Working with Families of Inverse Functions

David J. Jeffrey and Stephen M. Watt

! Department of Applied Mathematics
University of Western Ontario
djeffreyQ@uwo.ca
2 David R. Cheriton School of Computer Science
University of Waterloo
smwatt@uwaterloo.ca

Abstract. When evaluating or simplifying mathematical expressions,
the question arises of how to handle inverse functions. The problem is
that for a non-injective function f : D — R, the inverse is generally not
a function R — D since there may be multiple pre-images for a given
point. The majority of work in this area has fallen into two camps: ei-
ther the inverse functions, and expressions involving them, are treated
as multi-valued objects, or inverse functions are taken to have one prin-
cipal value. Both these approaches lead to difficulties in evaluation and
simplification. It is possible to define the inverse as a function from R to
sets of elements of D, but then the algebra of expressions involving the
inverse becomes overly complicated. This article extends previous work
based on a different approach: instead, the inverse of a function is taken
to be a labelled family of functions, with the label specifying the pre-
image in the original function’s domain. This convention is already used
by some authors for logarithms, but it can be applied more generally. In
some cases, the branch indices can appear in identities that give more
broadly applicable simplification rules. In this paper we survey how this
approach can be applied to elementary functions, including the Lambert
W function, and give examples using Maple.

Keywords: Inverse functions - Simplification Rules - Branch Cuts.

1 Introduction

Consider the following integral evaluated in Maple.

/Wﬂdm:—v2+x2(l_x)§+gv2+m4vl_x

9y/(1—) (2+) arcsin(2£ + 3)

8vV1l—z+\2+2x

The fraction /(1 —z) (2+ 2)/v/1— 22+ in the last term appears
unnecessary. Abramowitz & Stegun [1] give the solution of the cubic
equation z® + 3px — 2¢ = 0 as

v=(g+ V@)% +(a— V@),

(1)

as did early Maple, but now Maple gives

1
xr = (q+1/p3+q2)3 ,# .
(q+\/p3+q2)

For p = —2,q = 1 the solutions agree, but for p = 2,q = 1 they do
not. Can a computer system compare the expressions symbolically? The
Lambert W function has the unlikely simplification W1 (*=T) = —1+in.
We ask how such simplifications can be programmed.

=

This paper is organized as follows: Section 2 introduces the issues relating
to expressions involving inverse functions and some of the literature on
the topic. Section 3 develops the ideas of inverse function families for the
elementary functions and Section 4 presents some applications. Sections 3
and 4 recapitulate previous work. Section 5 explores these concepts when
the function is not periodic and showcases the importance of considering
the desired range of the inverse. Section 6 presents two new theorems
where the proofs need the handling of inverse functions as described
here. Section 7 shows how generalizing branch indices to non-integer
values can provide useful pseudoinverses. Finally, Section 8 gives some
conclusions.

2 Basic concepts

In mathematical computation, symbolic or numeric, one encounters ex-
pressions consisting of nested application of functions to constants and
variables drawn from some domains. These expressions may be viewed
as functions producing values or as symbolic expressions in a free alge-
bra. These two views are not incompatible — it is often convenient to
view expressions as functions that operate on values that are symbolic
expressions in a free algebra. In both views we talk about evaluation and
simplification.

When expressions are viewed as functions, evaluation means replacing
the variables with values from their domains and applying the com-
posed functions to produce a result. Simplification means producing an
equivalent function that is simpler according to some criterion, such as
having smaller expression size, lower evaluation cost or better approxi-
mation properties. Here the notion of function equivalence is the usual
one, meaning that both functions have the same domains and both pro-
duce equivalent results for all values in their domain. What is meant by
“equivalent results” will depend on the setting.

When viewed as symbolic expressions from a free algebra, evaluation
means replacing variables with free algebra terms to produce well-formed
expressions. Simplification again means to produce equivalent alterna-
tives that are simpler according to some criterion, usually expression
size. Here the notion of equivalence is more subtle, however. When all
the free algebra axioms are universally quantified, then expressions are
equivalent if each can be transformed to the other by application of
the algebraic axioms. When function arguments may represent values

outside their domain, such as fields not allowing division by zero, then
equivalence must require that transformations are applied only when the
subexpressions for function arguments could never evaluate to excluded
values. Alternatively, evaluation may produce exceptions, or simplifica-
tion may introduce restrictions on the variables. All this can be stated
more precisely, but the present explanation suffices for our purposes.

In some settings we may have “multivalued functions”. These have been
formulated in the literature in various ways. A well-known example is
Carathéadory’s statement [2] that In(AB) = In A + In B, which he in-
terprets as each In evaluating to a set and that the addition requires
selecting values from each set to make the equation true. Selecting other
values does not give equality. A second example is In(2?) = 21n x. Letting
Ing denote the principal branch®, the left-hand side must be the set

{Ing(2®) + 2wik, k € Z}
whereas the right-hand side is

2 x {lno = + 2mik, k € Z} = {2Ing x + 4wik, k € Z}.

In working with expressions, the domain of the function arguments and
variables is essential. We focus on the situation in which there is one
domain. That is, for some domain D, all functions have signature D" —
D for some n. Multivalued functions are then functions mapping to
D™ m > 1. This situation arises naturally when expressions include
non-injective functions and it is desired to construct expressions involving
their inverses. Many authors allow such functions to occur in expressions,
implying that the expressions now represent values in D* = (J;2, Dt
This approach has several problems, including that the resulting sets
may contain extraneous or infeasible points and that the usual axioms
used for simplification may no longer be valid.

The problem of multivalued functions cannot be ignored, however, as it
remains necessary to treat expressions with function inverses.

In general, a function f : D — D will have an inverse inv(f) : f(D) C
D — D only if f is injective (1-1). For non-injective functions, we may
partition D as D = J!_, D;, where D; N D;j = () if 4 # j, and such that
flp, : D;i — D is injective for each i, introducing a family of inverse
functions inv(f); = inv(f|p,). The choice of partitioning is not generally
unique, and if D is a metric space, then it is usual to take D; as connected
components and to call f(0D;), the images of the partition boundaries,
branch cuts. Even if f is continuous on D then inv(f); will in general not
be continuous on the branch cuts. Viewing the graphs functions D — D
as subsets of D x D, we may interpret J, inv(f): as a Riemann surface.

The approach of using a family of inverse functions, as opposed to a single
multivalued function, is that it becomes possible to write identities that

3 When different authors use the same symbol to mean different things, the discussion
of notation becomes problematic. For this example, In is a set; Ing is a unique value.
Below, we shall change to notation in which In is also a unique value.

hold over larger domains. For example, with inv(exp)rz = In z + 2k,

inv(exp)mA + inv(exp), B = inv(exp)s(AB) ,
s=m+n+ K(inv(exp)oA + inv(exp)oB) ,

where K is the unwinding number [3] and In is the usual principal branch.

The implementation of multivalued functions in computational environ-
ments, whether numerical (e.g. Matlab) or symbolic (Maple, Mathemat-
ica, Sage, etc), has been a topic of ongoing discussions between mathe-
maticians and system implementers [2,3,8,5]. One can say that math-
ematicians prefer an ad hoc interactive approach in which a function
evaluation would return a set of possible values, which the mathemati-
cian can employ as the problem demands. In contrast, computer systems
require deterministic rules which predetermine what will be returned by
a function evaluation. This dichotomy has been adequately discussed in
the above references, and is not repeated here.

Some readers may point out that there are examples of computer systems
being ambiguous in the meaning of a multivalued function, similar to
mathematicians. In Maple, the help page for Root0f describes it as a
placeholder for all the roots of an equation in one variable. In contrast
evalf (Rootf]f(gr:2 — 4) evaluates to 2 only. This special case, however,
distracts from the main ideas here, and will not be pursued further.

One theme of this review is the roles played by the function domain and
range in the understanding of multivalued functions. Given a function
f(2), earlier discussions have focused on the domain of f, and detailed the
branch cuts present in the domain. For example, the DLMF [11] defines
complex logarithm, and complex inverse trigonometric functions showing
diagrams of their domains containing branch cuts, but no diagrams of
the ranges. The view here is that the ranges of these functions show the
nature of the multi-valuedness more clearly than the domain alone.

3 The elementary functions

The basis for the discussion is an extension of the notation for the nat-
ural logarithm that was introduced in [4]. We first consider each of the
elementary functions in pairs, a function and its inverse, using this ap-
proach.

3.1 Exponential and logarithm

We begin my declaring that In z denotes the uniquely defined principal
branch function seen in all computational systems, numerical or sym-
bolic. Figure 1 shows the domain and range of Inz. The solid red line
denotes the branch cut in the domain, and its image in the range. We
note that if z = = + 4y then the branch cut is {z = z| — 00 < 2 < 0}
and its image in the range is {In(—x) + iw| — co < x < 0}. The dashed
green line in the range is the line {In(—z) —in| — o0 < = < 0} and marks

the lower boundary of the range, but does not belong to the range. It is
important to note that the values taken by this logarithm are confined
to the region between the red and green lines. Points outside this region
cannot be reached.

Fig. 1. Domain (left) and range (right) of the principal branch logarithm. The range
is confined between the horizontal lines.

This is the motivation for defining a family of logarithm functions which
together allow all points in the range to be reached. Using a subscript
k € Z, we have:

Ing z =Inz + 2wk .

Although k is here an integer, there are possibilities for non-integer values
being useful. In order to cover the range completely and without overlap,
however, integers are necessary. We can describe Inj z as the kth branch
of logarithm. An immediate benefit of this notation is a precise statement
regarding a well-known property of logarithm, which otherwise is justified
ambiguously by Carathéodory [2]. We state

Vk € Z,dm,n € Z, such that Ing z120 = Iny, 21 + Iny, 22 .

An application of the definition allows us to describe compactly the
asymptotic behaviour of the Lambert W function.

Wi (z) = Ing(2) — Inlng(z) ,

where it should be noted that two different branches of logarithm are
used. A Maple implementation of the extended function is

Ln := proc (z::algebraic) local branch;
if nargs <> 1 then
error "Expecting 1 argument, got", nargs
elif type(procname, ’indexed’) then
branch := op(procname); 1ln(z) + 2*Pi*I*branch;
else 1n(z)
end if
end proc;

Maple’s names for the function, log and 1n are left unchanged and the
new name Ln created. Note that the name Log is not used, because
there could be confusion with the subscript indicating the base of the
logarithm. Thus Ln[2](5.) = 1.60944+12.566 i .

3.2 Sine and arcsine

As with logarithm, the range of the arcsine function is confined to a strip
in the complex plane, in this case parallel to the imaginary axis, and the
remainder of the range cannot be reached by the function. Branch cuts
in the domain of arcsine are {z = z| — 00 < z < —1J1 < = < oo}.
In the range, the vertical lines are {sin(+n/2 + iy)| — oo < y < oo}
with the solid red boundaries belonging to the range of the function and
the dashed green parts showing the boundary without being part of the
range. As with logarithm, the only way to reach the parts of the range
outside the principal strip is by defining additional branches of arcsine
(Figure 2) As with logarithm, the only way to reach the parts of the

Fig. 2. Domain and range of arcsine. The solid red lines in the range correspond to
the solid red lines in the domain. The dashed green lines mark the border of the range,
but do not belong to it.

range outside the principal strip is by defining additional branches of
arcsine. In order to avoid clashes between Maple’s standard notation of
arcsin, the extensions here, are denoted invsin This name is modeled on
Maple’s invfunc notation, but the use differs in that invfunc is a table,
whereas we use invsin as a function. Using this, we extend the definition
to a branched inverse sine by

invsing z = arcsin z (2)
invsing z = (—1)" invsing z + kr . (3)
The principal branch now has the equivalent representation invsing z =

invsin z = arcsin z. It has real part between —m/2 and /2. Notice that
the branches are spaced a distance m apart in accordance with the an-

tiperiod* of sine, but the repeating unit is of length 27 in accord with
the period of sine.

The Maple code for the function is

invsin := proc (z::algebraic) local branch;

if nargs <> 1 then

error "Expecting 1 argument, got", nargs

elif type(procname, ’indexed’) then
branch := op(procname) ;
branch*Pi+(-1) “branch*arcsin(z)

else arcsin(z)

end if

end proc;

Examples of its use appear below.

3.3 Inverse cosine

The shift from inverse sine to inverse cosine is straightforward. The prin-
cipal branch has real part between 0 and 7, and this is easiest achieved
by setting invcosy z = invsingy1 z — m/2. The code is

invcos := proc (z::algebraic) local branch;

if nargs <> 1 then

error "Expecting 1 argument, got", nargs

elif type(procname, ’indexed’) then
branch := op(procname);
invsin[branch+1] (z)-Pi/2

else arccos(z)

end if

end proc;

3.4 Inverse tangent

The principal branch has real part from —7/2 to 7/2, and the kth branch
is invtang z = invtan z + km. As code:

4 An antiperiodic function is one for which Ja such that f(z + a) = —f(2), and « is

then the antiperiod. This is a special case of a quasi-periodic function [10], namely
one for which 3o, 8 such that f(z + a) = 8f(2).

invtan := proc (z::algebraic) local branch;
if nargs <> 1 then
error "Expecting 1 argument, got", nargs
elif type(procname, ’indexed’) then
branch := op(procname); branch*Pi+arctan(z)

else arctan(z)
end if

end proc;

The two-argument inverse tangent function has been implemented in
many computer languages. It is a synonym for arg, meaning the argument
or phase of a complex number, in that arg(z + iy) = arctan(y,z) for
x,y € R. It can be described using the branches of invtan as

arctan(y,) = invtang(y/z) ,

where k = H(—x)sgny, and H is the Heaviside step function.

3.5 Fractional powers

The principal branch of z'/" is defined by exp(% In z), and replacing In z
by Ing z gives the branched function. The standard notation for roots and
fractional powers does not leave an obvious place for the branch label,
and most obvious names are already used by Maple or Mathematica.
We use the name invpw, meaning inverse (integer) power. The Maple
code defines invpw [k] (z,n), where the subscript is the branch, as usual,
while the fractional power is 1/n. Thus it is modelled on the Maple surd
function. Unlike the other inverse functions, there are only n distinct
values, but we allow k£ to be any integer.

Since square root is so common, it is coded separately as invsq[k] (z),
and it can be displayed in traditional notation as (—1)*./z.

3.6 Definitions in terms of logarithms
Kahan[9] prefers to give definitions of the inverse trigonometric functions

in terms of logarithms. We may extend these definitions to the families
of inverse functions as follows:

1
invshy z = (—1)k ln< - (z + 1+ z2) invsing 2 = — invshy iz
—rE i

3

. 1. . R
invchy z = = invcosy, z invcosg z = — — invsin_ z
i

Lol \V]

invthy z = %(lnk(l +z)—In (1 fz)) invtang z = — invthy iz
2 -2 ?
These cover the domains of the functions inverted. The details of how to

ensure continuity on a path between branches is left for a future article.

4 Applications

‘We now demonstrate some uses of the new notation.

4.1 Plotting

With the new functions, we can easily plot branches. Figure 3 shows
plots produced by the Maple commands

> plot([invsin[-1] (x),invsin(x),invsin[1](x)],x=-1 .. 1,
linestyle=[dot,solid,dash]);
> plot([invtan[-1] (x),invtan(x),invtan[1] (x),invtan[2] (x)],
x=-5..5,linestyle=[dot,solid,dash,dashdot]);

\ s
NS e
N P

N 7
3 v
\\ ,

7
0N - - o
1
A :

-1 Afos -4 -2 2 4
-1 x x
> ol e
3 ‘

s T -4

Fig. 3. The branches of inverse sine and inverse tangent plotted taking advantage of
branch notation.

4.2 Identities

In order to express identities containing inverse functions correctly, we
need the unwinding number,

K& =15 1

defined in [3] (rather than in [4] where the sign is different). Note that
the unwinding number is a built-in function in Maple, called unwindX.
This immediately gives us

Ing e = 2 — 2miK(2) + 2mik . 4)

Note the special case Ing(.) e* = 2.

Consider an identity one might see in a traditional treatment:

cosx = V1 —sin’z , (5)

where the author would add “and the branch of the root is chosen ap-
propriately”. Using the branched root, we write the more precise

cosz = invsq[K(2iz)](1 — sin® z) = (=1)*®* /1 —sin®>z . (6)

We can contrast the two approaches in Maple with the command

> plot([sqrt(1-sin(x)~2), invsqlunwindK(2*x*I)](1-sin(x)"2)],
x = -7 .. 7, linestyle = [dot,solid]);

The resulting plot is given in figure 4.

Fig. 4. The graph of v/1 — sin? z using branch notation for square root. The dotted
line uses an unbranched sqrt, meaning it is plotted using the built-in sqrt, which leaves
sign choices to the user; the solid line uses a sqrt function that allows the sign choice
to be part of the definition, rather than a separately added sign.

The Abramowitz and Stegun [1] ‘identity’ for adding arctangents is

+y
—zy

Arctan x 4+ Arctany = Arctan 133
The more precise identity is

invtan(z) + invtan(y) = invtany %, where k = H(zy — 1) sgn(x) ,

(7)
and H is the Heaviside step. A more complicated example from [1] is
their identity for Arcsinz + Arcsiny, which becomes

invsin x 4 invsin y = invsin[k| (:c\/l — 2 +yV/1— x2> , (8)
k=H(z>+y* —1)(sgnz +sgny)/2 .

Here the branch of invsin is allowed to vary, but there might be another
formula which includes variable branches of square root.

As a final identity, we consider formula (4.4.39) in [1].

2z +1’ 2?4+ (y+1)?
1—a22—9y2 4 224 (y—1)2°

1
Arctan(z 4 iy) = k7 + 3 arctan

To turn this identity into something that computer-algebra systems can
use, one should decide what to do with k. This can be replaced by

: 1 2 i @4 (y+1)°
antank(x + zy) = 5 ll’thann 1_ 1‘2 — y2 + Z In 1‘2 + EZ _ 132 ’

where n = 2k + sgn(z)H (z® + y* — 1).

4.3 Calculus

Calculating the derivative of an inverse function is a standard topic in
calculus. The results in the textbooks are restricted to the principal
branches of the functions. It is possible, however, to generalize results to
any branch. For example

1 —1)F
— invsing z = = (=1

dx cos(invsing) /1 — a2

Integration by substitution is a well-known application of inverse func-
tions. A specific difficulty has been the application of the substitution
u = tan %:c in integrals such as

3dx 6 du)
/5 —dcosz / T3 9w~ 2arctan(3tan 5x) . 9)

The right-hand side is discontinuous, as has been pointed out in [7,6].
The correction to the usual integration formula [7] can be rewritten in
the new notation as

3dx . 1
/m = 21nvtan;<<w> (3 tan 21’) . (10)

The contrast is illustrated in figure 5 by the plot

> plot ([2*invtan[unwindK(I*x)] (3*tan((1/2)*x)),
2*arctan(3*tan((1/2)*x))], x=-3..9,linestyle=[dot,solid],
discont=true);

Fig.5. A graph of the discontinuous and continuous integral expressions. The solid
curves are the discontinuous expression (9). The dotted curve follows (10), which co-
incides with (9) for < 7, but then extends the integral continuously. The benefits of
the dotted curve are discussed in [7].

ecsescscdecce }
sle oo ed oo el oo s enmie _‘1

esecececcecgocccce

esecceccecgonse
esecceccesiooee

[EE RN NN NN
ees0ssosos
eesess0sen

-0.8 -020{ 0.2 04 06 0.8

Fig. 6. The W map of the complex plane. The line segment in the top example has
domain z € [—1,—1/¢]. The range of the second example is clipped.

5 Simplification of Lambert W

An important point to remember when working with branches is that
the relevant branch is determined by the value of the function or expres-
sion, more than by the value of the argument. This means working and
thinking in the range of the expression, rather than trying to follow the
effects of branch cuts in the domain. Here we use this to simplify the
Lambert W function for special values. We recall that the Lambert W
function is defined by

W)V =2 zecC. (11)

The principal branch is illustrated in Figure 6. The domain contains the
branch cut z = {(z,0) | z < —1/e}.
The simplification question is as follows: Consider x € R, and ask when

W = x —im, with € C. That is, we ask about the behaviour of W on
horizontal lines, as shown in figure 7 We have

weV = (z —in)e” " = e"(—x +im) .

More generally,

ami

etatm _ e’ (z + aim)e ,

(x 4 aim)e

and for « = n/2 with n € Z we get a simplification of the exponential
term. The difficulty is identifying the branch to which things apply. This
is determined by the value of W, not by its argument. So although the
e” attracts attention, it does not affect the branch.

Since x + «im is a horizontal line, we can start with z = 0.

For x = 0, = 1/2, that point is where the branch boundary crosses the
axis. So for £ < 0 we need branch=1, and for z > 0 we need branch 0.

For x = 0, = 1,3/2,2 the points lie in branch=1 and the line stays in
branch 1 for all z.

So for a = (4m + 1)/2 we have the rule

alph:=(4*m+1)/2;

if m>=0 and x>=0 then k:=m end if;

if m>=0 and x<0 then k:=m+1 end if;

if m<O then k:=m end if;
W(k,exp(x)*(x+xI-alph*Pi))=x+I*Pi*alph;

Note that for m < 0 we do not cross boundary.

Now if we set @ = (4m — 1)/2, we cross boundaries below.

alph:=(4*m-1)/2;

if m<=0 then if x>=0 then k
else
end if;

k:=m

:=m; else k:=m-1 end if;

W(k,exp(x)*(-x*I+alph*Pi))=x+I*Pix*alph;

There will be similar rules for a = (2m £ 1)/2, but without the x check.

Also, if we substitute Inx for z, we

get

Wk, z(Inz + air)e®™ = Inz + air

- = = e

Fig. 7. The range of W showing the branches and the simplification contours.
black curves are the branch boundaries; th

e red and blue lines = + aim

6 Proof with multivalued functions

Multivalued inverse functions require new ways of thinking of relations.

For example, the following theorem

is new.

Theorem 1. For all a,b € R and for all z € C\ R, we have

Va+zvVb—z =

Vet 2)b-2).

Proof Without loss of generality, we can assume that z lies in the upper
half plane, i.e., we assume that &z > 0, as shown in figure 8. For all

a, 0 < arg(a + z) < . Therefore

0 < arg(va+z) < /2. For all b,

—7 < arg(b — z) < 0. Therefore —7/2 < arg(v/b— z) < 0. Therefore

The

b-z . 2 ’ b-z

Fig. 8. The imaginary part of z is assumed positive, and ¢ > 0 and b < 0. Thus a + z
is a point to the right of z and b — z is to the left. After mapping under square root,
the points both lie in the principal range, and their product also lies in the principal
range.

—7m/2 < vVa+2z2vb—2z < 7/2. Also —7 < arg((a + 2z)(b— z)) < 7, and
therefore —m/2 < y/(a+ 2)(b—z) < 7/2.

An application of this theorem is to integration in Maple. The integral
of /24 zv/1 — x was presented in (1). After applying the theorem, we
obtain

/\/2+w\/1—xdm=\/2+m\/1—m <i—|—g) +§arcsin(2§+%>

7 Pseudoinverses

Altering branch structures using rational indices can result in useful pseu-
doinverses. For example

exp (ln,l/Q(Z)) =exp(lnz—im)=—z.

Here the subscript labels the —1/2 branch of the natural logarithm and
should not be confused with a logarithm base.
This is what is needed to express the asymptotic behaviour of the Lam-
bert W function in the neighbourhood of the origin. Since the defining
equation is

W(z)exp(W(2)) = z ,
it is clear that for large z, we need W (z) is large. In fact Wi (z) ~ Iny, 2. In
addition, however, it is possible that W can become large and negative
when z is small. This can be obtained if exp(W(z)) — —oo. Thus we
consider the possibility of

W(z) ~1In_q,2(z) +v .

Substituting into the defining equation, and abbreviating L(z) = In_; 3(z) =
In z — im, we obtain

Wexp(W) = (L(z) + v) exp(L(z) + v) = 2z

This gives (L(z) 4+ v)(—z)e” = z. This can be simplified to

8

—L(z)—v=e"".

Conclusions

We have reviewed the usual approaches to handling multivalued func-
tions, and inverse functions in particular, and have detailed an alterna-
tive approach that allows clear treatment of branches and the relations
among them. A particular feature of our approach is to emphasize the
need to place more emphasis on the range of the inverse function, because
it is in the range that the branches are defined. Rather than treating the
multivalued inverses as awkward artifacts that make expressions am-
biguous, we are able to make precise statements, allow identities to have
maximal extent, and do not need ad hoc interpretation.

References

10.
11.

Milton Abramowitz and Irene J. Stegun. Handbook of Mathematical
Functions. Dover, 1965.

C. Carathéodory. Theory of functions of a compler variable, 2nd.
ed. Chelsea, New York, 1958.

Robert M. Corless, James H. Davenport, David J. Jeffrey, and
Stephen M. Watt. According to Abramowitz and Stegun. SIGSAM
Bulletin, 34:58-65, 2000.

Robert M. Corless and David J. Jeffrey. The unwinding number.
SiasaM Bulletin, 30(2):28-35, June 1996.

James H. Davenport. The challenges of multivalued “functions”. In
S. Autexier, J. Calmet, D. Delahaye, P.D.F. Ion, L. Rideau, R. Ri-
oboo, and A. Sexton, editors, Intelligent Computer Mathematics,
volume 6167 of LNCS, pages 1-12. Springer, 2010.

David J. Jeffrey. The importance of being continuous. Mathematics
magazine, 67:294-300, 1994.

David J. Jeffrey and Albert D. Rich. The evaluation of trigonomet-
ric integrals avoiding spurious discontinuities. ACM Trans. Math.
Software, 20:124-135, 1994.

D.J. Jeffrey and A.C. Norman. Not seeing the roots for the branches.
SIGSAM Bulletin, 38(3):57-66, 2004.

William M. Kahan. Branch cuts for complex elementary functions,
or, much ado about nothing’s sign bit. In M. J. D. Powell and A. Iser-
les, editors, The state of the art in numerical analysis: Proceedings
of the Joint IMA/SIAM Conference. Oxford University Press, April
1986.

Derek F. Lawden. Elliptic functions and applications. Springer, 1989.
Daniel W. Lozier, Frank W. J. Olver, and Ronald F. Boisvert. NIST
Handbook of Mathematical Functions. Cambridge University Press,
2010.

