
Handwriting Feature Extraction via
Legendre-Sobolev Matrix Representation

Parisa Alvandi
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

palvandi@uwaterloo.ca

Stephen M. Watt
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

smwatt@uwaterloo.ca

Abstract—Despite the advancement of handwriting recogni-
tion, the mathematical expression-level recognition rates are still
well below the threshold that is acceptable by a mathematics
oriented system. Two-dimensionality nature of math formulas
and the large set of math characters with different variations in
style and size form the main challenges that the mathematical
handwriting recognition problem faces. To address these difficul-
ties, the way handwritten data is represented and the methods
to compute certain features from the chosen representation are
the two critical questions to answer.

To this aim, we treat handwritten characters as approximated
parametrized coordinate curves in Legendre-Sobolev bases. This
representation empowers us to study the geometrical features of
handwritten characters as a whole. These geometrical features
are equivalent to baselines, bounding boxes, loops, and cusps
appearing in handwritten characters. In this paper, we propose
methods for computing the derivative, roots, and gcd of polyno-
mials in Legendre-Sobolev bases to find such features without
needing to convert the approximations to the monomial basis.

Keywords-mathematical handwriting recognition, numerical
approximation, algebraic curves, orthogonal polynomial series

I. INTRODUCTION

Recognition of mathematical handwritten expressions on
pen-based devices has a history since 1969 (see [5]) and plays
an important role in the development of software in areas such
as physics [22], [23], geometric theorem proving [21], and
algebraic Intelligent Tutoring Systems (ITS) [3].

In 2012, the authors of [3] estimated that 91-97% recog-
nition accuracy is required for acceptance in a mathematics
oriented ITS system. However, based on results from the fourth
international Competition on Recognition of Online Handwrit-
ten Mathematical Expressions (CROHME) [25], expression-
level recognition rates are still well below this threshold. In
fact, there are several reasons that turn mathematical handwrit-
ing recognition into a more challenging problem compared to
natural language recognition. In math formulas, appearance
of subscripts and superscripts is common, thus, one needs to
deal with a 2-dimensional handwriting recognition problem.
Furthermore, the set of math characters have more varieties
than any natural language. Math characters also appear in dif-
ferent sizes and places which in turn can change the meaning
of a math expression. Since there is not any mathematical
dictionary to consult about what an expression means, thus it

is necessary to establish smart ideas to increase mathematical
handwriting recognition rates.

One approach, for increasing mathematical handwriting
recognition rates, is via locating some of the significant
features of handwritten characters by identifying some special
points. To refer to these points of any kind, we use the term
“determining points”. In 2010, Infante Velázquez [30] devel-
oped an annotation tool to record determining points manually
for handwritten characters represented in InkML [31]. How-
ever, their method is subject to device resolution and variations
in style. Similar problems exist in [8]. In addition, Zanibbiet
al. [33] proposed a technique to automatically improve the leg-
ibility of handwriting; once a formula is written, the individual
hand-drawn symbols can be translated and scaled to closely
approximate their relative positions and sizes in a correspond-
ing typeset version. This technique detects baseline locations
by comparing symbols bounding boxes, which leads to trouble
with vertical placement and scale. For example, this method
fails to distinguish between “x2” and “x2”. In 2012, Hu and
Watt [17] presented an algorithm to find turning points that
determine the shape of characters, but that approach lacked the
ability to capture the geometric meaning of each determining
point and therefore does not provide sufficient information
such as the location of baseline. Harouniet al. [15] later
proposed a method to find determining points in handwritten
Arabic characters. The method splits the input character into
several pieces, and then calculates the extremum points of each
piece and records them as determining points. However, this
method is not optimal as it may generate undesired points
that lack meaning. More precisely, the extremum points of
the individual strokes of a handwritten character might not
be the extremum points of that character. In [29], the authors
introduced a pen-based user interface for simplifying the task
of handwriting of mathematical expressions. Visible bounding
boxes around sub-expressions are automatically generated
as the system detects relevant spatial relationships between
symbols including superscripts, subscripts, and fractions.

Among different methods, we are interested in online
handwriting recognition. In [32], the authors use segment-
and-decode classifiers for online handwriting recognition. The
work [28] focuses on solving online handwriting recognition
by making use of Hidden Markov Models (HMMs) [16]

or hybrid approaches combining HMMs and Feed-forward
Neural Networks [4]. The first HMM-free models were based
on Time Delay Neural Networks (TDNNs) [10], [20], [27],
and more recent work focuses on Recurrent Neural Network
(RNN) variants such as Long-Short-Term-Memory networks
(LSTMs) [11], [14]. In [6], the authors describe an online
handwriting system that uses a deep neural network architec-
ture. The system combines methods from sequence recognition
with an input encoding using Bézier curves.

In online recognition methods, how to encode handwritten
data is a crucial question to researchers. What a computer sees
as a handwritten character is a collection of points (x, y, t),
with position (x, y) and timestamp t. One common character
recognition approach is to resample the data and then match
the output against N models by sequence alignment. Another
approach is to identify some of the features like the number of
loops, cusps, and so on, and use these features in a classifier.
Then recognition is done by ranking choices by consulting
a dictionary. But the difficulty with these methods is that
there are so many similar math characters and that makes
the comparison against a symbol model slow. An approach
to overcome these obstacles is to treat traces as curves.

In [7], the authors propose truncated Chebyshev polynomial
series representation of parametric plane curves for repre-
senting handwritten characters. The authors have shown that
degree 10 approximations for handwritten characters yield
high recognition rates. In [12], the authors propose an online
handwriting recognition method based on [7] for representing
coordinate curves of each character in the Legendre basis.
Authors of [13] have reported experimental results that demon-
strate that representing coordinate curves in the Legendre-
Sobolev basis has higher detection rates compared to when
these curves are represented in the Legendre basis. In [2],
we have proposed an online method for computing Legendre-
Sobolev representation of handwritten characters.

Representing parametrized coordinate curves in orthogonal
basis helps in analyzing the geometry of each character. This
analysis is crucial in mathematical handwriting recognition
when the characters in math formulas have varying seman-
tically meaningful baselines (see [18], [19]).

In [18], Hu and Watt proposed an algorithm to compute
determining points by relying on computation of the local min-
imum and maximum of the parametrized Legendre-Sobolev
approximations of handwritten characters. The authors suggest
computing the points on the curve corresponding to values
of parameter s such that Y ′(s) = 0 with Y (s) being the
y-coordinate curve. Computation of such points is done by
relying on the Newton method. This implies that conversion
from a Legendre-Sobolev basis to the monomial basis is
required which is known to be ill-conditioned. Thus, in this
paper, we are interested in computing geometric operations
such as derivative, root finding, and gcd in Legendre-Sobolev
bases without transforming into the monomial basis. Our
methods rely on linear algebra arithmetic operations such as
matrix multiplications and solving Diophantine equations.

This paper is organized as follows. After presenting prelim-

inaries in Section II, we explain how to compute derivative,
roots, and gcd of polynomials in a Legendre-Sobolev basis in
Section III. Then Section IV investigates backward error of
computing the roots in Legendre-Sobolev basis and sensitivity
analysis of computing the critical points for handwritten
characters. Section V concludes the article by discussing the
possible approaches to use the methods presented in this paper
for building new handwriting recognition models.

II. PRELIMINARIES

Digital ink is generated by sampling points from handwrit-
ten curves and is essentially a series of points (x, y). We
use these points to compute “moment integrals” and from
them we approximate the coefficients of the coordinate curves
X(λ) and Y (λ) on an orthogonal basis, where λ can be
either time or length of handwritten curves, see [2]. The
work [7], [12], [2] have shown that the coordinate curves
X(λ) and Y (λ) for handwritten characters can be modeled by
truncated Chebyshev, Legendre, and Legendre-Sobolev series,
respectively. The coefficients of such series can be used for
classification and therefore recognition of each character.

Suppose that an inner product between two functions f, g :
[−1, 1]→ R is defined by

〈f(λ), g(λ)〉 =
∫ 1

−1
f(λ) g(λ)dλ+ µ

∫ 1

−1
f ′(λ)g′(λ)dλ, (1)

where µ ∈ R≥0. Equation (1) is a special case of Legendre-
Sobolev inner product, where we have restricted ourselves to
the first order derivatives. We denote the Legendre-Sobolev
polynomials corresponding to the inner product given by
Equation (1) (which are also called Althammer polynomials,
see [1]) of degree n by Sµn(λ). When µ is zero in Equation (1),
then we denote the corresponding orthogonal polynomial
S0
n(λ) of degree n by Pn(λ), as well. In fact, the polynomial
Pn(λ) is the Legendre polynomial of degree n.

In this paper, we represent handwritten characters as trun-
cated parametrized coordinate curves of degree n as

f(λ) ≈
n∑
i=0

αiS
µ
i (λ),

where λ is arc length and f(λ) is either of coordinate curves
X(λ) or Y (λ). We compute the coefficients αi by a matrix
multiplication from moment integrals, where moments are
computed numerically (see [2]). When f(λ) is known in any
basis, the coefficients αi can also be computed by the equation

αi =
〈f(λ), Sµi (λ)〉
〈Sµi (λ), S

µ
i (λ)〉

, i = 0, . . . , n,

where 〈., .〉 is the inner product given by Equation (1).

III. METHODS

The goal of this section is to provide methods for computing
derivative, roots and gcd of the polynomials in a given
Legendre-Sobolev basis without needing to change the basis.
These results are mainly based on the following theorem.

Fig. 1. Norm-2 condition number of matrix D w.r.t its size n and µ (3d plot).

Theorem 1 ([2]). For n ≥ 1 and µ ≥ 0, we have

Sµi−1(λ) =

i∑
j=1

NijPj−1(λ),

where for i, j = 1, . . . , n+1, matrix N can be formulated as

Nij =

aj−1(µ) for i = j

cj−1(µ) for j = i− 2`, ` = 1, . . . , b i−12 c

0 otherwise,

(2)

where

a0(µ) = 1, av(µ) =
∑b v−1

2 c
k=0

(
µ
4

)k (v+2k−1)!
(2k)!(v−2k−1)! , for v ≥ 1,

cj(µ) = aj(µ)− aj+2(µ), for j ≥ 0.

Moreover,

N−1ij =

1

aj−1(µ)
for i = j

bj−1(µ) for j = i− 2`, ` = 1, . . . , b i−12 c

0 otherwise,

where bj(µ) = 1
aj(µ)

− 1
aj+2(µ)

, for j ≥ 0.

A. Derivative of Legendre-Sobolev polynomials

The main result of this section is Theorem 2 which gives a
formula for computing the derivative of a Legendre-Sobolev
polynomial by a matrix multiplication. To prove this theorem,
we have first computed the derivative of the Legendre-Sobolev
polynomials in the Legendre basis. As a direct consequence
of Theorem 1, we have the following corollary.

Corollary 1. For n ≥ 1, and µ ≥ 0, we have

Pn(λ) =
Sµn(λ)

an(µ)
+

bn2 c∑
`=1

bn−2`(µ)S
µ
n−2`(λ). (3)

The following lemma represents the derivative of a
Legendre-Sobolev polynomial of degree n as a linear com-
bination of the Legendre polynomials.

0 0.1 0.2 0.3 0.4 0.5

0

10

20

30

40

parameter µ

lo
ga

ri
th

m
of

co
nd

iti
on

nu
m

be
r

of
m

at
ri

x
D

n = 4
n = 6
n = 8
n = 10
n = 12
n = 14
n = 16
n = 18
n = 20

Fig. 2. Norm-2 condition number of matrix D w.r.t its size n and µ (2d plot),
where the condition number axis is based-10-log-scaled.

Lemma 1 ([26]). For n ≥ 1 and µ ≥ 0, we have

dSµn(λ)

dλ
=

bn−1
2 c∑
`=0

(2n− 4`− 1) an−2`(µ)Pn−2`−1(λ). (4)

The result below gives a method for computing the deriva-
tive of Legendre-Sobolev polynomials in the Legendre basis.

Proposition 1. Let f(λ) =
∑n
j=0 αjS

µ
j (λ). Then the deriva-

tive f ′(λ) =
∑n−1
j=0 βjPj(λ) may be computed as βj =∑n

i=0Hijαi, where for i, j = 1, . . . , n, we have

Hij =

{
(2 j − 1)aj(µ) for j = i− 2 `, ` = 0, . . . , b i−12 c
0 otherwise.

Proof. The result follows by letting n = i and j = i− 2 ` in
Lemma 1. 2

Finally, we claim Theorem 2 which gives a relation between
Legendre-Sobolev polynomials and their derivatives.

Theorem 2. Let f(λ) =
∑n
j=0 αjS

µ
j (λ). Then the deriva-

tive f ′(λ) =
∑n−1
j=0 βjS

µ
j (λ) may be computed as βj =∑n

i=1Di+1 j αi, where for i, j = 1, . . . , n, we have

Dij =

(2j−1)aj(µ)
aj−1(µ)

+ bj(µ)
∑`−1
k=0(2i− 4k − 1)ai−2k(µ)

for j = i− 2`, ` = 0, . . . ,
⌊
i−1
2

⌋
0 otherwise.

Proof. To prove, first, note that D = H N−1. Since both
matrices, H and N−1 are lower triangular, thus for i > j,
Dij = 0. As we know Dij =

∑n
v=1HivN

−1
vj , and because

of the shape of the matrices H and N−1, we have Dij =∑i
v=j HivN

−1
vj . We can rewrite the latter equation as follows:

Dij = HijN
−1
jj +

i∑
v=j−1

HivN
−1
vj .

By applying the change of coordinate v = i− 2 k, we obtain

Dij = HijN
−1
jj +

b i−j2 c−1∑
k=0

Hi i−2 kN
−1
i−2 k j .

If i − j is odd, then all entries N−1i−2 k j are zero, for k =

0, . . . , b i−j2 c − 1. Suppose that i− j is even, thus

Dij = HijN
−1
jj +

∑b i−j2 c−1
k=0 Hi i−2 kN

−1
i−2 k j

=
(2 j−1)aj(µ)
aj−1(µ)

+ bj−1(µ)
∑`−1
k=0 (2 i− 4 k − 1) ai−2k(µ),

where b i−j2 c = `, and this completes the proof. 2
Figures 1 and 2 demonstrate the relation between the

condition number of matrix D, n and parameter µ, where n
is the size of matrix D and µ is the parameter appearing in
the Legendre-Sobolev inner product given by Equation (1).

B. Roots of Legendre-Sobolev polynomials
In this section, we propose a method to compute roots

of polynomials in Legendre-Sobolev bases by computing the
eigenvalues of some matrices. For such matrices the name of
“comrade” matrix is suggested, and we use the same term
here. The results of this section are the generalization of [9].

To compute the comrade matrix whose characteristic poly-
nomial is equal to a given polynomial in Legendre-Sobolev
bases (up to a constant), we first compute the recurrence
relation between Legendre-Sobolev polynomials. To be more
precise, we need to compute coefficients hi,n−1, for a given
n ∈ N, and i = 0, . . . , n, such that

λSµn−1(λ) =

n∑
i=0

hi,n−1S
µ
i (λ). (5)

In fact, the coefficients hij , for i, j = 0, . . . , n, form the entries
of the comrade matrix for a Legendre-Sobolev polynomial of
degree n. To do so, we first compute λPn(λ) in a Legendre-
Sobolev basis.

Proposition 2. For n ≥ 1, and µ ≥ 0, we have

λPn(λ) = n+1
2n+1

Sµn+1(λ)

an+1(µ)
+ (1

an−1(µ)
− n+1

(2n+1)an+1(µ)
)Sµn−1(λ)

+
∑bn+1

2 c
k=2 bn−2k+1(µ)S

µ
n−2k+1(λ).

(6)

Proof. Equation (7) is known for the Legendre polynomials:

λPn(λ) =
n+ 1

2n+ 1
Pn+1(λ) +

n

2n+ 1
Pn−1(λ). (7)

By using Equations (3) and (7), we obtain:

λPn(λ) = n+1
2n+1Pn+1(λ) +

n
2n+1Pn−1(λ)

= n+1
2n+1

[
Sµn+1(λ)

an+1(µ)

]
+ n

2n+1

[
Sµn−1(λ)

an−1(µ)

]
+ n+1

2n+1

∑bn+1
2 c

k=1 bn−2k+1(µ)S
µ
n−2k+1(λ)

+ n
2n+1

∑bn+1
2 c−1

k=1 bn−2k+1(µ)S
µ
n−2k−1(λ)

= n+1
2n+1

Sµn+1(λ)

an+1(µ)
+ (1

an−1
− n+1

(2n+1)an+1(µ)
)Sµn−1(λ)

+
∑bn+1

2 c
k=2 bn−2k+1(µ)S

µ
n−2k+1(λ).

This proves the correctness of Equation (6). 2
Thus, the conversion matrix E from Legendre-Sobolev

polynomials to the Legendre polynomials multiplied by λ, is
formulated in the following corollary.

Corollary 2. For n ≥ 1 and µ ≥ 0, we have

λPi−1(λ) =

i+1∑
j=1

Eij S
µ
j−1(λ),

where for i = 1 . . . , n and j = 1, . . . , n+ 1,

Eij =

j − 1

(2j − 3)aj−1(µ)
for i+ 1 = j

1

aj−1(µ)
− j + 1

(2j + 1)aj+1(µ)
for i− 1 = j

bj−1(µ) for i− 2`+ 1 = j,
` = 2, . . . , b i2c

0 otherwise.

The following theorem formulates the conversion matrix for
representing λSµn(λ) back in a Legendre-Sobolev basis.

Proposition 3. For n ≥ 1 and µ ≥ 0, we have

λSµi−1(λ) =

i+1∑
j=1

Aij S
µ
j−1(λ),

where for i = 1, . . . , n and j = 1, . . . , n+ 1, we have

Aij =

(j−1) aj−2(µ)
(2j−3) aj−1(µ)

for j = i+ 1

(j−2) aj(µ)+(j−1) aj−2(µ)
(2 j−3) aj−1(µ)

− (j+1) aj(µ)
(2 j+1) aj+1(µ)

for j = i− 1

(j−2) aj(µ)+(j−1) aj−2(µ)
(2 j−3) aj−1(µ)

− (j+1) aj(µ)+j aj+2(µ)
(2 j+1) aj+1(µ)

for j = i− 2`+ 1, ` = 2, . . . , e− 1

aj
aj−1

− (j+1) aj(µ)+j aj+2(µ)
(2 j+1) aj+1(µ)

for j = i− 2 e+ 1

0 otherwise

and e = b i2c.

Proof. First, note that Aij =
∑n
k=1NikEkj .To prove this

theorem, we consider different cases:
• if i > j + 1, then Aij =

∑n
k=i+1NikEkj = 0. The first

equation is valid because Nik = 0, for k > i and the
second equation is valid since Ekj = 0, for j > k + 1
and i < j.

• If i < j + 1 and j = i− 2 `, for ` = 1, . . . , b i2c, then

Ai i−2 ` =

b i2 c∑
`′=0

Ni i−2 `′Ei−2 `′ i−2 ` = 0.

In fact, the first equality is true since Nik = 0 when
k 6= i− 2 `′, for `′ = 0, . . . , b i2c. The second equality is
true because Ei−2 `′ i−2 ` = 0, for all `′.

• When j = i+ 1, the result easily follows.
• If j = i− 1, then we have

Aij = ai−1(µ)(
1

aj−1(µ)
− j+1

(2j+1)aj+1(µ)
)

+ (ai−3(µ)− ai−1(µ)) j−1
(2j−3)aj−1(µ)

=
(j−2) aj(µ)

(2 j−3) aj−1(µ)
− (j+1) aj(µ)

(2 j+1) aj+1(µ)

+
(j−1) aj−2(µ)
(2 j−3) aj−1(µ)

.

• When j = i− 2`+ 1, for ` = 2, . . . , b i2c − 1, then:

Aij = bj−1(µ)
(
ai−1(µ) +

∑`−2
k=1 ci−2k−1(µ)

)
+ ci−2 `+1(µ)

(
1

aj−1(µ)
− j+1

(2j+1) aj+1(µ)

)
+ ci−2`−1(µ)

(
j−1

(2j−3) aj−1(µ)

)
=

(j−2) aj(µ)
(2 j−3) aj−1(µ)

− (j+1) aj(µ)
(2 j+1) aj+1(µ)

+
(j−1) aj−2(µ)
(2 j−3) aj−1(µ)

− j aj+2(µ)
(2 j+1) aj+1(µ)

.

• When j = i− 2`+ 1, for ` = b i2c, then:

Aij = ci−2 `+1(µ)
(

1
aj−1(µ)

− j+1
(2j+1)aj+1(µ)

)
+ bj−1(µ)

(
ai−1(µ) +

∑`−2
k=1 ci−2k−1(µ)

)
=

aj
aj−1

− (j+1) aj
(2 j+1) aj+1

− j aj+2

(2 j+1) aj+1
.

This completes the proof. 2

Theorem 3. Let C be defined such that for i, j = 1, . . . , n,
Cij = Aij . Then the roots of Legendre-Sobolev polynomial
Sµn(λ) coincide with the eigenvalues of matrix C.

Proof. The proof is a corollary of Theorem 4. 2
In fact, matrix C is the comrade matrix corresponding to

polynomial Sµn(λ). Note that matrix C is lower Hessenberg,
that is, Cij = 0 for i > j + 1 > 0. Moreover, we have

λ
[
Sµ0 (λ), . . . , S

µ
n−1(λ)

]T
= C

[
Sµ0 (λ), . . . , S

µ
n−1(λ)

]T
+An n+1 S

µ
n(λ) en,

where eTn =
[
0 , . . . , 0 , 1

]
is a column vector of

dimension n. Let ξ be a root of Sµn(λ), then we have

ξ
[
Sµ0 (ξ), . . . , S

µ
n−1(ξ)

]T
= C

[
Sµ0 (ξ), . . . , S

µ
n−1(ξ)

]T
.

The former equation implies that
[
Sµ0 (ξ), . . . , S

µ
n−1(ξ)

]T
is the right eigenvector of ξ.

Example 1. Consider polynomial S0.2
3 (λ) = −3λ + 4λ3.

Matrix C for arbitrary parameter µ has the following form:

C =

0 1

a1(µ)
0

a1(µ)
a0(µ)

− 2 a1(µ)
3 a2(µ)

0 2 a1(µ)
3 a2(µ)

0 a2(µ)
a1(µ)

− 3 a2(µ)
5 a3(µ)

0

 .
By letting µ = 0.2 in matrix C, we obtain

C =

 0 1 0

0.3333333333 0 0.6666666667

0 0.625 0

 .
One can verify that the eigenvalues of matrix C form the set{

5.03× 10−17, 0.866025403777222, − 0.866025403777222
}
.

In fact, the set
{
0,±
√

(15+45µ)(1+5µ)

5(1+3µ)

}
forms the roots of

Sµ3 (λ), for any µ ≥ 0.

Theorem 4. Let f(λ) =
∑n
i=0 αiS

µ
i (λ) and

B = C − nan−1(µ)

(2n− 1)an(µ)

en
αn

cT ,

where eTn =
[
0 , . . . , 0 , 1

]
is a column vector of dimen-

sion n and cT =
[
α0, . . . , αn−1

]
. Then the eigenvalues

of matrix B form the roots of f(λ).

Proof. The steps of this proof follow exactly the ones in
Theorem 2.3 in [9]. Note that with notations of [9], the
quantity hn,n−1

γn
in Theorem 2.3 is equal to nan−1(µ)

(2n−1)an(µ)αn
when the basis is Legendre-Sobolev. 2

C. Gcd of two polynomials in Legendre-Sobolev basis

Theorem 5 gives a method for computation of the monic gcd
of two polynomials in Legendre-Sobolev basis. The computa-
tion of the coefficients of the gcd in this theorem is done by
solving a set of Diophantine equations given by Equation (8).

Theorem 5. Let f(λ) =
∑n
i=0 αiS

µ
i (λ) and h(λ) =∑m

i=0 βiS
µ
i (λ), where n > m, and matrix B is the ma-

trix defined in Theorem 4 for polynomial f(λ). Let also
g(λ) be the monic gcd of polynomials f(λ) and h(λ) and
g(λ) = λk +

∑k−1
i=0 ζ̂iλ

i =
∑k
i=0 ζiS

µ
i (λ). Define h(B) =

β0In+β1S
µ
1 (B)+· · ·+βmSµm(B), then k = n−rank(h(B)).

Furthermore, let ci be the ith column of matrix h(B), for
i = 1, . . . , n. Then the columns ck+1, . . . , cn are linearly
independent and if the numbers xij are defined by

ci = xi,k+1ck+1 +

n∑
j=k+2

xijcj , for i = 1, . . . , k, xij ∈ R,

(8)
then ζi−1 = ζkxi,k+1, for i = 1, . . . , k, where
ζk =

∏k
`=1B` `+1.

Proof. The proof follows the one of Theorem 1 in [24].
One key aspect here is that B = S B′ S−1, where B′ is
the companion matrix corresponding to f(λ) in the monomial

basis and S is the matrix whose rows are the coefficients of
Sµ0 (λ), . . . , S

µ
n−1(λ) in the monomial basis. 2

Example 2. Suppose that

f(λ) = (λ− 1)2(λ+ 2)3 = 82
15S

µ
0 (λ)− 73

28S
µ
1 (λ)

− 388
105S

µ
2 (λ) +

1529
2556S

µ
3 (λ) +

8
35S

µ
4 (λ) +

40
4473S

µ
5 (λ)

and

h(λ) = (λ− 1)3(λ+ 2) = − 14
5 S

µ
0 (λ) +

17
4 S

µ
1 (λ)

− 44
35S

µ
2 (λ)− 1

4S
µ
3 (λ) +

2
35S

µ
4 (λ),

where µ = 1
5 . To compute the monic gcd of two polynomials

f(λ) and h(λ) in the corresponding Legendre-Sobolev basis,
one can obtain the following matrices:

B =

0 1 0 0 0

1
3 0 2

3 0 0

0 5
8 0 3

8 0

− 1
5 0 34

35 0 8
35

− 287
3

181
4

194
3 − 37

4 −4

,

h(B) =

− 14
5

17
4 − 44

35 − 1
4

2
35

−4 −1 44
7 −1 − 2

7

211
5 − 173

8 − 1034
35

61
8

47
35

− 1796
5 227 1012

5 −61 − 46
5

20266
5 − 10975

4 − 72644
35

2687
4

3302
35

.

The rank of matrix h(B) is three. Thus gcd(f, h) has degree
two. By solving the Diophantine equations in Equation (8),
one can compute ζ0 = 2, ζ1 = − 9

4 , ζ2 = 0, and ζ3 = 1
4 . Thus

gcd(f, h) = 2Sµ0 (λ)−
9

4
Sµ1 (λ)+

1

4
Sµ3 (λ) = (λ+2)(λ−1)2.

IV. FEATURE EXTRACTION FOR HANDWRITTEN SYMBOLS

As we explained in Section I, one of the main concerns in
the problem of mathematical handwriting recognition is the
two-dimensionality nature of this problem. Having handwrit-
ten characters represented as parametrized curves in an or-
thogonal basis, one can obtain interesting geometrical insights
about each handwritten character, and therefore, determine
features that make in-lined expressions distinct from subscripts
and superscripts. One can name the baseline, loops, and cusps
of handwritten characters as some of the examples of such
interesting geometrical features.

Mathematically, computation of the baseline on a hand-
written character is equivalent to finding the points on the
approximated parametrized curve of a handwriten character,
where the slope of the tangent line is zero. Furthermore, the
points on the approximated parametrized curve, corresponding
to the ones with their slope having infinity tangent line,
give bounding lines for the width of a handwritten character.
Thus, one can use the points on the approximated curve with

X ′(λ) = 0 or Y ′(λ) = 0 to find the baseline and bounding box
of a handwritten character. Additionally, the number of such
points and the order of them, based on their arc length, gives
useful information about each handwritten character. Another
interesting feature that can be captured is self-intersection
points or more precisely, loops. Self-intersection points are
in fact singular points corresponding to handwritten curves.
Thus one might try to compute such points by finding values
of λ for which gcd(X ′(λ), Y ′(λ)) = 0. The problem with
this method is that a parametrization of a curve might not
capture all of the singular points. An alternative solution
to compute self-intersection points is to solve the system
{X(λ1) = X(λ2), Y (λ1) = Y (λ2)}, for distinct values of λ1
and λ2. The question here then is how to find self-intersection
points in a Legendre-Sobolev basis efficiently and accurately.

We have computed some of the features that were explained
earlier for a handwritten character “m”. Figure 3 shows the
handwritten character “m” with its approximation by degree
18 parametrized coordinate curves X(λ) and Y (λ) in the
Legendre-Sobolev basis with µ = 1

8 . This approximation is
computed by multiplying a (precomputed) matrix and the
vector of moment integrals [2]. We have marked up some
red and green points on the approximated curve which are
corresponding to the points with Y ′(λ) = 0 and X ′(λ) = 0,
respectively. To compute these points, we have first used
Theorem 2 to compute the derivatives and then Theorem 4 to
compute the roots of the derivatives of X(λ) and Y (λ). These
calculations are done in the Legendre-Sobolev basis without
converting to the monomial basis. These points demonstrate
that letter “m” has two singular points (cusps) and five local
maximum or minimum.

Figure 4 shows the backward error analysis for computing
the roots of Y ′(λ) = 0 via computing the eigenvalues of
matrix B, where Y (λ) is the approximated coordinate curve of
the handwritten character “m” shown in Figure 3. The approxi-
mation Y (λ) is computed in Legendre-Sobolev bases and w.r.t
different values of µ. This figure shows that one might double
the precision that was used for calculation w.r.t µ = 1

8 to obtain
the same accuracy with µ = 1

2 for computing the eigenvalues
of matrix B. Furthermore, Figure 5 demonstrates the effect
of having different precisions for calculation of critical points
on the average residual at potential real roots of Y ′(λ) = 0,
where Y (λ) is the y-coordinate curve corresponding to the
handwritten character “m” given in Figure 3. Note that Y (λ)
is approximated in Legendre-Sobolev basis and w.r.t different
values of µ such that 0 ≤ µ ≤ 1.

Table I shows Legendre-Sobolev approximations of differ-
ent handwritten characters and their corresponding critical
points. The calculation of the approximations and critical
points is done with double and quadruple precision, respec-
tively. Furthermore, m is the number of real values of ξ for
which Y ′(ξ) = 0.

Since matrix B is lower Hessenberg, the eigenvalues of this
matrix are computed by QR algorithm which is backward sta-
ble for such matrices (see [9], for a more detailed discussion).

TABLE I
LEGENDRE-SOBOLEV APPROXIMATIONS OF HANDWRITTEN CURVES WITH

d = 18 AND µ = 1
8

, AND THEIR CRITICAL POINTS

Handwritten Curve ‖∆Y (λ)‖2
Digits = 17

∑m
i=1 |Y

′(ξi)|
m

Digits = 34

1.5 1.6 1.7 1.8 1.9
−2

−1.8

−1.6

−1.4

−1.2
Handwritten Curve
Approximated Curve
Critical Points

0.0005 2.359× 10−18

1 1.05 1.1 1.15 1.2

−1.4

−1.2

−1

−0.8
Handwritten Curve
Approximated Curve
Critical Points

0.0008 3.893× 10−19

1.2 1.4 1.6 1.8 2
−2

−1.8

−1.6

−1.4

−1.2

−1
Handwritten Curve
Approximated Curve
Critical Points

0.0002 2.344× 10−18

0.9 1 1.1 1.2 1.3 1.4
−1.4

−1.2

−1

−0.8
Handwritten Curve
Approximated Curve
Critical Points

0.0006 1.55× 10−19

1 1.2 1.4 1.6 1.8
−1.6

−1.4

−1.2

−1

−0.8
Handwritten Curve
Approximated Curve
Critical Points

0.0008 4.471× 10−19

200 250 300 350 400

150

200

250

A handwritten curve
The approximated handwritten curve in Legendre-Sobolev basis with d = 18, µ = 1

8

Points on the approximated curve in Legendre-Sovolev basis with Y ′(λ) = 0

Points on the approximated curve in Legendre-Sovolev basis with X ′(λ) = 0

Fig. 3. Approximated handwritten curve in Legendre-Sobolev basis with
points whose tangent lines have slopes equal to either zero or infinity. The
approximation and calculation of such points is done with double precision.

−20 −14 −10 −6 −4 −2

−30

−20

−10

0

10

log10 (δξ)

lo
g
1
0
(|Y
′ (
ξ
+
ξ
δξ
)|)

µ = 0

µ = 1
8

µ = 1
2

µ = 1

Fig. 4. The value of Y ′(ξ + ξδξ) is shown on a based 10 logarithmic
scale, where ξ is one of the exact roots of Y ′(λ) = 0, δξ is the relative
error corresponding to ξ, and Y (λ) is the Legendre-Sobolev approximation
of degree 18 of the letter “m” in Figure 3 and w.r.t different values of µ.
Here, all the calculations are done in quadruple precision.

0 0.2 0.4 0.6 0.8 1

−50

0

50

100

150

200

µ

lo
g
1
0

(∑ m i=
1
|Y
′ (
ξ
i
)|

m

)

Double precision
Triple precision
Quadruple precision

Fig. 5. The value of
∑m
i=1 |Y

′(ξi)|
m

is shown on a based 10 logarithmic scale
w.r.t different values of parameter µ (on the x-axis), where m is the number
of total real roots of Y ′(λ) = 0, ξi is one of the real roots of Y ′(λ) = 0, and
Y (λ) is the Legendre-Sobolev approximation of degree 18 w.r.t parameter µ
of letter “m” in Figure 3. Here, the calculations are done in double, triple,
and quadruple precision.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented methods for computing the
derivatives, roots, and gcd of polynomials in Legendre-Sobolev
bases. The main goal is to provide sufficient tools to extract
certain features from Legendre-Sobolev approximations with-
out converting the approximations to the monomial basis.

While these features can be used to distinguish the relative
positioning of different characters, it would also be interesting
to see how these features work with coefficients of Legendre-
Sobolev approximations to have higher recognition rates. Es-
pecially, with the growth of the power of neural networks, that
would be interesting to see how different variations of neural
networks work with the problem of mathematical handwriting
recognition, where handwritten characters are represented as
coefficients of parametrized curves in an orthogonal basis.

REFERENCES

[1] P. Althammer. Eine Erweiterung des Orthogo-
nalitätsbegriffes bei Polynomen und deren Anwendung
auf die beste approximation. J. Reine Ang. Math.,
211:192–204, 1962.

[2] P. Alvandi and S. M. Watt. Real-Time Computation of
Legendre-Sobolev Approximations. In SYNASC, pages
67–74, 2018.

[3] L. Anthony, J. Yang, and K. R. Koedinger. A paradigm
for handwriting-based intelligent tutors. International
Journal of Human-Computer Studies, 70(11):866 – 887,
2012.

[4] Y. Bengio, Y. LeCun, C. Nohl, and C. Burges. LeRec: A
NN/HMM Hybrid for On-Line Handwriting Recognition.
Neural Computation, 7(6):1289–1303, Nov 1995.

[5] F. W. Blackwell and R. H. Anderson. An On-line
Symbolic Mathematics System Using Hand-printed Two-
dimensional Notation. In ACM, pages 551–557, 1969.

[6] V. Carbune, P. Gonnet, T. Deselaers, H. A. Rowley, A. N.
Daryin, M. Calvo, L. Wang, D. Keysers, S. Feuz, and
P. Gervais. Fast Multi-language LSTM-based Online
Handwriting Recognition. ArXiv e-prints, 2019.

[7] B. W. Char and S. M. Watt. Representing and Char-
acterizing Handwritten Mathematical Symbols through
Succinct Functional Approximation. In ICDAR, pages
1198–1202, 2007.

[8] S. D. Connell and A. K. Jain. Template-based online
character recognition. Pattern Recognition, 34(1):1–14,
2001.

[9] D. M. Day and L. A. Romero. Roots of Polynomials
Expressed in Terms of Orthogonal Polynomials. SIAM
J. Numerical Analysis, 43(5):1969–1987, 2005.

[10] M. Franzini, K. Lee, and A. Waibel. Connectionist
Viterbi training: a new hybrid method for continuous
speech recognition. In International Conference on
Acoustics, Speech, and Signal Processing, volume 1,
pages 425–428, 1990.

[11] V. Frinken and S. Uchida. Deep BLSTM neural networks
for unconstrained continuous handwritten text recogni-
tion. In ICDAR, pages 911–915, 2015.

[12] O. Golubitsky and S. M. Watt. Online stroke modeling
for handwriting recognition. In CASCON, pages 72–80,
2008.

[13] O. Golubitsky and S. M. Watt. Online computation of
similarity between handwritten characters. In Document
Recognition and Retrieval XVI, part of the IS&T-SPIE
Electronic Imaging Symposium, pages C1–C10, 2009.

[14] A. Graves, S. Fernández, M. Liwicki, H. Bunke, and
J. Schmidhuber. Unconstrained Online Handwriting
Recognition with Recurrent Neural Networks. In NIPS,
pages 577–584, 2007.

[15] M. Harouni, D. Mohamad, and A. Rasouli. Deduc-
tive method for recognition of on-line handwritten Per-
sian/Arabic characters. In ICCAE, volume 5, pages 791–
795, 2010.

[16] J. Hu, M. K. Brown, and W. Turin. HMM based online
handwriting recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 18(10):1039–1045,
1996.

[17] R. Hu and S. M. Watt. Optimization of Point Selection
on Digital Ink Curves. In ICFHR, pages 527–532, 2012.

[18] R. Hu and S. M. Watt. Determining Points on Handwrit-
ten Mathematical Symbols. ArXiv e-prints, 2013.

[19] R. Hu and S. M. Watt. Identifying Features via Homo-

topy on Handwritten Mathematical Symbols. In SYNASC,
pages 61–67, 2013.

[20] S. Jäger, S. Manke, J. Reichert, and A. H. Waibel. Online
handwriting recognition: the NPen++ recognizer. Inter-
national Journal on Document Analysis and Recognition,
3:169–180, 2001.

[21] Y. Jiang, F. Tian, H. Wang, X. Zhang, X. Wang, and
G. Dai. Intelligent Understanding of Handwritten Ge-
ometry Theorem Proving. In IUI, pages 119–128, New
York, NY, USA, 2010. ACM.

[22] J. J. LaViola, Jr. and R. C. Zeleznik. MathPad2: A
System for the Creation and Exploration of Mathematical
Sketches. ACM Trans. Graph., 23(3):432–440, 2004.

[23] W. Lee, R. de Silva, E. Jeffrey Peterson, R. C. Calfee, and
T. F. Stahovich. Newton’s Pen - A Pen-based Tutoring
System for Statics. In SBM, 2007.

[24] John Maroulas and Stephen Barnett. Greatest common
divisor of generalized polynomials and polynomial ma-
trices. Linear Algebra and its Applications, 22:195 –
210, 1978.

[25] H. Mouchre, C. Viard-Gaudin, R. Zanibbi, and U. Garain.
ICFHR 2014 Competition on Recognition of On-
Line Handwritten Mathematical Expressions (CROHME
2014). In 2014 14th International Conference on Fron-
tiers in Handwriting Recognition, pages 791–796, Sep.
2014.

[26] A. B. Owen. On L2 norms of derivatives of orthogonal
polynomials with respect to Sobolev inner products.
Technical report, 2017.

[27] J. A. Pittman. Handwriting Recognition: Tablet PC Text
Input. Computer, 40(9):49–54, Sep. 2007.

[28] R. Plamondon and S. N. Srihari. Online and off-
line handwriting recognition: a comprehensive survey.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(1):63–84, Jan 2000.

[29] E. M. Taranta, II, A. N. Vargas, S. P. Compton, and
J. J. Laviola, Jr. A Dynamic Pen-Based Interface for
Writing and Editing Complex Mathematical Expressions
With Math Boxes. ACM Trans. Interact. Intell. Syst.,
6(2):13:1–13:25, July 2016.

[30] I. Velázquez. Metrics and neatening of handwritten char-
acters. Master’s thesis, University of Western Ontario,
Canada, 2010.

[31] S. M. Watt and T. Underhill. Ink markup language
(InkML). W3C recommendation, W3C, September 2011.
http://www.w3.org/TR/2011/REC-InkML-20110920/.

[32] L. S. Yaeger, B. J. Webb, and R. F. Lyon. Combining
Neural Networks and Context-Driven Search for On-
Line, Printed Handwriting Recognition in the Newton.
In Neural Networks: Tricks of the Trade, 1996.

[33] R. Zanibbi, K. L. Novins, J. Arvo, and K. Zanibbi.
Aiding Manipulation of Handwritten Mathematical Ex-
pressions through Style-Preserving Morphs. In Graphics
Interface, 2001.

