
Detecting Implicit Indeterminates
in Symbolic Computation

Stephen M. Watt
David R. Cheriton School of Computer Science

University of Waterloo
smwatt@uwaterloo.ca

Abstract—In the design of symbolic mathematical computation
systems, it is a popular choice to use the same syntax for both
mathematical indeterminates and programming variables. While
mathematical indeterminates are to be used without specific val-
ues, programming variables must be initialized before being used
in expressions. A problem occurs when mistakenly uninitialized
programming variables are silently taken to be mathematical
indeterminates. This article explores how this problem can arise
and its consequences. An algorithm to analyze programs for this
defect is shown along with a Maple implementation.

I. INTRODUCTION

The notion of a “variable” has existed both in mathematics
and in programming for almost as long as these subjects have
existed.. Although there are similarities between the concepts
in the two fields, there are also important differences. In
symbolic mathematical computation, both ideas are in play
simultaneously, leading to confusion of novices and errors of
experts. Once the problems of novices are overcome, the prob-
lems of experts remain. One of the most frequent problems
in the development of symbolic computation software is that
of late detection of uninitialized variables. In some symbolic
computing systems, names that are not programming variables
with values are assumed to be mathematical indeterminates.
We call these “implicit indeterminates”. Sometimes these are
indeed intended to be mathematical indeterminates. Often,
however, they are misspellings of intended variable names.
This can lead to silent errors that are difficult to trace or that
go undetected while incurring huge computational resources.
We present a solution to this problem.

This paper is organized as follows: Section II describes
the concepts of variables in mathematics and programming,
and how they differ. Section III explains the consequences of
implicit indeterminates and how the problem of unassigned
variables in symbolic mathematical computation differs from
the problems in other types of computing. Section IV explores
potential remedies to the problem of implicit indeterminates
and Section V presents an algorithm to detect them. Section VI
presents a Maple implementation that detects implicit indeter-
minates. Finally, Section VII presents some conclusions.

II. VARIABLES IN MATHEMATICS AND COMPUTING

Letters have been used to stand for quantities in mathematics
for centuries. They have been used in geometry for at least
2300 years [1] and in algebra for about 400 years [2]. In

modern mathematics, symbols may be used for parameters,
indices, indeterminates, known or unknown constants, values
varying over some domain or unknowns to be solved for. They
may also be used to represent expressions more readably or
more compactly (giving an expression as a tree can require
exponentially more space than with named intermediate parts).

Letters have been used to stand for storage locations in
computer programs since the the early days of programming
languages. Uses prior to 1960 include the Whirlwind [3] and
Flow-matic [4] programming languages. While the natural
language style of Flow-matic evolved to give Cobol, Whirl-
wind inspired the algebraic notation used later in in Fortran
and Algol. In modern computing, symbolic names are used
to represent storage locations containing constants, locations
whose contents may be updated or values that exist only at
the time of program translation. Each programming language
has its own rules about what types of values these names
may represent, and in which parts of a program the names
may be used. These symbolic names may represent numbers,
structured objects, procedures, function parameters and types,
among other things, and the time-frames in which they are
bound to storage locations may range from just a few machine
instructions to the entire lifetime of a program or interactive
session.

To complicate matters, symbolic names in all these uses
may be called “variables” in different situations. Although it
may be awkward, this paper will use the terms “mathematical
variable” and “programming variable” when necessary for
clarity. A very simple example of how the mathematical
and programming notions differ is given by the following
statements:

x = x + 6
y = y / 2.

Interpreted as mathematical algebraic statements, these are
two equations in variables x and y and which may have
solutions, depending on the algebraic domain. For example,
interpreted over the real numbers, there is no value of x that
satisfies the first equation and the second equation requires
y = 0. On the other hand, interpreted as statements in the
programming language Fortran or C, these are assignments
that update the values stored in locations named x and y.
To avoid confusion, some programming languages use other
symbols for programming assignments, e.g. “:=” in the Algol
family of languages, or “:” in Macsyma [5].

> newton_sqrt := proc (x, niters)
local i, rold, rnew;
Digits := max(4, 2ˆ(niters-2));
rold := x;
for i to niters do

rnew := (rold+x/rold)/2.0;
rold := rnew

end do;
rold

end proc;

> length(newton_sqrt(100, 15));

8199

(a) Using underscores in names.

> newtonSqrt := proc (x, nIters)
local i, rOld, rNew;
Digits := max(4, 2ˆ(nIters-2));
rOld := x;
for i to nIters do

rNew := (rold+x/rOld)/2.0;
rOld := rNew

end do;
rOld

end proc;

> length(newtonSqrt(100, 15));

246162

(b) Converted names, with a mistake.

Fig. 1: Newton iteration to approximate square root.

> newtonSqrt(100, 5);

.50000000 rold+
50.000000

.50000000 rold+
50.000000

.50000000 rold+
50.000000

.50000000 rold+
50.000000

.50000000 rold+ .50000000

Fig. 2: A toy computation with an implicit indeterminate, rold. The cut-off of 5 iterations allows the output to be displayed.

While the syntactic confusion of programming assignments
versus equations is easily dispensed with, the problem of
unassigned programming variables being taken as implicit
indeterminates is more difficult, as is explained next.

III. THE PROBLEM

Symbolic mathematical computation systems produce and
operate on mathematical objects of various sorts, including
expressions involving symbols for mathematical variables.
Each of these systems typically provides an imperative pro-
gramming language that is used to extend its built-in algebraic
capabilities.

These systems typically have an interactive interface that
allows statements such as the following,

p := xˆ2 + x + 1

If the symbol x has previously been established as a program-
ming variable with a value, then the statement above uses
that value to compute a value for the programming variable
p. Otherwise x is taken to be the indeterminate x, and the
programming variable p is assigned a polynomial in x as its
value. This is a desirable behaviour for an interactive interface.
A simple user model is that names that appear on the left hand
side of an assignment are variables, and otherwise “a name is
just a name” [7]. This is more satisfying than “it means just
what I choose it to mean — neither more nor less” [8].

The system designer must decide whether the language
used for the interactive interface will be the same as the
programming language used for system extension or whether
it will be different. If different, then it places a burden on users

of knowing two languages. If the same, then the some aspects
that are desirable for interactive use cause difficulties when
writing libraries of programs. This treatment of unrecognized
names as implicit indeterminates is such a feature.

We give an example showing the problem of unintentional
use of an unassigned name. Consider the Maple session shown
in Figure 1a. This session defines a function to compute an
approximation to the square root of a number x using niters
Newton iteration steps. It then computes the approximation to√
100 after 15 iteration steps. The Maple length of the result

is 8199, consisting of 213 digits plus some overhead.

Now suppose the programmer wishes to add this function to
a code base that uses capitalization to separate words in a name
(“camel casing”), rather than underscores. The programmer
modifies the program as follows and obtains the code shown
in Figure 1b. The result is 30 times larger than expected! What
happened? We don’t want to print such a large expression, so
let’s examine the output after just a few iterations. This is
shown in Figure 2.

We have discovered that one of the uses of rold
was not converted to rOld and what has happened with
newtonSqrt(100, 15) is that a large continued fraction
was constructed with many large floating point coefficients.
This example shows what can happen when unassigned names
stand for themselves in a symbolic computation environment.

When writing programs, it happens frequently that editing
errors or logical errors introduce mistakes in a program. If
unassigned names stand for symbolic indeterminates in a
program, then these errors go uncaught.

Algorithm check-proc-for-implicit-symbols.
Input: procedure p.
Output: set of implicit indeterminates
Method:

used, def, sym :=
check-proc(p, {}, globalDefNames,

globalSymNames)
return used \ def \ sym

Procedure check-expr.
Input: expr -- expression or statement

used, def, sym
Output: used, def, sym updated
Method:

if expr is a name then
add name expr to the used set

else if expr is a constant then
/* Do nothing */

else if expr is a procedure then
used, def, sym :=

check-proc(expr, used, def, sym)
else if expr is a definition then

used, def, sym :=
check-def(expr, used, def, sym)

else
for each part p of expr do

used, def, sym :=
check-expr(p, used, def, sym)

return used, def, sym

Procedure check-def.
Input: expr -- definition expression

used, def, sym
Output: used, def, sym updated
Method:

for each part p of expr not being defined do
used, def, sym :=

check-expr(p, used, def, sym)
for each name n defined in expr

add the name n to the def set
return used, def, sym

Procedure check-proc.
Input: proc -- procedure to be checked

used, def, sym
Output: used, def, sym updated
Method:

loc := parameters and locals of proc
def := union(def, parameters of proc)
sym := union(sym, symbolics of proc)

for each statement s in body of proc do
used, def, sym :=

check-expr(s, used, def, sym)
optionally-report-inner-proc(used, def, sym)

used := used \ loc
def := def \ loc
sym := sym \ loc
return used, def, sym

Fig. 3: Algorithm to detect names that are used but neither defined nor declared symbolic.
The entry point is check-proc-for-implied-symbols. The other procedures are helpers to recursively traverse the
program. The variables globalDefNames and globalSymNames are initialized with the defined and symbolic names in
the environment. The symbol “\” denotes set difference.

Unintended interpretation of names as mathematical inde-
terminates can have several consequences:

• Expressions containing unintended indeterminates can
flow through the program execution, causing errors far
from where they occur. The error can manifest itself, for
example, when an expression with variables is used when
a numeric value is expected. These errors are difficult
to debug, because it is hard to determine where the
unwanted behaviour has occurred.

• What is worse, is that expressions containing unintended
indeterminates may not raise an execution error at all.
They may simply lead to wrong results.

• In both cases, programs usually generate huge intermedi-
ate expressions unintentionally. This leads to significant
performance penalties, even when the program produces
correct results (as may occur through cancellation, late
evaluation of when requiring only a sub-expression).

This kind of bug occurs frequently in developing Maple
programs, so we ask what remedies might be brought to bear.

IV. POTENTIAL REMEDIES

There are several potential ways to address the problem
of unassigned names, including misspellings, being taken as
implicit indeterminates. These include:

• Have a distinct syntax for mathematical variables. For
example, in Lisp systems one can use a quote to create

a symbol data object, e.g. (QUOTE X) or ’X. Pro-
gramming variables intended to be used as mathematical
indeterminates could then be initialized with symbol data
objects as values. The use of an unassigned variable
would then be an error in exactly the same way as in
other programming languages.
This solution can be suitable if creating a system ab
initio. This is the approach taken in Axiom and the Aldor
libraries. In Axiom, however, the top-level interactive lan-
guage is different than the library programming language.
This is not a solution that can be retrofit to existing
systems such as Maple, however, as it is an incompatible
change.

• Require all variables to have a syntactic assignment. This
is subtly different than requiring them to have values.
For example, to make a name unassigned in Maple
one uses the idiom a := ’a’. This could be used to
indicate that a name was intended to be a mathematical
indeterminate. It would then be straightforward for the
language processor to detect variables are used but have
no assignment. This would be burdensome for interactive
use, however.

• Declare all names that are intended to be mathematical
variables. Then unassigned names that had been declared
as mathematical variables would be allowed. Other unas-
signed names would be errors in the same way as in other

> read "Symbol.mpl";
> with(UndeclaredSymbolFinder);

[CheckUnassigned]

> Eg0 := proc(p1, p2)
local l1, l2;
l1 := p1 + l2 + g

end proc:
> CheckUnassigned(Eg0, ’Eg0’);

Analyzed Eg0 of [p1, p2]
Used: g, l2, p1
Assigned or symbolic: l1, p1, p2
Used but neither assigned nor symbolic: g

> Eg1 := proc(p)
local l;
l := 100;
proc(q) local m; m := p+l+m+g end proc

end proc:
> CheckUnassigned(Eg1, ’Eg1’);

Analyzed anonymous of [q]
Used: g, l, m, p
Assigned or symbolic: l, m, p, q

Analyzed Eg1 of [p]
Used: g, l, p
Assigned or symbolic: l, p
Used but neither assigned nor symbolic: g

> Eg2 := proc(p) local l;
l := x; (q -> r -> p+q+r+l+g)(3)(2)

end proc:
> CheckUnassigned(Eg2, ’Eg2’);

Analyzed anonymous of [r]
Used: g, l, p, q, r, x
Assigned or symbolic: l, p, q, r

Analyzed anonymous of [q]
Used: g, l, p, q, x
Assigned or symbolic: l, p, q

Analyzed Eg2 of [p]
Used: g, l, p, x
Assigned or symbolic: l, p
Used but neither assigned nor symbolic: g, x

> Eg3 := proc(x, y, z)
local a, b, f, v, c;
option remember, symbolic(u, v);
f := proc(u) u + v end proc;
v := 21;
v := sin(x) + cos(y) + tan(z) + u + v + w;
for a in 1 .. 2 do v := v + a + b end do;
for c to 2 do v := v + a + b end do;
v

end proc:
> CheckUnassigned(Eg3, ’Eg3’);

Analyzed f of [u]
Used: u, v
Assigned or symbolic: u, v

Analyzed Eg3 of [x, y, z]
Used: a, b, cos, sin, tan, true,

u, v, w, x, y, z
Assigned or symbolic: a, c, u, v
Used but neither assigned nor symbolic: w
> quit

Fig. 4: Sample session showing the detection of implicit indeterminates. The output is edited for spacing.

programming languages.
This would be burdensome for systems such as Maple,
where the interactive language and the library extension
language are the same. In this case, the rule could be
softened to the following,

• Declare all names that are intended to be mathematical
variables in procedures. One could do this either with
a special declarative form, or by requiring a special
assignment, such as a := ’a’ discussed above.

Of these, the last is the most promising. The other approaches
have distinct drawbacks to user experience in existing systems.

V. IMPLICIT INDETERMINATE DETECTION ALGORITHM

We assume a block-structured procedural language that
allows nested procedures with lexical scoping. Adopting the
standard terminology used in compiler construction [6], we
call any statement that writes to a programming variable
a definition and any statement that reads a value from a
programming variable to be a use.

The algorithm presented in Figure 3 detects names that are
used but neither assigned nor declared symbolic. It is applied
to a single procedure, p, within a global environment. Whether
global names have values may be determined either by

• analysis of the global statement sequence, possibly em-
bedding it as a procedure body and applying this algo-
rithm, or

• consulting the current environment for values associated
to the names.

The first of these is robust and will give sensible results when
multiple mutually recursive global procedures are defined. The
second of these is more suitable for incremental use in an
interactive top level (and is the approach we have taken).

For simplicity, we assume that the local variables and
parameters have been renamed to make them all unique. The
algorithm proceeds by structural induction. At each stage,
three sets are available,

• used, names in scope and used so far
• def, names in scope and defined so far
• sym, names in scope and declared symbolic so far

Algorithm check-proc-for-implicit-symbols spe-
cializes a general recursive method, applying it to a sin-
gle top-level procedure body. The general recursive method
check-expr is by syntactic cases. The step check-def
separates the defined names from the expressions used in
computing the definition. For example, the defined names
include a and b in a, b := minmax(l) or i in for i
in m..M. The names used to determine definition are added
to used. For example, this would include i in a[i] := 7.

The case of procedures is handled by check-proc. The
parameters are added to the set of defined names def and
the names declared to be symbolic are added to the set sym.
The local variables and the procedure parameters are removed
from the sets returned since they will have no meaning
outside the body of the procedure. It is possible to report
on unused local names or names defined but not used on a
per-procedure basis, and this is indicated by the invocation of
optionally-report-inner-proc.

VI. AN IMPLEMENTATION

This section describes a Maple 2022 [9] implementation
of the algorithm presented in Section V. The code itself is
given in the Appendix. The implementation differs from the
algorithm presented in a few ways. First, it combines the
def and sym sets since, in finding implicit indeterminates,
a symbolic declaration is as good as an assignment. Secondly,
it allows scoped variable names to shadow each other.

Names are declared symbolic by including an option
symbolic(n1, ...nk) in a procedure, for example

diffFunction := proc(f)
local x;
option symbolic(x);
unapply(diff(f(x), x), x)

end proc:

This method of declaring variables intended to be symbolic
allows backward compatibility with earlier releases of Maple.

The implementation relies on the ToInert function of
Maple that provides a traversable form of all Maple objects.
In particular, it allows the examination of procedure bodies,
including the lists of parameters, local variables, options, re-
member table, executable statements, etc. The implementation
uses a package InertTools to abstract the details of the
representation returned by ToInert. Complexities in the
implementation arise from dealing with Maple’s representation
of lexically scoped names. This requires adding and removing
lexical levels to the internal representation of parameters and
local variables in the used/defined/symbolic variable sets as
procedure bodies are traversed recursively.

A sample session is in Figure 4.
The output of used and assigned or symbolic names allows

tracing the use of names and may be turned off. The appear-
ance of true in the last list of used names arises from the
internal representation of Maple’s do loops having a default
while true.

VII. CONCLUSIONS

We have seen how the notions of variables arising in mathe-
matics and computing are different and how the differences in
the meanings give rise to problems in symbolic mathematical
computation. In particular, when unassigned programming
variables are interpreted by a system as mathematical in-
determinates, simple programming errors can give rise to
hard to detect bugs in correctness or efficiency. We have
presented an algorithm that detects programming variables
that are neither assigned nor declared symbolic and a Maple
2022 implementation that does not require any modification
of existing libraries.

Acknowledgement We thank one of the anonymous referees
for particularly thorough comments.

REFERENCES

[1] Euclid, Στoιχϵϊα (The Elements), c. 300 BCE.
[2] François Viète, Opera Mathematica, in unum volumen

congesta ac recognita, opera atque studio Francisci a
Schooten, (Mathematical works, collected and revised in
one volume, the works and study of Francis Schooten),
Officine de Bonaventure et Abraham Elzevier, Leyde, 1646.
(http://gallica.bnf.fr/ark:/12148/bpt6k107597d.pdf retrieved
July 1, 2022).

[3] J.H. Laning Jr and N. Zierler, A Program for the Trans-
lation of Mathematical Equations for Whirlwind I, Engi-
neering Memorandum E-364, Instrumentation Laboratory,
Massachusetts Institute of Technology, January 1954.

[4] Remmington Rand Univac, Flow-matic Programming Sys-
tem, Sperry Rand Corporation, 1958.

[5] The Mathlab Group, MACSYMA Reference Manual, Ver-
sion nine, Laboratory for Computer Science, Massachusetts
Institute of Technology, 1977.

[6] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D.
Ullman, Compilers: Principles, Techniques, and Tools 2nd
ed, Pearson Education, 2006.

[7] D. Wardle, Sometimes a name is just a name: Tacitus’ Use
of ‘Augustus’, Acta Classica LVIII (2015), 166-190.

[8] Lewis Carrol, Through the Looking Glass, Macmillan,
1871.

[9] Maple 2022. Maplesoft, a division of Waterloo Maple Inc,
2022.

Appendix: Code of Maple Implementation

###
#
Package to analyze procedures for variables that are used but
are neither assigned nor declared symbolic.
#
(C) Copyright 2022, Stephen M. Watt.
#
###

UndeclaredSymbolFinder := module ()
export CheckUnassigned;

local DefUse_RHS, DefUse_LHS, DefUse_Proc,
getDeclaredSymbolicNames, asName,
convertToOuter, convertToInner,
isStringOfAssigned, isStringOfProtected,
showFlag, perProcFlag, noName, noProcInfo;

uses InertTools;
Provides isInert and
* tests for specific primitive structures: isInertXxx Xxx = type
* constructors for new inert objects: newInertXxx Xxx = type
* extractors to get parts of inert objects: getInertXxxYyyy Xxx = type, Yyy= part

noName := ’anonymous’; # When no LHS is being defined.
noProcInfo := getInertProcInfo(ToInert(proc() end)); # When not analyzing any proc.
showFlag := false; # Set to get more info.
perProcFlag := true; # Give info about each proc.

##
Main entry point to check a procedure.
##
#
p0 a procedure to be analyzed.
assignedTo the name a proc p0 is being assigned to or ’anonymous’.

CheckUnassigned := proc(p0, assignedTo)
local p, nmUsed, nmDefOrSym, nmUsedUnassigned;
if type(p0, ’name’) and assigned(p0) then

p := op(’p0’)
elif type(p0, ’procedure’) then

p := p0
else

error "CheckUnassigned requires a procedure as argument"
end if;

Environment variable to communicate downward required information
about the procedure being analyzed, e.g. params, locals, lexicals.
_EnvProcInfo := noProcInfo;

nmUsed, nmDefOrSym := DefUse_RHS(ToInert(op(’p’)), {}, {}, assignedTo);

nmUsedUnassigned := nmUsed minus nmDefOrSym;
nmUsedUnassigned := remove(isStringOfAssigned, nmUsedUnassigned);
nmUsedUnassigned := remove(isStringOfProtected, nmUsedUnassigned);

if nmUsedUnassigned <> {} then
printf("Used but neither assigned nor symbolic: %q\n",

op(map(asName, nmUsedUnassigned, noProcInfo)))
end if

end proc:

##
Recursive descent to collect sets of names according to use.
##
#
ob the statement or expression to be handled.
nmUsed0 is the set of symbols (names) used so far in this scope.
nmDefOrSym0 is the set of symbols (names) assigned (Def) or declared symbolic (Sym).
assignedTo gives the name the RHS will be assigned to, if any.

DefUse_RHS := proc(ob, nmUsed0, nmDefOrSym0, assignedTo)
global showFlag;
local frees, bounds, nmUsed, nmDefOrSym, i;

nmUsed := nmUsed0;
nmDefOrSym := nmDefOrSym0;

if isInertVariable(ob) then
nmUsed := nmUsed union { ob }

elif isInertConstant(ob) then
Skip

elif isInertProc(ob) then
nmUsed, nmDefOrSym := DefUse_Proc(ob, nmUsed, nmDefOrSym, assignedTo)

elif isInertAssign(ob) then
nmUsed, nmDefOrSym := DefUse_LHS(op(1, ob), nmUsed, nmDefOrSym);
nmUsed, nmDefOrSym := DefUse_RHS(op(2, ob), nmUsed, nmDefOrSym, asName(op(1, ob)))

elif isInertFor(ob) then
nmUsed, nmDefOrSym := DefUse_LHS(op(1, ob), nmUsed, nmDefOrSym);
for i from 2 to nops(ob) do

nmUsed, nmDefOrSym := DefUse_RHS(op(i, ob), nmUsed, nmDefOrSym, noName)
end do

elif isInert(ob) then
for i from 1 to nops(ob) do

nmUsed, nmDefOrSym := DefUse_RHS(op(i, ob), nmUsed, nmDefOrSym, noName)
end do

else
error "Unhandled object kind in DefUse: ", ob

end if;
nmUsed, nmDefOrSym # Return pair of sets

end proc:

DefUse_LHS := proc(ob, nmUsed0, nmDefOrSym0)
local nmUsed, nmDefOrSym, opi;

nmUsed := nmUsed0;
nmDefOrSym := nmDefOrSym0;

if isInertVariable(ob) then
nmDefOrSym := { ob } union nmDefOrSym

elif isInertExpseq(ob) then
for opi in ob do

nmUsed, nmDefOrSym := DefUse_LHS(opi, nmUsed, nmDefOrSym)
end do

elif isInertTableref(ob) then
nmUsed, nmDefOrSym := DefUse_LHS(getInertTablerefTable(ob), nmUsed, nmDefOrSym);
nmUsed, nmDefOrSym := DefUse (getInertTablerefIndex(ob), nmUsed, nmDefOrSym)

else
error "Unexpected LHS type"

end if;
nmUsed, nmDefOrSym # Return pair of sets

end proc:

DefUse_Proc := proc(ob, nmUsed0, nmDefOrSym0, assignedTo)
local s, nmUsed, nmDefOrSym;

_EnvProcInfo := getInertProcInfo(ob);
nmUsed := convertToInner(nmUsed0, _EnvProcInfo);
nmDefOrSym := convertToInner(nmDefOrSym0, _EnvProcInfo)

union { op(newInertParams(nops(_EnvProcInfo:-paramSeq))) }
union getDeclaredSymbolicNames(_EnvProcInfo); # option symbolic(...) names

if showFlag = true then _EnvProcInfo:-show() end if;

for s in _EnvProcInfo:-statSeq do
nmUsed, nmDefOrSym := DefUse_RHS(s, nmUsed, nmDefOrSym, noName);

end do;

if perProcFlag = true then
printf("\n");
printf("Analyzed %a of %a\n", assignedTo, [op(map(asName, _EnvProcInfo:-paramSeq))]);
printf("Used: %q\n", op(map(asName, nmUsed)));
printf("Assigned or symbolic: %q\n", op(map(asName, nmDefOrSym)))

end if;

Return pair of sets
convertToOuter(nmUsed, _EnvProcInfo), convertToOuter(nmDefOrSym, _EnvProcInfo)

end proc:

##
Utility functions.
##

Get the declared symbolic names from an option sequence.
getDeclaredSymbolicNames := proc(procInfo)

local r;
r := { op(procInfo:-optionSeq) };
r := select(isInertFunctionNamed("symbolic"), r);
r := map(e -> op(getInertFunctionArgs(e)), r);
r

end proc:

Get the name of the various sorts of inert variables.
asName := proc(ob)

convert(proc()
if isInertParam(ob) then getInertParamString (ob, _EnvProcInfo)
elif isInertLocal(ob) then getInertLocalString (ob, _EnvProcInfo)
elif isInertLexical(ob) then getInertLexicalString (ob, _EnvProcInfo)
elif isInertName(ob) then getInertNameString (ob)
elif isInertAssignedName(ob) then getInertAssignedNameString(ob)
else ob
end if

end proc(), name)
end proc:

Keep names visible in outer scope, converting lexicals to how known there.
convertToOuter := proc(obSet, procInfo)

map(proc(ob)
if isInertParam(ob) then NULL
elif isInertLocal(ob) then NULL
elif isInertLexical(ob) then getInertLexicalOuterBinding(ob, procInfo)
else ob
end if

end proc,
obSet)

end proc:

Keep names used in inner scope. Convert lexicals to how used in inner scope.
convertToInner := proc(obSet, procInfo)

local newSet, i, ob, nob;
Keep only globals
newSet := MutableSet(select(isInertName, obSet));
for i to nops(procInfo:-lexicalSeq) do

ob := getInertProcNthLexicalOuterBinding(i, procInfo);
if has(obSet, ob) then

if isInertLocal(ob) or isInertLexicalLocal(ob) then
nob := newInertLexicalLocal(i)

elif isInertParam(ob) or isInertLexicalParam(ob) then
nob := newInertLexicalParam(i)

else
error "Unknown lexicaltype."

end if;
insert(newSet, nob);
newSet := newSet union { nob }

end if
end do;
convert(newSet, set)

end proc:

Is s the name string of a currently assigned name?
isStringOfAssigned := proc(s)

local n, nval;
n := convert(asName(s, noProcInfo), ’name’);
nval := op(n);
evalb(n <> nval);

end proc:

Is s the name string of a currently protected name?
isStringOfProtected := proc(s)

isProtectedName(convert(asName(s, noProcInfo), ’name’))
end proc:

end module:

