representation base and for poly-
nomials it multiplies by a power of the variable, in both cases discarding terms
with negative powers. The previous paper developed the concept of the whole
shifted inverse and used it to compute quotients efficiently. Non-commutative
domains were mentioned only briefly.

The present article expands on how these methods may be used to compute
quotients of non-commutative polynomials. In particular, it is shown that

• the whole shifted inverse is well-defined on non-commutative polynomial
rings R[x],

• its computation is efficient,
• they may be used to compute left or right quotients in R[x], each with one

multiplication,
• left and right whole shifted inverses may be defined on skew polynomials
R[x;σ, δ], and

• they may be used to compute the right and left quotients in R[x;σ, δ], each
with one multiplication.

The remainder of this article is organized as follows. Section 2 presents
some basic background, including notation, the definition of division in a non-
commutative context, and the Newton-Schulz iteration. Section 3 considers di-
vision of non-commutative polynomials in R[x], showing O(n2) algorithms for
classical division and for pseudodivision. It recalls the notion of the whole shifted
inverse, proves it is well-defined on non-commutative R[x] and shows that it can
be used to compute left and right quotients in this setting. Section 4 recapitu-
lates the generic algorithms from [10] that use a modified Newton iteration to
compute the whole shifted inverse. It also explains why it applies when poly-
nomial coefficients are non-commutative. Section 5 gives an example of these
algorithms applied to polynomial matrices. Section 6 extends the discussion to
skew polynomials R[x;σ, δ], defining left and right whole shifted inverse, and
showing how they may be used. Section 7 gives linear ordinary differential and
difference operators as examples, before concluding remarks in Section 8.

2

2 Background

2.1 Notation

We adopt the following notation:

precB u number of base-B digits of an integer u, ⌊logB |u|⌋+ 1

precx p number of coefficients of a polynomial p, degreex p+ 1

u quo v, u rem v quotient and remainder (see below)

uxquo v, uxrem v left and right (pseudo)quotient and remainder, x ∈ {l, lp, r,pr}
shiftn v, shinvn v whole shift and whole shifted inverse (see below)

R[x;σ, δ], R[x, δ] skew polynomials (see Section 6)

iu, ui coefficient of skew polynomial u with variable powers on the left, right.

xshiftnv, xshinvnv left and right whole shift and shifted inverse, x ∈ {l, r} (see Section 6)

X(i) value of X at ith iteration

The “prec” notation, standing for “precision”, means the number of base-B dig-
its or polynomial coefficients. It is similar to that of [4], where it is used to
present certain algorithms generically for integers and polynomials. In particu-
lar, if we take integers to be represented in base-B, i.e. for any integer u ̸= 0
there is h = precB(u)− 1, such that

u =

h∑
i=0

uiB
i, ui ∈ Z, 0 ≤ ui < B, uh ̸= 0, (1)

then integers base-B behave similarly to univariate polynomials with coefficients
ui, but with carries complicating matters.

2.2 Division

The notion of integer quotients and remainders can be extended to more general
rings. For a Euclidean domain D with valuation N : D → Z≥0, such that for
any u, v ∈ D, v ̸= 0, there exist q, r ∈ D such that

u = qv + r, r = 0 or N(r) < N(v).

The value q is a quotient of u and v and r is a remainder of dividing u by v and
we write

q = u quo v r = u rem v

when these are unique. When both the quotient and remainder are required, we
write u div v = (u quo v, u rem v). When D is a non-commutative ring with
a valuation N , there may exist left and right quotients such that

u = v ql + rl, rl = 0 or N(rl) < N(v)

u = qr v + rr, rr = 0 or N(rr) < N(v).
(2)

3

When these exist and are unique, we write

ql = u lquo v rl = u lrem v qr = u rquo v rr = u rrem v.

For certain non-commutative rings with a distance measure ∥ · ∥, a sequence
of approximations to the inverse of A may be computed via the Newton-Schulz
iteration [7]

X(i+1) = X(i) +X(i)(1−AX(i)) (3)

where 1 denotes the multiplicative identity of the ring. There are several ways to
arrange this expression, but the form above emphasizes that as X(i) approaches
A−1, the product X(i)(1 − AX(i)) approaches 0. For Cn×n matrices, a suitable

initial value is X(0) = A†/(nTr(AA†)), where A† is the Hermitian transpose.

2.3 Whole Shift and Whole Shifted Inverse

In previous work [10] we studied the problem of efficient domain-preserving com-
putation of quotients and remainders for integers and polynomials, then general-
ized these results to a generic setting. To this end, we defined the notions of the
whole shift and whole shifted inverse with attention to commutative domains.
We recapitulate these definitions and two results relevant to the present article.

Definition 1 (Whole n-shift in R[x]) Given a polynomial u =
∑h

i=0 uix
i ∈

R[x], with R a ring and n ∈ Z, the whole n-shift of u with respect to x is

shiftn,x u =
∑

i+n≥0

uix
i+n. (4)

When x is clear by context, we write shiftn u.

Definition 2 (Whole n-shifted inverse in F [x]) Given n ∈ Z≥0 and v ∈
F [x], F a field, the whole n-shifted inverse of v with respect to x is

shinvn,x v = xn quo v. (5)

When x is clear by context, we write shinvn v,

Theorem 1 Given two polynomials u, v ∈ F [x], F a field, and 0 ≤ degreeu ≤ h,

u quo v = shift−h(u · shinvh v). (6)

For classical and Karatsuba multiplication it is more efficient to compute just
the top part of the product in (6), omitting the lower h terms, instead of shifting:

shift−h(u · shinvh v) = MultQuo(u, shinvh v, h),

with MultQuo(a, b, n) = ab quo xn computing only degree a+ degree b− n+ 1
terms. For multiplication methods where computing only the top part of the
product gives no saving, some improvement is obtained using

shift−h(u · shinvh v) = shift−(h−k)(shift−k u · shinvh v).

4

Algorithm 1 Classical division for non-commutative R[x] with invertible vk

1: ▷ Compute q =
∑h−k

i=0 qix
i and r =

∑k−1
i=0 rix

i such that u = q ×π v + r.

2: function div (u =
∑h

i=0 uix
i ∈ R[x], v =

∑k
i=0 vix

i ∈ R[x], π ∈ S2)
3: v∗ ← inv vk
4: q ← 0
5: r ← u
6: for i← h− k to 0 by −1 do
7: t← (ri+k ×π v∗)xi

8: q ← q + t
9: r ← r − t×π v
10: return (q, r)

11: ▷ Left division: (ql, rl)← ldiv(u, v)⇒ u = v × ql + rl
12: ldiv(u, v) 7→ div

(
u, v, (2 1)

)
13: ▷ Right division: (qr, rr)← rdiv(u, v)⇒ u = qr × v + rr
14: rdiv(u, v) 7→ div

(
u, v, (1 2)

)

Theorem 2 Given v ∈ F [x], with F a field and h > degree v = k and suitable
starting value w(0), the sequence of iterates

w(i+1) = w(i) + shift−h

(
w(i)(shifth 1− vw(i))

)
converges to shinvh v in ⌈log2(h− k)⌉ steps.

A suitable starting value for w(0) is given by Shinv0 in Section 4.

3 Division in Non-Commutative R[x]

We now lay out how to use shift and shinv to compute quotients for polynomials
with non-commutative coefficients. First we show classical algorithms to com-
pute left and right quotients in R[x]. We then prove two theorems, one showing
that xn lquo v = xn rquo v in this setting, making the whole shifted inverse well
defined, and another showing that it may be used to compute left and right
quotients.

3.1 Definitions and Classical Algorithms

Let u and v be two polynomials in R[x] with Euclidean norm being the polyno-
mial degree. The left and right quotients and remainders are defined as in (2).
Left and right quotients will exist provided that vk is invertible in R and they
may be computed by Algorithm 1. In the presentation of the algorithm, π de-
notes a permutation on two elements so is either the identity or a transposition.
The notation ×π is a shorthand for ×◦π so a×π b = a× b when π is the identity
and a×π b = b× a when π is a transposition.

5

Algorithm 2 Non-commutative polynomial pseudodivision

1: ▷ Compute q =
∑h−k

i=0 qix
i and r =

∑k−1
i=0 rix

i such that vh−k+1
k u = q ×π v + r.

Requires v × vk = vk × v.

2: function pdiv (u =
∑h

i=0 uix
i ∈ R[x], v =

∑k
i=0 vix

i ∈ R[x], π ∈ S2)
3: q ← 0
4: r ← u
5: for i← h− k to 0 by −1 do
6: t← ui+k x

i

7: q ← q + t×π vik
8: r ← r ×π vk − t×π v
9: return (q, r)

10: ▷ Left pseudodivision: (ql, rl)← lpdiv(u, v)⇒ vh−k+1
k u = v × ql + rl

11: lpdiv(u, v) 7→ pdiv
(
u, v, (2 1)

)
12: ▷ Right pseudodivision: (qr, rr)← rpdiv(u, v)⇒ vh−k+1

k u = qr × v + rr
13: rpdiv(u, v) 7→ pdiv

(
u, v, (1 2)

)

There are some circumstances where quotients or related quantities may be
computed even if vk is not invertible. When R is an integral domain, quotients
may be computed as usual in K[x] with K being the quotient field of R. Alter-
natively, when R is non-commutative but vk commutes with v, it is possible to
compute pseudoquotients and pseudoremainders satisfying

mu = v ql + rl, degree rl < degree v

um = qr v + rr, degree rr < degree v

m = vh−k+1
k ,

as shown in Algorithm 2. In this case, we write

ql = u lpquo v rl = lprem v

qr = u rpquo v rl = rprem v.

Requiring vk to commute with v is quite restrictive, however, so we focus our
attention to situations where the inverse of vk exists.

3.2 Whole Shift and Whole Shifted Inverse in R[x]

We now examine the notions of the whole shift and whole shifted inverse for
R[x] with non-commutative R. First consider the whole shift. Since x commutes

with all values in R[x], we may without ambiguity take, for u =
∑h

i=0 uix
i and

n ∈ Z,
shiftn u =

∑
i+n≥0

xn(uix
i) =

∑
i+n≥0

(uix
i)xn. (7)

That is, the fact that R[x] is non-commutative does not lead to left and right
variants of the whole shift.

6

We state two simple theorems with obvious proofs:

Theorem 3 Let w ∈ R[x]. Then, for all n ∈ Z≥0, shift−n shiftn w = w.

Theorem 4 Let u, v ∈ R[x] with degreeu = h and degree v = k. Then, for
m ∈ Z,

shift−k−m(u× v) = shift−k(shift−m(u)× v)

shift−h−m(u× v) = shift−h(u× shift−m(v)).

We now come to the main point of this section and show shinv is well-defined
when R is non-commutative.

Theorem 5 (Whole shifted inverse for non-commutative R[x])

Let v =
∑k

i=0 vix
i ∈ R[x], with R a non-commutative ring and vk invertible in

R. Then, for h ∈ Z≥0,
xh lquo v = xh rquo v.

Proof. Let ql = xh lquo v and qr = xh rquo v. If h < k, then ql = qr = 0.
Otherwise, both ql and qr have degree h− k ≥ 0 so

vk qlh−k = 1 qrh−k vk = 1 (8)

k∑
j=M

vj qli+k−j = 0

k∑
j=M

qri+k−j vj = 0, 0 ≤ i < h− k, (9)

where M = max(0, i − h + 2k). We show by induction on i that qli = qri for
0 ≤ i ≤ h− k. Since vk is invertible, (8) and (9) give

qlh−k = qrh−k = v−1
k (10)

and

qli = −
k−1∑
j=M

v−1
k vj qli+k−j qri = −

k−1∑
j=M

qri+k−j vj v
−1
k , 0 ≤ i < h− k. (11)

Equation (10) gives the base of the induction. Now suppose qli = qri for N <
i ≤ h− k. Then for i = N ≥ 0 equation (11) gives

qlN = −
k−1∑
j=M

v−1
k vj qlN+k−j = −

k−1∑
j=M

v−1
k vj qrN+k−j

= −
k−1∑
j=M

v−1
k vj

(
−

k−1∑
ℓ=M

qrN+k−j+k−ℓvℓ v
−1
k

)

= −
k−1∑
ℓ=M

−
k−1∑
j=M

v−1
k vj qrN+k−j+k−ℓ

 vℓ v
−1
k = −

k−1∑
ℓ=M

qrN+k−j vℓ v
−1
k = qrN .

□

7

Thus we may write shinvh v without ambiguity in the non-commutative case, i.e

shinvh v = xh lquo v = xh rquo v. (12)

3.3 Quotients from the Whole Shifted Inverse in R[x]

We consider computing the left and right quotients in R[x] from the whole shifted
inverse. We have the following theorem.

Theorem 6 (Left and right quotients from the whole shifted inverse in R[x])
Let u, v ∈ R[x], R a ring, with degree v = k and vk invertible in R. Then for
h ≥ degreeu,

u lquo v = shift−h(shinvh(v)× u) and

u rquo v = shift−h(u× shinvh(v)).

Proof. Consider first the right quotient. It is sufficient to show

u = shift−h(u× shinvh v)× v + rr

for some rr with degree rr < k. It is therefore sufficient to show

shift−k u = shift−k

(
shift−h(u× shinvh v)× v

)
. (13)

We have

(u× shinvh v)× v = u× ((xh rquo v)× v) (14)

= u× (xh − ρ), ρ = 0 or degree ρ < k

= shifth u− u× ρ.

shifth u = (u× shinvh v)× v + u× ρ. (15)

Since h ≥ 0, Theorem 3 applies and equation (15) gives

u = shift−h

(
(u× shinvh v)× v

)
+ shift−h(u× ρ)

with the degree of shift−h(u× ρ) less than k. Therefore

shift−k u = shift−k−h

(
(u× shinvh v)× v

)
= shift−k

(
shift−h(u× shinvh v)× v)

)
,

by Theorem 4, and we have shown equation (13) as required. The proof for lquo
replaces equation (14) with

v × (shinvh v × u) = (v × (xh lquo v))× u

and follows the same lines, mutatis mutandis. □

As in the commutative case, it may be more efficient to compute only the top
part of the product instead of computing the whole thing then shifting away
part. Now that we have shown that shift and shinv are well-defined for non-
commutative R[x], we next see that shinv may be computed by our generic
algorithm.

8

4 Generic Algorithm for the Whole Shifted Inverse

Earlier work has shown how to compute shinv efficiently for Z, both for Eu-
clidean domains F [x], and generically [10]. The generic version shown here in
Algorithm 3. We justify below that it applies equally well to polynomials with
non-commutative coefficients. The algorithm operates on a ring D that is re-
quired to have a suitable shift and certain other operations and properties must
be defined. For example, on F [x], F a field, these are

shiftn u =

{
u · xn if n ≥ 0

u quo x−n if n < 0

coeff(u, i) = ui

Shinv0(v) = (1/vk x− 1/vk · vk−1 · 1/vk, 2)
hasCarries = false

Mult(a, b) = ab

MultMod(a, b, n) = ab rem xn.

The iterative step of Algorithm 3 is given on line 32. SinceD.PowDiff computes
shifth 1− v · w, this line computes

shiftm w + shift2m−h

(
w · (shifth 1− v · w)

)
. (16)

The shift operations are multiplications by powers of x, with shifth p = pxh. The
the expressions involving k, h, ℓ andm for shift amounts arise from multiplication
by various powers of x at different points in order to compute shorter polynomials
when possible. Since x commutes with all values, it is possible to accumulate
these into single pre- and post- shifts. With this in mind, the R[x] operations +
and · ultimately compute the polynomial coefficients using the operations of R
and the order of the multiplicands in (16) is exactly that of the Newton-Schulz
iteration (3). The form of Shinv0 above is chosen so that it gives a suitable
initial value for non-commutative polynomials.

The computational complexity of theRefinemethods of Algorithm 3 may be
summarized as follows: The function D.Refine1 computes full-length values at
each iteration so has time complexity O(log(h−k)M(h)) whereM(N) is the time
complexity of multiplication. The functionD.Refine2 reduces the size of the val-
ues, computing only the necessary prefixes. The function D.Refine3 reduces the

size of some values further and achieves time complexity O
(∑log(h−k)

i=1 M(2i)
)
,

which gives time complexity O(M(N)), N = h − k for the purely theoretical
M(N) ∈ O(N logN), for Schönhage-Strassen M(N) ∈ O(N logN log logN) and
for M(N) ∈ O(Np), p > 0.

9

Algorithm 3 Generic Shinv(v, h)

Input: v ∈ D,h ∈ Z>0 where 0 < k = prec v − 1 < h
Output: shinvh v ∈ D

1: function D.Shinv (v, h)
2: ▷ Domain-specific initialization
3: (w, ℓ)← D.Shinv0(v) ▷ Initialize w to ℓ correct places.
4: return D.Refine(v, h, k, w, ℓ) ▷ One of D.Refine1,D.Refine2,D.Refine3.

5: ▷ Below, g is the number of guard places and d is the precision doubling shortfall.

6: function D.Refine1 (v, h, k, w, ℓ)
7: if D.HasCarries then g ← 1; d← 1 else g ← 0; d← 0
8: h← h+ g
9: w ← D. shifth−k−ℓ(w) ▷ Scale initial value to full length
10: while h− k + 1− d > ℓ do
11: w ← D.Step(h, v, w, 0, ℓ)
12: ℓ← min(2ℓ− d, h− k + 1− d) ▷ Number of accurate digits
13: return w

14: function D.Refine2 (v, h, k, w, ℓ)
15: if D.HasCarries then g ← 2; d← 1 else g ← 0; d← 0
16: w ← D. shiftg w
17: while h− k + 1− d > ℓ do
18: m← min(h− k + 1− ℓ, ℓ) ▷ How much to grow
19: w ← D. shift−d D.Step

(
k + ℓ+m+ d− 1 + g, v, w ,m, ℓ− g

)
20: ℓ← ℓ+m− d
21: return w

22: function D.Refine3 (v, h, k, w, ℓ)
23: if D.HasCarries then g ← 2; d← 1 else g ← 0; d← 0
24: w ← D. shiftg w
25: while h− k + 1− d > ℓ do
26: m← min(h− k + 1− ℓ, ℓ)
27: s← max(0, k − 2ℓ+ 1− g)
28: w ← D. shift−d

(
D.Step

(
k+ℓ+m−s−1+d+g, D. shift−s v, w, m, ℓ−g

))
29: ℓ← ℓ+m− d
30: return D. shift−g(w)

31: function D.Step (h, v, w,m, ℓ)
32: D. shiftm w +D. shift2m−h Mult

(
w,D.PowDiff(v, w, h−m, ℓ)

)
33: ▷ Compute D. shifth 1− vw efficiently.
34: function D.PowDiff (v, w, h, ℓ)
35: c← if D.HasCarries then 1 else 0
36: L← D. prec v +D.precw − ℓ+ c ▷ c for coeff to peek
37: if v = 0 ∨ w = 0 ∨ L ≥ h then
38: return D. shifth 1−D.Mult(v, w)
39: else
40: P ← D.MultMod(v, w, L)
41: if D.HasCarries ∧D.coeff(P,L− 1) ̸= 0 then return D. shiftL 1− P
42: else return −P

10

5 Non-Commutative Polynomial Example

We give an example of computing left and right quotients via the whole shifted
inverse with R[x] = F7

2×2[x] using the algorithms of Sections 3 and 4. Note
that R[x] is not a domain—there may be zero divisors, but it is easy enough to
check for them. This example, and the one in Section 7, were produced using the
Domains package in Maple [5]. The setup to use the Domains package for this
example is

with(Domains);

F := GaloisField(7);

F2x2 := SquareMatrix(2, F);

PF2x2 := DenseUnivariatePolynomial(F2x2, x);

We start with

u =

[
4 6
6 1

]
x5 +

[
2 2
0 1

]
x4 +

[
2 1
1 3

]
x3 +

[
2 0
4 1

]
x2 +

[
3 3
5 4

]
x+

[
4 5
1 2

]
,

v =

[
4 3
4 5

]
x2 +

[
5 3
0 4

]
x+

[
1 2
6 1

]
.

The whole 5-shifted inverse of v is then

shinv5 v =

[
5 4
3 4

]
x3 +

[
6 0
4 1

]
x2 +

[
1 0
2 2

]
x+

[
5 1
6 3

]
.

From this, the left and right quotients and remainders are computed to be

ql =

[
2 6
1 1

]
x3 +

[
6 1
0 0

]
x2 +

[
2 0
3 3

]
x+

[
3 1
0 0

]
, rl =

[
1 6
4 1

]
x+

[
1 4
4 3

]
,

qr =

[
3 5
5 0

]
x3 +

[
1 1
1 5

]
x2 +

[
0 5
5 5

]
x+

[
4 0
2 6

]
, rr =

[
2 0
2 1

]
x+

[
0 4
5 6

]
.

Taking a larger example where u has degree 100 and v degree 10, D.Refine1
computes shinv100 v with one guard digit in 6 steps with intermediate values of
w all of prec 92. Methods D.Refine2 and D.Refine3 compute the same result
also in 6 steps but with values of w have prec 4, 8, 16, 32, 64, 92 successively.
Method D.Refine3 uses a shorter prefix of v on the first iteration (s = 3). The
Maple code used for this example is given in Figure 1.

11

6 Division in R[x;σ, δ]

We now examine the more general case where the polynomial variable does not
commute with coefficients. For quotients and remainders to be defined, a notion
of degree is required and we note that this leads immediately to Ore extensions,
or skew polynomials. After touching upon classical algorithms, we introduce
the notions of left and right whole shifted inverse. We note that the modified
Newton-Schulz iteration may be used to compute whole shifted inverses, though
in this case there is no benefit over classical division. Finally, we show how left
and right whole shifted inverses may be used to compute right and left quotients,
each with only one multiplication.

6.1 Definitions and Classical Algorithms

Consider a ring of objects with elements from a ring R extended by x, with
x not necessarily commuting with elements of R. By distributivity, any finite
expression in this extended ring is equal to a sum of monomials, the monomials
composed of products of elements of R and x. To have a well-defined degree
compatible with that of usual polynomials, it is required that

∀ r ∈ R ∃ a, b, c, d ∈ R s.t. xr − rx = ax+ b = xc+ d. (17)

We call the elements of such a ring skew polynomials. Condition (17) implies
that for all r ∈ R there exist σ(r), δ(r) ∈ R such that

x r = σ(r)x+ δ(r). (18)

Therefore, to have well-defined notion of degree, the ring must be an Ore exten-
sion, R[x; δ, σ]. Ore studied these non-commutative polynomials almost a century
ago [6] and overviews of Ore extensions in computer algebra are given in [1,2].
The subject is viewed from a linear algebra perspective in [3] and the complexity
of skew arithmetic is studied in [9]. The ring axioms of R[x;σ, δ] imply that σ
be an endomorphism on R and δ be a σ-derivation, i.e. for all r, s ∈ R

δ(r + s) = δ(r) + δ(s) δ(r · s) = σ(r) · δ(s) + δ(r) · s.

Different choices of σ and δ allow skew polynomials to represent linear differ-
ential operators, linear difference operators, q-generalizations of these and other
algebraic systems.

Condition (18) implies that it is possible to write any skew polynomial as a
sum of monomials with all the powers of x on the right or all on the left. We
will use the notation ui for coefficients of skew polynomials with all powers of
the variable on the right and iu for coefficients with all powers of the variable
on the left, e.g.

u =

h∑
i=0

uix
i =

h∑
i=0

xi
iu.

12

Algorithm 4 Classical division for R[x;σ, δ] with invertible vk

1: ▷ Compute q and r from u of degree h and v of degree k such that u = q×π v+ r.
The left division algorithm applies when σ is bijective.

2: function skewdiv (u, v ∈ R[x;σ, δ], π ∈ S2,qcoeff)
3: v∗ ← inv vk
4: q ← 0; r ← u
5: for i← h− k to 0 by −1 do
6: t← qcoeff(ri+k, v

∗, i, k)× xi

7: q ← q + t ; r ← r − t×π v
8: return (q, r)

9: ▷ Left division: (ql, rl)← lskewdiv(u, v)⇒ u = v × ql + rl
10: lskewdiv(u, v) 7→ skewdiv

(
u, v, (2 1), (a, b, n, k) 7→ σ−k(b× a)

)
11: ▷ Right division: (qr, rr)← rskewdiv(u, v)⇒ u = qr × v + rr
12: rskewdiv(u, v) 7→ skewdiv

(
u, v, (1 2), (a, b, n, k) 7→ a× σn(b)

)

Algorithm 4 gives left and right classical division in R[x;σ, δ]. As in Section 3,
×π is multiplication with arguments permuted by π. When σ(r) = r, R[x;σ, δ]
is a differential ring, usually denoted R[x, δ], and Algorithm 4 specializes to
Algorithm 1. The left division algorithm applies only when σ is bijective. If left
division is of primary interest, start from rx = xσ∗(r) + δ∗(r) instead of (18)
and work in the adjoint ring R[x;σ∗, δ∗].

Some care is needed in Algorithm 4 to avoid duplicating computation. Notice
that for rskewdiv the application of qcoeff on line 6 requires n-fold applica-
tion of σ to inv vk and that the computation of t×π v on line 7 is coeff(t)xi+k×v.
The latter requires commuting h− k powers of x across v over the course of the
division. Depending on the cost to compute σ, it may be useful to create an
array of the values σi(inv vk) for i from 0 to h − k. It is also possible to pre-
compute and store the products xi × v, with xi+1 × v obtained from xi × v by
one application of (18). Then the xi × v may be used in descending order in the
for loop without re-computation. Both of these pre-computations are performed
in the Maple program for P[RDiv] shown in Figure 2.

6.2 Whole Shift and Inverse in R[x;σ, δ]

It is possible to define left and right analogs of the whole shift and whole shifted
inverse for skew polynomials. In general, the left and right operations give dif-
ferent values.

Definition 3 (Left and right whole n-shift in R[x;σ, δ])
Given u =∈ R[x;σ, δ] and n ∈ Z, the left whole n-shift of u is

lshiftn,x u =
∑

i+n≥0

xi+n
iu,

13

the right whole n-shift of u is

rshiftn,x u =
∑

i+n≥0

uix
i+n

When x is clear by context, we write lshiftn u and rshiftn u.

Definition 4 (Left and right whole n-shifted inverse in R[x;σ, δ])
Given n ∈ Z≥0 and v ∈ R[x;σ, δ], the left whole n-shifted inverse of v with
respect to x is

lshinvn,x v = xn lquo v

the right whole n-shifted inverse of v with respect to x is

rshinvn,x v = xn rquo v

When x is clear by context, we write lshinvn v and rshinvn v.

Modified Newton-Schulz Iteration For monic v ∈ R[x;σ, δ], the whole
shifted inverses may be computed using modified Newton-Schulz iterations with
g = 1 guard places as follows:

wl(0) = wr(0) = xh−k+g − vk−1x
h−k−1+g

wl(i+1) = wl(i) + rshift−h

(
wl(i) × (rshifth 1− v × wl(i))

)
,

wr(i+1) = wr(i) + lshift−h

(
(lshifth 1− wr(i) × v)× wr(i)

)
,

rshift−g wl(i) → lshinvh v

lshift−g wr(i) → rshinvh v.

(19)

These generalize D.Refine1 in Algorithm 3. For D.Refine2 and D.Refine3,
the shifts that reduce the size of intermediate expressions are combined into
one pre- and one post-shift in R[x]. But on R[x;σ, δ] we do not expect these
simplifications of shift expressions to be legitimate.

Even though (19) can be used to compute whole shifted inverses, it does
not give any benefit over classical division. In the special case of R[x, δ], the
multiplication by v and then by w make it so each iteration creates only one
correct term, so h − k iterations are required rather than log2(h − k). In other
skew polynomial rings, e.g. linear difference operators, the iteration (19) can still
converge, but with multiple iterations required for each degree of the quotient.
It is therefore simpler to compute lshinv and rshinv by classical division.

6.3 Quotients from Whole Shifted Inverses in R[x;σ, δ]

It is possible to compute left and right quotients from the right and left whole
shifted inverses in R[x;σ, δ]. Although computing whole shifted inverses is not
asymptotically fast as it is in R[x], once a whole shifted inverse is obtained it can
be used to compute multiple quotients and hence remainders, each requiring only
one multiplication. This is useful, e.g., when working with differential ideals. In
some cases this multiplication of skew polynomials is asymptotically fast [8].

14

Theorem 7 (Quotients from whole shifted inverses in R[x;σ, δ])
Let u, v ∈ R[x;σ, δ], with R a ring, k = degree v, h = degreeu, and vk invertible
in R. Then

u rquo v = rshift−h(u× lshinvh v) (20)

u lquo v = lshift−h(rshinvh v × u). (21)

Proof. We first prove (20). For h ≥ k, we proceed by induction on h − k.
Suppose h− k = 0. Since u− (uh × 1/vk)× v has no term of degree h, we have

u rquo v = uh × 1/vk.

On the other hand, when h = k, lshinvh v = 1/vk so

rshift−h(u× lshinvh v) = uh × 1/vk

and (20) holds. For the inductive step, we assume that (20) holds for h−k < N .
For h− k = N , let u = q × v + o(xk) and let Q, q̂ and û be given by

u = (Qxh−k + q̂)× v + r, Q ∈ R, q̂ ∈ o(xh−k), r ∈ o(xk),

û = u−Qxh−k × v.

With this, û has degree at most h−1. The inductive hypothesis gives û rquo v =
rshift−h(û× lshinvh v). Therefore,

û = u−Qxh−k × v = (û rquo v)× v + r̂, r̂ ∈ o(xk)

= rshift−h(û× lshinvh v)× v + r̂

⇒ u =
(
rshift−h(û× lshinvh v) +Qxh−k

)
× v + r̂

= rshift−h(û× lshinvh v +Qx2h−k)× v + r̂.

From this, we have

u rquo v = rshift−h(û× lshinvh v +Qx2h−k)

= rshift−h

(
(u−Qxh−k × v)× lshinvh v +Qx2h−k

)
= rshift−h

(
u× lshinvh v −Qxh−k × v × lshinvh v +Qx2h−k

)
= rshift−h

(
u× lshinvh v −Qxh−k × v × (xh lquo v) +Qx2h−k

)
= rshift−h

(
u× lshinvh v −Qxh−k × (xh + o(xk)) +Qx2h−k

)
= rshift−h

(
u× lshinvh v +Q× o(xh)

)
= rshift−h(u× lshinvh v).

This completes the inductive step and the proof of (20). Equation (21) is proven
as above, mutatis mutandis. □

As in the commutative case, it may be more efficient to compute only the required
top part of the product in (20) and (21) rather than to compute the whole
product and then shift by −h.

15

7 Skew Polynomial Examples

7.1 Differential Operators

We take F7[y, ∂y] as a first example of using whole shifted inverses to compute
quotients of skew polynomials. We use Algorithm 4 to compute the left and right
whole shifted inverses, and then Theorem 7 to obtain the quotients. We start
with u and v

u = (3y + 6)∂5
y + (3y + 1)∂4

y + 6y∂3
y + 4y∂2

y + (2y + 1)∂y + (2y + 5)

v = 4∂2
y + (2y + 5)∂y + (4y + 6).

The whole shifted inverses lshinv5 v = ∂5
y lquo v and rshinv5 = ∂5

y rquo v are
computed by Algorithm 4.

lshinv5 = 2∂3
y + (6y + 1)∂2

y + (4y2 + 4y + 3)∂y + (5y3 + y2 + 3y + 2)

rshinv5 = 2∂3
y + (6y + 1)∂2

y + (4y2 + 4y + 5)∂y + (5y3 + y2 + y + 1).

Then ql = lshift−5(rshinv5 v × u) and qr = rshift−5(u× lshinv5 v) so

ql = (6y + 5)∂3
y + (4y2 + 3y + 3)∂2

y + (5y3 + 5y2 + 5)∂y

+ (y4 + 3y3 + 5y2 + 5y + 2)

rl = (5y5 + 4y4 + 3y3 + 6y2 + 4y)∂y + (3y5 + 2y4 + y3 + 5y2 + 5)

qr = (6y + 5)∂3
y + (4y2 + 3y + 1)∂2

y + (5y3 + 5y2 + 4y + 3)∂y

+ (y4 + 3y3 + 5y2 + 3y + 5)

rr = (5y5 + 4y4 + 6y3)∂y + (3y5 + 3y4 + 5y3 + y2 + 4y + 5).

A proof-of-concept Maple implementation for generic skew polynomials is given
in Figure 2. The program is to clarify any ambiguities without any serious at-
tention to efficiency. The setup for the above example is

with(Domains):

LinearOrdinaryDifferentialOperator :=

(R, x) -> SkewPolynomial(R, x, r->r, R[Diff], r->r):

F := GaloisField(7):

R := DenseUnivariatePolynomial(F, ’y’):

Lodo := LinearOrdinaryDifferentialOperator(R, ’D[y]’):

16

7.2 Difference Operators

We use linear ordinary difference operators as a second example, this time with
σ not being the identity. We construct F7[y,∆y] as F7[y][∆y;E,E−1]. As before,
we use Algorithm 4 to compute the left and right whole shifted inverses, and
then Theorem 7 to obtain the quotients. We take u and v to be

u = y∆5
y + (3y + 6)∆4

y + (6y + 5)∆3
y + 3y∆2

y + (2y + 1)∆y + 5y

v = 4∆2
y + (6y + 1)∆y + (6y + 6).

The whole shifted inverses lshinv5 v = ∆5
y lquo v and rshinv5 = ∆5

y rquo v are
computed by Algorithm 4.

lshinv5 = 2∆3
y + (4y + 2)∆2

y + (y2 + 4y)∆y + (2y3 + 6y2 + y)

rshinv5 = 2∆3
y + (4y + 1)∆2

y + (y2 + 2)∆y + (2y3 + y2 + 4y + 1).

Then ql = lshift−5(rshinv5 v × u) and qr = rshift−5(u× lshinv5 v) so

ql = (2y + 3)∆3
y + (4y2 + 3y + 4)∆2

y + (y3 + 5y2 + 6y + 4)∆y

+ (2y4 + 6y3 + 4y2 + 4y + 4)

rl = (2y5 + 6y4 + 6y2 + 5y + 3)∆y + (2y5 + 2y4 + 4y3 + 2y + 1)

qr = 2y∆3
y + (4y2 + 5)∆2

y + (y3 + 5y2 + y + 6)∆y + (2y4 + 4y3 + 5y + 1)

rr = (2y5 + 3y4 + 4y3 + y2)∆y + (2y5 + 6y4 + 5y3 + 3y2 + 5y).

The Maple setup for this example is

Delta(f) acts as subs(y=y+1, f) - f for f in R

LinearOrdinaryDifferenceOperator := proc(R, x, C)

local E := R[ShiftOperator];

SkewPolynomial(R, x, r->E(r,C[1]), r->R[‘-‘](E(r,C[1]),r),

r->E(r,C[‘-‘](C[1])));

end:

F := GaloisField(7);

R := DenseUnivariatePolynomial(F, ’y’);

Lodo := LinearOrdinaryDifferenceOperator(R, ’Delta[y]’, F)

7.3 Difference Operators with Matrix Coefficients

As a final example, we take quotients in F 2×2
7 [y,∆y] to underscore the genericity

of this method.

u =

([
6 0
1 1

]
y +

[
3 0
2 0

])
∆5

y +

([
4 4
6 5

]
y +

[
3 2
4 4

])
∆4

y +

([
4 3
0 3

]
y +

[
1 1
4 1

])
∆3

y

+

([
0 1
4 5

]
y +

[
3 2
5 4

])
∆2

y +

([
0 6
4 3

]
y +

[
0 0
0 6

])
∆y +

([
5 3
6 2

]
y +

[
5 2
1 2

])

v =

[
1 5
2 6

]
∆2

y +

([
1 5
0 0

]
y +

[
4 6
3 4

])
∆y +

([
2 6
0 4

]
y +

[
0 3
1 2

])

17

lshinv5 =

[
2 3
4 5

]
∆3

y +

([
5 0
3 0

]
y +

[
0 4
1 2

])
∆2

y +

([
2 0
4 0

]
y2 +

[
3 1
0 1

]
y +

[
0 2
4 4

])
∆y

+

([
5 0
3 0

]
y3 +

[
4 2
0 4

]
y2 +

[
2 6
6 6

]
y +

[
1 2
6 6

])

rshinv5 =

[
2 3
4 5

]
∆3

y +

([
5 0
3 0

]
y +

[
4 4
2 2

])
∆2

y +

([
2 0
4 0

]
y2 +

[
2 1
5 1

]
y +

[
6 0
0 2

])
∆y

+

([
5 0
3 0

]
y3 +

[
2 2
3 4

]
y2 +

[
3 5
5 4

]
y +

[
1 3
3 1

])

ql =

([
1 3
1 5

]
y +

[
3 1
6 4

])
∆3

y +

([
2 0
4 0

]
y2 ++

[
4 6
2 1

]
y +

[
2 1
5 0

])
∆2

y

+

([
5 0
3 0

]
y3 +

[
4 0
6 6

]
y2 +

[
2 4
5 4

]
y +

[
0 5
6 1

])
∆y

+

([
2 0
4 0

]
y4 +

[
4 3
2 6

]
y3 +

[
1 0
5 0

]
y2 +

[
4 3
1 5

]
y +

[
5 6
1 6

])

rl =

([
6 0
0 0

]
y5 +

[
6 2
1 0

]
y4 +

[
6 6
4 6

]
y3 +

[
2 2
3 6

]
y2 +

[
2 4
6 0

]
y +

[
6 5
2 0

])
∆y

+

([
0 0
5 0

]
y5 +

[
6 0
3 4

]
y4 +

[
3 2
3 6

]
y3 +

[
5 1
3 0

]
y2 +

[
3 6
4 6

]
y +

[
2 4
2 6

])

qr =

([
5 4
6 1

]
y +

[
6 2
4 6

])
∆3

y +

([
2 0
1 0

]
y2 +

[
0 0
6 0

]
y +

[
5 3
4 5

])
∆2

y

+

([
5 0
6 0

]
y3 +

[
1 6
0 2

]
y2 +

[
5 5
1 4

]
y +

[
5 3
2 6

])
∆y

+

([
2 0
1 0

]
y4 +

[
2 5
5 6

]
y3 +

[
5 2
4 3

]
y2 +

[
2 2
1 1

]
y +

[
2 5
2 3

])

rr =

([
5 4
6 2

]
y5 +

[
1 4
0 3

]
y4 +

[
4 4
3 2

]
y3 +

[
1 3
1 4

]
y2 +

[
3 2
2 5

]
y +

[
2 6
4 5

])
∆y

+

([
3 2
5 1

]
y5 +

[
3 4
4 6

]
y4 +

[
3 0
2 6

]
y3 +

[
6 1
2 6

]
y2 +

[
3 2
6 0

]
y +

[
4 0
1 3

])
The Maple setup for this example is the same as for the previous example but
with F := SquareMatrix(2, GaloisField(7)).

18

8 Conclusions

We have extended earlier work on efficient computation of quotients in a generic
setting to the case of non-commutative univariate polynomial rings. We have
shown that when the polynomial variable commutes with the coefficients, the
whole shift and whole shifted inverse are well-defined and they may be used to
compute left and right quotients. The whole shifted inverse may be computed
by a modified Newton method in exactly the same way as when the coefficients
are commutative and the number of iterations is logarithmic in the degree of the
result. When the polynomial variable does not commute with the coefficients,
left and right whole shifted inverses exist and may be computed by classical
division. Once a left or right whole shifted inverse is obtained, several right or left
quotients with that divisor may be computed, each with a single multiplication.

References

1. Abramov, S.A., Le, H.Q., Li, Z.: Univariate Ore polynomial rings in computer
algebra. Journal of Mathematical Sciences 131(5), 5885–5903 (2005)

2. Bronstein, M., Petkovšek, M.: An introduction to pseudo-linear algebra. Theoret-
ical Computer Science 157(1), 3–33 (1996)

3. Jacobson, N.: Pseudo-linear transformations. Annals of Mathematics, Second Se-
ries 38(2), 484–507 (1937)

4. Moenck, R.T., Borodin, A.B.: Fast modular transforms via division. In: Proc. 13th
Annual Symposium on Switching and Automata Theory (SWAT 1972). pp. 90–96.
IEEE, New York (1972)

5. Monagan, M.B.: Gauss: a parameterized domain of computation system with sup-
port for signature functions. In: Miola, A. (ed.) Design and Implementation of
Symbolic Computation Systems. pp. 81–94. Springer Berlin Heidelberg, Berlin,
Heidelberg (1993)

6. Ore, Ø.: Theory of non-commutative polynomials. Annals of Mathematics, Second
Series 34(3), 480–508 (1933)

7. Schulz, G.: Iterative Berechnung der reziproken Matrix. Zeitschrift für Angewandte
Mathematik und Mechanik 13(1), 57–59 (1933)

8. van der Hoeven, J.: FFT-like multiplication of linear differential operators. Journal
of Symbolic Computation 33(1), 123–127 (2002)

9. van der Hoeven, J.: On the complexity of skew arithmetic. Applicable Algebra in
Engineering, Communication and Computing 27, 105–122 (2016)

10. Watt, S.M.: Efficient generic quotients using exact arithmetic. In: Proc. Interna-
tional Symposium on Symbolic and Algebraic Computation (ISSAC 2023). ACM,
New York (2023)

19

fshinv := proc (PR, method, h, v, perm)
local R, x, k, vk, ivk, vkm1, w, ell, m, s, g, rmul, pmul, pshift, monom,

step, refine, refine1, refine2, refine3;

R := PR[CoefficientRing];
pmul := (a, b) -> PR[‘*‘](perm(a, b));
rmul := (a, b) -> R [‘*‘](perm(a, b));
monom := (c, x, n) -> PR[‘*‘](PR[Polynom]([c]), PR[‘^‘](x, n));
pshift := (n,v) -> shift(PR, n, v);

step := proc(h, v, w, m, ell)
PR[‘+‘](pshift(m,w), pshift(2*m-h,pmul(w,PR[‘-‘](PR[‘^‘](x,h-m), pmul(v,w)))))

end;

refine1 := proc (v, h, k, w0, ell0) local m, s, w, ell;
w := pshift(h-k-ell0+1, w0); ell := ell0;
while ell < h-k+1 do

w := step(h, v, w, 0, ell); ell := min(2*ell, h-k+1)
od;
w

end;
refine2 := proc (v, h, k, w0, ell0) local m, w, ell;

w := w0; ell := ell0;
while ell < h-k+1 do

m := min(h-k+1-ell, ell);
w := step(k+ell+m-1, v, w, m, ell); ell := ell+m

od;
w

end;
refine3 := proc (v, h, k, w0, ell0) local m, s, w, ell;

w := w0; ell := ell0;
while ell < h-k+1 do

m := min(h-k+1-ell, ell); s := max(0, k-2*ell+1);
w := step(k+ell+m-1-s, pshift(-s, v), w, m, ell); ell := ell+m

od;
w

end;

if method = 1 then refine := refine1
elif method = 2 then refine := refine2
elif method = 3 then refine := refine3
else error "Unknown method", method
fi;

x := PR[Polynom]([R[0],R[1]]); k := PR[Degree](v);
vk := PR[Lcoeff](v); ivk := R[‘^‘](vk, -1);
if h < k then return 0
elif k = 0 or h = k or v = monom(vk,x,k) then return monom(ivk,x,h-k)
fi;
vkm1 := PR[Coeff](v, k-1);
w := PR[Polynom]([rmul(ivk, rmul(R[‘-‘](vkm1), ivk)), ivk]); ell := 2;
g := 1; # Assume all coeff rings need a guard digit
pshift(-g, refine(v, h + g, k, w, ell))

end:

fdiv := proc (PR, method, u, v, perm) local mul, h, iv, q, r;
mul := (a, b) -> PR[‘*‘](perm(a, b));
h := PR[Degree](u);
iv := fshinv(PR, method, h, v, perm);
q := shift(PR,-(h-k),mul(shift(PR,-k,u),iv)); # Need only top h-k terms
r := PR[‘-‘](u, mul(q, v));
(q, r)

end:
lfdiv := (PR, method, u, v) -> fdiv(PR, method, u, v, (a,b)->(b,a)):
rfdiv := (PR, method, u, v) -> fdiv(PR, method, u, v, (a,b)->(a,b)):

Fig. 1: Maple code for fast generic polynomial shinv and left and right division

20

SkewPolynomial := proc (R, x, sigma, delta, sigmaInv)
local P, deltaStar, mult2, MultVarOnLeft, MultVarOnRight;

Table to contain the operations.
P := DenseUnivariatePolynomial(R, x);

If x*r = sigma(r)*x + delta(r), then
r*x = x*sigmaInv(r) - delta(sigmaInv(r)) = x*sigmaInv(r) + deltaStar(r)
deltaStar := r -> R[‘-‘](delta(sigmaInv(r)));

P[DomainName]:= ’SkewPolynomial’;
P[Categories]:= P[Categories] minus {CommutativeRing,IntegralDomain};
P[Properties]:= P[Properties] minus {Commutative(‘*‘)};

P[ThetaOp] := P[Polynom]([R[0], R[1]]); # The variable as skew polynomial.

P[Apply] := proc(ell, p) local i, pi, result; # Apply a skew polynomial as an operator.
pi := p; # delta^i (p)
result := R[‘*‘](P[Coeff](ell, 0), pi);
for i to P[Degree](ell) do # For Maple, for loop default from is 1.

pi := delta(pi);
result := R[‘+‘](result, R[‘*‘](P[Coeff](ell, i), pi))

od;
result

end:

P[‘^‘] := proc(a0, n0) local a, n, p; # Binary powering
a := a0; n := n0; p := P[1];
while n > 0 do

if irem(n,2) = 1 then p := P[‘*‘](p, a) fi; a := P[‘*‘](a, a); n := iquo(n,2);
od;
p

end:

P[‘*‘] := proc() local i, p; # N-ary product
p := P[1]; for i to nargs do p := mult2(p, args[i]) od; p

end:
mult2 := proc(a, b) local s, i, ai, xib; # Binary product

xib := b; ai := P[Coeff](a,0);
s := P[Map](c->R[‘*‘](ai, c), xib);
for i to P[Degree](a) do

xib := MultVarOnLeft(xib); ai := P[Coeff](a, i);
s := P[‘+‘](s, P[Map](c->R[‘*‘](ai,c), xib));

od;
s

end:

Compute x*b as polynomial with powers on right.
x*sum(b[i]*x^i, i=0..degb) = sum(sigma(b[i])*x^(i+1) + delta(b[i])*x^i, i=0..degb)
MultVarOnLeft := proc(b) local cl, slist, dlist;

cl := P[ListCoeffs](b);
slist := [R[0], op(map(sigma, cl))]; dlist := [op(map(delta, cl)), R[0]];
P[Polynom](zip(R[‘+‘], slist, dlist));

end:
Compute b*x as polynomial with powers on left.
sum(x^i*b[i], i=0..degb)*x = sum(x^(i+1)*sigmaInv(b[i]) + deltaStar(b[i])*x^i, i=0..degb)
MultVarOnRight := proc(b) local cl, slist, dlist;

cl := P[ListCoeffs](b);
slist := [R[0], op(map(sigmaInv, cl))]; dlist := [op(map(deltaStar, cl)), R[0]];
P[Polynom](zip(R[‘+‘], slist, dlist));

end:

Continued in Part 2...

Fig. 2: Maple code for generic skew polynomials (Part 1)

21

... continued from Part 1.

For v = sum(vr_i x^i, i = 0..k) = sum(x^i vl_i, i = 0..k)
return polynomial with vl_i, interpreting powers as on left,
abusing the representation of output.
P[ConvertToAdjointForm] := proc(v) local v_adj, i, rci, rcip;

v_adj := P[0];
for i from P[Degree](v) to 0 by -1 do

rci := P[Polynom]([P[Coeff](v,i)]);
v_adj := P[‘+‘](v_adj, (MultVarOnRight@@i)(rci));

od;
v_adj

end:

For v = sum(x^i vl_i, i = 0..k) = sum(x^i vr_i, i = 0..k)
return polynomial with vr_i, interpreting powers as on right,
abusing the representation of input.
P[ConvertFromAdjointForm] := proc(v_adj) local v, i, rci;

v := P[0];
for i from 0 to P[Degree](v_adj) do

rci := P[Polynom]([P[Coeff](v_adj,i)]);
v := P[‘+‘](v, (MultVarOnLeft@@i)(rci))

od;
v

end:

Shift by power on left.
P[LShift] := proc(n, v0) local v, shv, i, k;

v := P[ConvertToAdjointForm](v0); k := P[Degree](v);
if k + n < 0 then shv := P[0]
elif n < 0 then shv := P[Polynom]([seq(P[Coeff](v,i), i = -n..k)])
else shv := P[Polynom]([seq(R[0], i=1..n), seq(P[Coeff](v,i), i=0..k)])
fi;
P[ConvertFromAdjointForm](shv)

end:

Shift by power on right.
P[RShift] := proc(n, v) local i, k;

k := P[Degree](v);
if k + n < 0 then P[0]
elif n < 0 then P[Polynom]([seq(P[Coeff](v,i), i = -n..k)])
else P[Polynom]([seq(R[0], i=1..n), seq(P[Coeff](v,i), i=0..k)])
fi

end:

Quotient and remainder
P[GDiv] := proc(perm, qfun) proc (u, v) local h, k, x, ivk, t, q, r, i, qi;

x := P[Polynom]([R[0], R[1]]); ivk := R[Inv](P[Lcoeff](v));
h := P[Degree](u); k := P[Degree](v);
q := P[0]; r := u;
for i from h - k by -1 to 0 do

qi := qfun(P[Coeff](r,i+k), ivk, i, k);
t := P[‘*‘](P[Constant](qi), P[‘^‘](x,i));
q := P[‘+‘](q, t);
r := P[‘-‘](r, P[‘*‘](perm(t, v)));

od;
(q, r)

end end:
P[RDiv0] := P[GDiv](rperm, (u,iv,n,k)->R[‘*‘](u,(sigma@@n)(iv)));
P[LDiv] := P[GDiv](lperm, (u,iv,n,k)->(sigmaInv@@k)(R[‘*‘](iv,u)));

Continued in Part 3...

Fig. 2: Maple code for generic skew polynomials (Part 2)

22

... continued from Part 2.

A slightly less repetitive RDiv.
P[RDiv] := proc (u, v) local h, k, x, ivk, sigma_ivk_i, x_i_v, q, r, i, qi;

x := P[Polynom]([R[0], R[1]]); ivk := R[Inv](P[Lcoeff](v));
h := P[Degree](u); k := P[Degree](v);

Precompute sigma^i(ivk) and x^i*v for required i.
sigma_ivk_i[0] := ivk;
for i from 1 to h-k do sigma_ivk_i[i] := sigma(sigma_ivk_i[i-1]); od;
x_i_v[0] := v;
for i from 1 to h-k do x_i_v[i] := P[‘*‘](x, x_i_v[i-1]) od;

q := P[0]; r := u;
for i from h - k by -1 to 0 do

qi := P[Constant](R[‘*‘](P[Coeff](r, i+k), sigma_ivk_i[i]));
q := P[‘+‘](q, P[‘*‘](qi, P[‘^‘](x,i)));
r := P[‘-‘](r, P[‘*‘](qi, x_i_v[i]));

od;
(q, r)

end:

Needed for some versions of Maple.
P[0] := P[Polynom]([R[0]]);
P[1] := P[Polynom]([R[1]]);
P[‘-‘] := proc()

local nb := P[Polynom](map(c-> R[‘-‘](c), P[ListCoeffs](args[nargs])));
if nargs = 1 then nb else P[‘+‘](args[1], nb) fi

end:

Return the table
P

end:

Fig. 2: Maple code for generic skew polynomials (Part 3)

23

	Efficient Quotients of Non-Commutative Polynomials

