
The LegendreSobolev Package
and Its Applications in Handwriting Recognition

Parisa Alvandi, Stephen M. Watt

David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, Canada

palvandi@uwaterloo.ca, smwatt@uwaterloo.ca

Abstract. The present work is motivated by the problem of mathemati-
cal handwriting recognition where symbols are represented as parametric
plane curves in a Legendre-Sobolev basis. An early work showed that ap-
proximating the coordinate functions as truncated series in a Legendre-
Sobolev basis yields fast and effective recognition rates. Furthermore,
this representation allows one to study the geometrical features of hand-
written characters as a whole. These geometrical features are equivalent
to baselines, bounding boxes, loops, and cusps appearing in handwrit-
ten characters. The study of these features becomes a crucial task when
dealing with two-dimensional math formulas and the large set of math
characters with different variations in style and size.

In an early paper, we proposed methods for computing the derivatives,
roots, and gcds of polynomials in Legendre-Sobolev bases to find such
features without needing to convert the approximations to the monomial
basis. Furthermore, in this paper, we propose a new formulation for the
conversion matrix for constructing Legendre-Sobolev representation of
the coordinate functions from their moment integrals.

Our findings in employing parametrized Legendre-Sobolev approxima-
tions for representing handwritten characters and studying the geometri-
cal features of such representation has led us to develop two Maple pack-
ages called LegendreSobolev and HandwritingRecognitionTesting. The
methods in these packages rely on Maple’s linear algebra routines.

1 Introduction

Orthogonal polynomials have many applications in different recognition prob-
lems such as face [15], speech [5], speech emotion [13], and gesture [14] recogni-
tion. We are particularly interested in using orthogonal polynomials to represent
handwritten characters for the purpose of mathematical handwriting recognition.
In fact, modelling handwritten characters as parametrized curves X(λ) and Y (λ)
on an orthogonal basis accurately captures the shape of handwritten mathemat-
ical characters using few parameters. This new representation of handwritten
characters turns the recognition into a writer and device independent problem
as one does not need to deal with the factors such as different device resolutions
and the number of points in the sampling process of a handwritten character.

The authors of [6] have found that even without further similarity-processing,
the polynomial coefficients from the writing samples form clusters which often
contain the same characters written by different test users. This work uses the
Chebyshev basis to represent handwritten characters as parametrized curves.

The work [7] is inspired by a similar idea as [6] to represent handwritten
data, but uses a different functional basis. The basic idea of [7] is to compute
moments of the coordinate curves in real time as the character is being written
and then to construct the coefficients of the coordinate curves in the Legendre
basis from moments at the time pen is lifted. As a matter of fact, the Legendre
representation is just as suitable in practice for representation and analysis of
ink traces as the Chebyshev representation, but has the benefit that it can be
computed in a small, fixed number of arithmetic operations at the end when a
stroke is written, completely. This approach works for any inner product with a
linear weight function.

Representing handwritten characters with parametrized coordinate curves in
the Chebyshev and Legendre series yields low RMS error rates. However, low
RMS error rates do not guarantee the shape similarity of two characters, see
Fig. 1. In fact, the problem with the blue and red curves on the right side of
Figure 1 is that the corners of these two curves are not in the right places, despite
the fact that they demonstrate a lower RMS error rate compared to the curves
on the left. One solution to this obstacle might be to work in a jet space to force
coordinate and derivative functions of the letters from the same class to have a
similar form.

Fig. 1: Despite the fact that the two curves on the right have lower RMS error compared

to the ones on the left, they do not have a similar shape.

The work [7, 9] use a special case of Legendre-Sobolev polynomials to rep-
resent handwritten characters based on the computation of moment integrals.
These special polynomials, which are also called Althammer polynomials, enable
us to work in a first jet space. The authors have reported experimental results
that demonstrate that representing coordinate curves in a Legendre-Sobolev ba-
sis has higher detection rates compared to when these curves are represented in
the Legendre basis.

In [2], we have proposed an online method for computing Legendre-Sobolev
representations of handwritten characters from their moments by a matrix mul-

tiplication. Furthermore, we have presented methods in [3] for computing the
derivatives, roots, and gcd of polynomials in Legendre-Sobolev bases by relying
on linear algebra arithmetic operations. The goal of the latter work is to study
the geometry and features of handwritten curves by relying on the Legendre-
Sobolev coefficients of the approximated parametrized curves corresponding to
handwritten characters. In [12], the authors proposed an algorithm to compute
some of the important features of the Legendre-Sobolev approximations of hand-
written characters by relying on the Newton method. Thus, conversion from a
Legendre-Sobolev basis to the monomial basis is required. But the work [3] avoids
this conversion because such conversion is known to be ill-conditioned.

In the present work, we give a new formulation for the matrix C in Propo-
sition 1, which is inspired by the work [2], to compute the Legendre-Sobolev
coefficients of the truncated parametrized curves of handwritten characters from
their moments. The results in [2, 3] and Proposition 1 have led to the develop-
ment of a Maple package called LegendreSobolev1. This package has all the
necessary tools for representing handwritten characters as parametrized curves
in a Legendre-Sobolev basis for the purpose of handwriting recognition.

After giving the preliminaries and our new result on the construction of the
Legendre-Sobolev coefficients from moments, we explain the structure of the
package LegendreSobolev with demonstrative examples in Section 4. Finally,
we illustrate how to compute Legendre-Sobolev representations of handwritten
curves from their corresponding digital inks, by relying on LegendreSobolev

package, in Section 5.

2 Preliminaries

Digital ink is generated by sampling points from handwritten characters and
is a collection of points (x, y, t) with position (x, y) and timestamp t. We use
these points to compute moment integrals and from them, we approximate the
coefficients of the coordinate curves X(λ) and Y (λ) on an orthogonal basis,
where λ is either time or length of handwritten curves. In this paper, we assume
that sample values of X(λ) and Y (λ) are received as a real time signal and λ
corresponds to the length of handwritten curves. We assume the sample points
are equally spaced with ∆t = 1.

The works [6, 7, 2] showed that the coordinate curves X(λ) and Y (λ) for
handwritten characters can be modelled by truncated Chebyshev, Legendre, and
Legendre-Sobolev series, respectively. The coefficients of such series can be used
for classification and recognition of characters. In this paper, we are interested
in Legendre-Sobolev approximations for representing handwritten characters.

For two functions f, g : [−1, 1] → R, consider the following inner product
which is given as

〈f(λ), g(λ)〉 =

∫ 1

−1
f(λ) g(λ)dλ+ µ

∫ 1

−1
f ′(λ)g′(λ)dλ, (1)

1 This package is publicly available at www.maplesoft.com/applications/view.aspx?
SID=154553

where µ ∈ R≥0. This inner product is a special case of the Legendre-Sobolev
inner product. In fact, the Legendre-Sobolev inner product may involve terms
corresponding to higher order derivatives, but for the purpose of this paper we
restrict ourselves to the first order derivative. Systems of orthogonal polyno-
mials corresponding to the above inner product can be computed by applying
the Gram-Schmidt orthogonalization process to the monomial basis. We denote
the Legendre-Sobolev polynomials corresponding to the inner product given by
Eq. (1) (which are also called Althammer polynomials, see [1]) of degree n by
Sµn(λ). When µ = 0 in Eq 1, we denote the polynomial S0

n(λ) by Pn(λ), as well.
In fact, the polynomial Pn(λ) is the Legendre polynomial of degree n.

A function f : [−1, 1]→ R, when the integrals involved in the inner product
are well-defined for f(λ), can be represented by an infinite linear combination
of orthogonal polynomials {Sµ0 (λ), Sµ1 (λ), . . .} as

f(λ) =

∞∑
i=0

αiS
µ
i (λ).

The coefficients of the series in the new basis can be computed by the formula

αi =
〈f(λ), Sµi (λ)〉
〈Sµi (λ), Sµi (λ)〉

, i = 0, 1, . . . ,

where 〈., .〉 stands for the Legendre-Sobolev inner product given by Eq. (1).
For representing handwritten characters, we use truncated linear combinations
of Legendre-Sobolev polynomials to represent the function f(λ). In fact, the
closest polynomial of degree d to function f(λ) with respect to Euclidean norm
induced by the given inner product is the following series

f(λ) '
d∑
i=0

αiS
µ
i (λ).

Such approximation allows to think of functions as points (α0, . . . , αd) in
(d+1)-dimensional vector space. That means that one can establish a method for
measuring how close two functions are to each other in such (d+ 1)-dimensional
vector space. In other words, for two functions f, g : [−1, 1]→ R, if we approxi-
mate f(λ) and g(λ) as following

f(λ) '
d∑
i=0

αiS
µ
i (λ) , g(λ) '

d∑
i=0

βiS
µ
i (λ),

then one can measure how close f(λ) and g(λ) are by computing the quantity

‖ f(λ)− g(λ) ‖ '

√√√√ d∑
i=0

(αi − βi)2.

This method of measuring the distance of two functions is the basic and impor-
tant rule in the handwriting recognition method used in [8].

The moments of a function f(λ) defined on the interval [a, b] are the integrals:∫ b

a

λk f(λ)dλ.

A key aspect of the approach used in [6] for the purpose of interpolating the coor-
dinate curves X(λ) and Y (λ) corresponding to handwritten strokes is to recover
these curves from their moments. This is the Hausdorff moment problem [10,
11], known to be ill-conditioned. For the purpose of this paper, the moments
of a function f are defined over an unbounded half-line since the curve may be
traced over an arbitrary length:

mk(f(λ), `) =

∫ `

0

λk f(λ)dλ.

In our application, we assume that discrete sample values of f(λ) are received
as a real-time signal. We use these values to compute approximate values for
the moment integrals. After a curve is traced out, we will have computed its
moments over some length L, with L known only at the time the pen is lifted.
The problem is now to scale L to a standard interval and compute the truncated
Legendre-Sobolev series coefficients for the scaled function from the moments of
the unscaled function, mk(f(λ), L).

Having represented handwritten characters as Legendre-Sobolev coefficients
of parametrized coordinate curves, we can study the geometrical features of
handwritten curves by means of linear algebra calculations, such as matrix mul-
tiplication, and solving Diophantine equations. The work [3] gives methods for
computing the derivatives, roots, and gcd of polynomials in Legendre-Sobolev
bases based on their coefficient matrix.

3 Construction of Handwritten curves from Moments

The goal of this section is to present our new result on computing the repre-
sentations of handwritten characters as approximated parametrized curves in
Legendre-Sobolev bases from their corresponding digital inks, see Proposition 1.

To find such representation, one needs to compute moment integrals as a
curve is being traced out, first, and then use Proposition 1 to compute the
Legendre-Sobolev coefficients of the parametrized coordinate curves in a Legendre-
Sobolev basis. In Section V in [2], we have explained how to compute moment
integrals from the input digital ink.

Proposition 1 Suppose that mi(f(λ), L) is defined as
∫ L
0
f(λ)λidλ where L is

the length of a given curve and f(λ) is either X(λ) or Y (λ), for i = 0, . . . , d.

Let also f̂(λ) =
∑d
i=0 αiS

µ
i (λ) be the corresponding scaled function of f(λ) in

the interval [−1, 1]. Then for i = 0, . . . , d, one may compute αi as

αi =

d∑
j=0

1

Lj+1
Cij mj(f(λ), L),

where

(−1)i+jCij =
1

2i!(i+ 1)!

(
Bij

(
b d−j

2 c
)
−Bij

(
max(0,

⌈
i−j
2 − 1

⌉
))
))(1

aj(µ)
− 1

aj+2(µ)

)
+ (2j + 1)

(
j

i

)(
i+ j

j

)
1

aj(µ)
,

Bij(k) =
(i+ j + 2k + 2)!

(j − i+ 2k)!
, taking

1

(−n)!
= 0, for k, n ∈ Z+,

a0(µ) = 1, ai(µ) =

b i−1
2 c∑

k=0

(µ
4

)k (i+ 2k − 1)!

(2k)!(i− 2k − 1)!
, for i ≥ 1. (2)

Proof We have simplified the following summation as

k2∑
`=k1

(2 j + 1 + 4 `)

(
j + 2 `

i

)(
i+ j + 2 `

j + 2 `

)
=

1

2i!(i+ 1)!
(Bij(k2)−Bij(k1 − 1)) ,

for k1, k2 ∈ Z≥0, while taking 1
(−n)! = 0, for n ∈ Z+. Then, the proof of this

proposition is followed by substituting the above simplified form in the counter-
part representation of matrix C in [2]. 2

Note that the coefficients Cij are independent of the problem and may be
computed as constants, in advance.

We have developed the Maple’s package HandwritingRecognitionTesting2

which implements the idea of Proposition 1 for computing Legendre-Sobolev ap-
proximations of handwritten curves. Section 5 explains how to use this package
to compute such representations.

4 LegendreSobolev package

We have developed a Maple package for applying different mathematical op-
erations in Legendre-Sobolev bases called LegendreSobolev (see Fig. 2). The
work [2, 3] and Proposition 1 support the theory behind the commands in this
package. The operations in this package rely on linear algebra arithmetic oper-
ations such as matrix multiplication, and solving Diophantine equations.

In this section, we explain how one can use the commands in LegendreSobolev

package to compute Legendre-Sobolev polynomials of a given degree and param-
eter µ, change the representation of polynomials with respect to different bases,
and find roots and gcds of polynomials in Legendre-Sobolev bases.

2 This package is publicly available at www.maplesoft.com/applications/view.aspx?
SID=154553

> read“LS.mpl” :

with(LegendreSobolev);
[ComradeMatrix, DerivativeInLS, DerivativeMatrixInLS, GcdInLS,

LSToLegendreMatrix, LSToMonomialMatrix, LegendreToLSMatrix,
MomentsToLSMatrix, MonomialToLSMatrix, P, S, α]

Fig. 2: The functions of LegendreSobolev package.

4.1 Legendre-Sobolev polynomials

As Fig. 3 demonstrates, one can use the command S in LegendreSobolev pack-
age to compute a Legendre-Sobolev polynomial Sµn(λ). Furthermore, we can use
both S0

n(λ) and Pn(λ) to compute the Legendre polynomial of degree n, see
Fig. 4.

> n := 20 :
µ := 0.125 :
S[n, µ](x);

5.8754582398620977895900768 1013 − 1.117724239719226929037416 1016 x2

+3.524380299973154119303874 1017 x4 − 4.3268454823302905511612081 1018 x6

+2.7061754002348252015842451 1019 x8 − 9.7480590243981247807226921 1019 x10

+2.1427243648177985254531152 1020 x12 − 2.9210697557111092015824162 1020 x14

+2.41083585404532176254424308 1020 x16 − 1.10338344683885758917477137 1020 x18

+2.14936627054372451057874677 1019 x20

Fig. 3: Legendre-Sobolev polynomial computation with LegendreSobolev pack-
age.

[
> S[5, 0](x);

15
8
x− 35

4
x3 + 63

8
x5

[
> P[5](x);

15
8
x− 35

4
x3 + 63

8
x5

Fig. 4: The Legendre polynomial computation with LegendreSobolev package
with two different functions.

Legendre-Sobolev polynomials of a given degree n can also be computed as a
function in µ (see Figure 5). The function α in LegendreSobolev package gives
a polynomial with respect to degree n and parameter µ. In fact, the command α
is used to compute Legendre-Sobolev polynomials with respect to the Legendre
polynomials and implements an(µ) given by Eq. (2). The formula for computing
Legendre-Sobolev polynomials from an(µ) and the Legendre polynomials is given
by the relation: Sµn(λ) = Sµn−2(λ) + an(µ) (Pn(λ)− Pn−2(λ)).

[
> S[5, µ](x);

x + (1 + 3µ)(− 5
2
x + 5

2
x3) + (105µ2 + 45µ+ 1)(27

8
x − 45

4
x3 + 63

8
x5)[

> alpha[5, µ];
105µ2 + 45µ+ 1

Fig. 5: Legendre-Sobolev polynomial computation as a function in µ.

4.2 Changing a polynomial representation w.r.t different bases:
Legendre-Sobolev, Legendre, and monomial

When a polynomial f(λ) is given in the monomial basis, one can compute
the coefficients of the polynomial in any Legendre-Sobolev basis, with param-
eter µ, by using MonomialToLSMatrix command of LegendreSobolev package
(see Fig. 6). In fact, one needs to multiply the coefficient matrix of the given
polynomial in the monomial basis and the matrix in the output of the command
MonomialToLSMatrix(degree(f), µ).

> f := (x − 1)2(x + 2)3 :

fcoeffs := Matrix([seq(coeff(f, x, i), i = 0..degree(f))]) :
µ := 0.125 :
fcoeffsInLS := Multiply(fcoeffs,MonomialToLSMatrix(degree(f), µ));

fcoeffsInLS := [5.46666666666667 − 2.70649350661521 − 3.78467908902692
0.691130587508162 0.318012422360248 0.0153629189534213]

Fig. 6: Changing the representation of f from the monomial to Legendre-Sobolev
basis with µ = 0.125.

When a polynomial f(λ) is given in the monomial basis, it is possible to
convert this polynomial to the Legendre basis, as well, by a matrix multiplication.
In fact, to compute the Legendre representation of f(λ), one needs to multiply
the coefficient matrix of f(λ) in the monomial basis and the matrix in the output
of the command MonomialToLSMatrix(degree(f), µ), where µ = 0 (see Fig. 7).

> f := (x − 1)2(x + 2)3 :

fcoeffs := Matrix([seq(coeff(f, x, i), i = 0..degree(f))]) :
fcoeffsInL := Multiply(fcoeffs,MonomialToLSMatrix(degree(f), 0));

fcoeffsInL := [82
15

− 104
35

− 92
21

38
45

32
35

8
63

]

Fig. 7: Changing the representation of f from the monomial to Legendre basis.

Furthermore, when a polynomial f(λ) is given in the Legendre basis, one
can change its representation to a Legendre-Sobolev one by multiplying the
coefficient matrix of f(λ) in the Legendre basis and the matrix from the output of
the command LegendreToLSMatrix(degree(f), µ), where µ is given (see Fig. 8a).

> fcoeffsInL := Matrix([[1, 1, 1, 1, 1, 1]]) :
µ := 1

5
:

fcoeffsInLS := Multiply(fcoeffsInL,
LegendreToLSMatrix(5, µ))
fcoeffsInLS := [1 7

4
7
4

335
284

1
4

5
71

]

(a)

> fcoeffsInLS := Matrix([[1, 1, 1, 1, 1, 1]]) :
µ := 1

5
:

fcoeffsInL := Multiply(fcoeffsInLS,
LSToLegendreMatrix(5, µ))
fcoeffsInLS := [1 − 1

5
− 2 − 11 4 71

5
]

(b)

Fig. 8: Changing the representation of f from (a) the Legendre to Legendre-
Sobolev and (b) Legendre-Sobolev to Legendre basis with µ = 1

5 .

Finally, for a polynomial f(λ) in a Legendre-Sobolev basis, we can compute
the Legendre representation of this polynomial by multiplying the corresponding
coefficients in the Legendre-Sobolev basis and the matrix in the output of the
command LSToLegendreMatrix(degree(f), µ), where µ is the same parameter
as the one in the Legendre-Sobolev representation of f(λ), see Fig. 8b.

4.3 Computing the derivatives of polynomials in Legendre-Sobolev
bases

When a polynomial is given in a Legendre-Sobolev basis, one can compute the
derivative of such polynomial by a matrix multiplication (see [3]). Figure 11
shows how to compute the derivative of a polynomial by using the command
DerivativeInLS of LegendreSobolev package.

> f := (x1)2(x + 2)3;
fcoeffs := Matrix([seq(coeff(f, x, i), i = 0..degree(f))]) :
µ := .125 :
fcoeffsInLS := fcoeffsInL · LegendreToLSMatrix(degree(f),);
der := DerivativeInLS(, convert(fcoeffsInLS, list))
fcoeffsInLS := [5.46666666666667 − 2.70649350661521
−3.78467908902692 .691130587508162 .318012422360248
0.0153629189534213]
der := [−2.00000000015363, 8.65454545474783, 5.60248447177297
4.65454545570186, .397515527919776]

Fig. 9: Computing the derivative of the polynomial f by a matrix multiplication.

> f := randpoly(x,degree = 12, terms = 10);
fcoeffs := Matrix([seq(coeff(f, x, i), i = 0..degree(f))]) :
µ := 0.125 :
fcoeffsInLS := Multiply(fcoeffs,MonomialToLSMatrix(degree(f), µ)) :
C := ComradeMatrix(degree(f), µ, convert(fcoeffsInLS, list)) :
LinearAlgebra : −Eigenvalues(C) :
rootList := [seq(%[i], i = 1..degree(f))]
f := 75x12 − 92x10 + 6x9 + 74x8 + 72x7 + 37x6 − 23x5 + 87x4 + 44x3 + 29x
rootList := [1.141014116 + 0.529676826 I, 1.141014116 − 0.529676826 I,
−1.471711477 10−8 + 0 I, 0.563935206 + 0.629828559 I, 0.563935206 − 0.629828559 I,
−0.4044380673 + 0.900856959 I,−0.404438067 − 0.900856959 I,
0.1365209364 + 0.583947922 I, 0.136520936 − 0.583947922 I,
−1.0327465955 + 0.373007812 I, −1.0327465955 + 0.373007812 I,
−0.808571018 + 0 I][

> ResidualError := norm(eval(f, x = rootList[1]), 2);
ResidualError := 0.0129507410089049

Fig. 10: Computation of the roots of the polynomial f by finding the eigenvalues
of the corresponding comrade matrix.

4.4 Computing the roots of polynomials in Legendre-Sobolev bases

Here, we have computed the roots of a polynomial f(λ) of degree 12, which is
randomly created by using the command randpoly. We have first computed the
coefficient matrix corresponding to f(λ) in the Legendre-Sobolev basis corre-
sponding to µ = 0.125; then we have used this matrix to compute the comrade
matrix C of f(λ) in the Legendre-Sobolev basis (see [4]), and the roots of f(λ)
by computing the eigenvalues of matrix C (see Fig. 10).

4.5 Computing gcds of polynomials in Legendre-Sobolev bases

When two polynomials f(λ) and h(λ) are given in a Legendre-Sobolev basis,
then one can find the monic gcd of these polynomials in the same basis by using
the command GcdInLS as illustrated in Fig. 11. The work [3] explains the theory
behind GcdInLS command which is essentially based on solving Diophantine
equations arising from a comrade matrix.

5 Handwriting recognition with LegendreSobolev package

In this section, we explain how to compute the parametrized approximations of
handwritten curves in a Legendre-Sobolev basis using LegendreSobolev pack-
age. To compute such approximations, we have implemented a package called
HandwritingRecognitionTesting (see Fig. 12). The functions in the latter
package are implemented based on Section 3 and [2].

Handwritten curves are presented as points (x, y, t) with coordinates (x, y)
and timestamp t. To compute the parametrized approximation of a handwritten
curve in a Legendre-Sobolev basis, we first compute the arc-lengths at each

> Digits := 17 :
µ := 0.125 :
f1 := randpoly(x, degree = 10);
g := randpoly(x,degree = 9);
h1 := randpoly(x, degree = 8);

f1 := 40 x9 − 81 x7 + 91 x3 + 68 x2 − 10 x + 31
g := 55 x8 − 28 x6 + 16 x4 + 30 x3 − 27 x2 − 15 x
h1 := 72 x8 − 87 x7 + 47 x6 − 90 x4 + 43 x3 + 92 x

> f := f1 g :
fcoeffs := Matrix([seq(coeff(f, x, i), i = 0..degree(f))]) :
fcoeffsInLS := Multiply(fcoeffs,MonomialToLSMatrix(degree(f),mu)) :
h := h1 g :
hcoeffs := Matrix([seq(coeff(h, x, i), i = 0..degree(h))]) :
hcoeffsInLS := Multiply(hcoeffs,MonomialToLSMatrix(degree(h),mu)) :
gcdLS := GcdInLS(convert(fcoeffsInLS, list), convert(hcoeffsInLS, list), µ);

gcdLS := [−0.67070707067873429, 0.11404958676877247, 0.23366585106067264,
0.15867768593779621, 0.12037071477726489,−7.6571048185969832 10−13,
0.0039091068982669860,−4.9471370550988164 10−17, 0.000034125246982815868]

> gcoeffs := Matrix([seq(gcdLS[i], i = 1..nops(gcdLS))]) :
gcoeffsInMonomial := Multiply(gcoeffs,LSToMonomialMatrix(nops(gcdLS) − 1, µ)) :
computedGcd := add(gcoeffsInMonomial[1][i] · xi−1, i = 1..nops(gcdLS)) :

RelativePolynomialError := evalf(
norm(simplify(%− g

lcoeff(g)
,2))

norm(g
lcoeff(g)

,2)
)

RelativePolynomialError := 4.8855925361391707 10−11

Fig. 11: Monic gcd computation using LegendreSobolev package.

> read“HandwrittingRectesting.mpl” :

with(HandwritingRecognitionTesting);
[ApproximateCurveFromCurves,ApproximateCurveFromPoints,
BoundingBox,MomentIntegrals,NormalizeArcLength]

Fig. 12: The functions of HandwritingRecognitionTesting package.

time for which a data point (x, y) is collected. To do so, we use the command
NormalizeArcLength(x, y,m), where x and y are the tables containing all xi
and yi, respectively, which are sampled at ti, for i = 0, . . . ,m, where m is the
number of times a data point is collected (see Fig. 13).

The next step is to compute the matrix of moment integrals correspond-
ing to the points which are given by x and y. To do so, we use the command
MomentIntegrals(x, y,ArcLength, L, numSteps), where ArcLength is the ta-
ble of arc lengths corresponding to the data points given by x and y at a time, L

> read“m inkml” :

ArcLength := NormalizeArcLength(xValues,
yValues, nVals);

ArcLength := Ltable

(a)

[
> L := ArcLength[nVals];

L := 748.28709093397816

(b)

Fig. 13: (a) Arc-lengths computation of handwritten characters at each time a
point is collected; (b) computing the total arc-length of a handwritten character.

> numSteps := 400 :
d := 18 :
xmoments := MomentIntegrals(
xValues,ArcLength, d,L, numSteps) :
xmomentsVec := Matrix(
[seq(xmoments[i], i = 0..d)]);

xmomentsVec :=

 1 x 19 Matrix
DataType : anything
Storage : rectangular
Order : Frotran order

> ymoments := MomentIntegrals(
yValues,ArcLength, d,L, numSteps) :
ymomentsVec := Matrix(
[seq(ymoments[i], i = 0..d)]);

ymomentsVec :=

 1 x 19 Matrix
DataType : anything
Storage : rectangular
Order : Frotran order

Fig. 14: Moments computation with HandwritingRecognitionTesting package.

(a) (b)

Fig. 15: (a) Matrix C computation with LegendreSobolev package. (b) Compu-
tation of matrix N to rescale the parametrized curves from [0, L] to [−1, 1].

the total arc length, and numSteps the number of steps in numerical integration
for computing moment integrals (see Fig. 14).

Fig. 15a illustrates how to compute coefficients of an approximated curve in
the Legendre-Sobolev basis with µ = 0.125 from moments. The matrix which is
computed by the command MomentsToLSMatrix is given by Proposition 1.

Fig 15b shows how to compute matrix N which scales a handwritten curve to
be defined over [−1, 1] instead of [0, L]. To scale the approximations to be defined
over the interval [−1, 1], we multiply two matrices N and C and compute the
conversion matrix M . Note that the matrix C is independent of the problem
and can be computed, in advance, but the matrix N is only known at the time
a handwritten curve is completely written and pen is lifted up.

Now one can compute the coefficients of parametrized approximations of
handwritten characters in the Legendre-Soboelv basis, with µ = 0.125, by mul-
tiplying the moment integral matrices and conversion matrix M , see Fig 16.

> xCoeffsVec := xmomentsVec · M

xCoeffsVec :=

1 x 19 Matrix

DataType : anything
Storage : rectangular
Order : Frotran order

> yCoeffsVec := ymomentsVec · M

yCoeffsVec :=

1 x 19 Matrix

DataType : anything
Storage : rectangular
Order : Frotran order

Fig. 16: Computing the Legendre-Sobolev coefficients of the coordinate curves
from moment integrals.

> xCoeffs := convert(xCoeffsVec, list);
yCoeffs := convert(yCoeffsVec, list);
XLS := add(xCoeffs[kk]S[kk1,mu](x), kk = 1..d + 1);
YLS := add(yCoeffs[kk]S[kk1,mu](x), kk = 1..d + 1);
XLS := 189.7334700734497143174.6127062900x17 + 195134.26543686008x15

372294.97257625631x13 + 392139.51651262814x11253289.82060430780x9

+107985.69508828471x7 + 259085.21825307995x18

1124537.0937011107000000x16 + 2009145.0748245059000000x14

1899073.9014249837000000x12 + 1016510.0846958727000000x10

309032.67958172588x832230.336065891532x5 + 54268.035000655102x6

+6111.3437078230404x37124.1885409608675x4 + 788.36849480813250x2

440.31476515699463x
YLS := 287.6474665675798841062.137598260x17 + 188484.7429259304x15

356524.0808428460x13 + 357612.16332286471x11204629.82886696718x9

+67770.765572894417x7 + 285020.31716937217x181270274.4758773500000000x16

+2379548.2831858383000000x142430565.7566198024000000x12

+1463461.9788810968000000x10519221.25154222754x812983.274033705085x5

+99749.532330325308x6 + 1403.1811689782580x37549.097513537004x4

151.99583336566333x2 + 39.1334243192727x

Fig. 17: Recovering the monomial representation of the coordinate curves.

After the coefficient matrices corresponding to Legendre-Sobolev approxi-
mations of the given handwritten curve are computed, we can recover the cor-
responding monomial representation and then plot the handwritten curve, see
Figs. 17 and 18, respectively.

5.1 Baselines and cusps

One can compute the cusps and baselines of handwritten characters by comput-
ing the critical points of the parametrized approximations of the handwritten
curves in a Legendre-Sobolev basis. The experimental results in [3], suggests
to use quadruple precision for the calculations. To do so, one can compute the
points corresponding to values of λ for which either X ′(λ) = 0 or Y ′(λ) = 0, but
here we restrict ourselves to the latter case. We apply our calculations for the
example which is given in Section 5 for the handwritten letter “m”, where the

> plt := plot([XLS,YLS, x = −1..1], color = black,
legend = “The approximated handwritten curve in LS basis with d = 18, µ = 1

8
”) :

200 250 300 350 400

150

200

250

X(λ)

Y (λ)

The approximated handwritten curve in LS basis with d = 18, µ = 1
8

Fig. 18: The approximated curve which is constructed from moment integrals.

Fig. 19: Derivative computation using LegendreSobolev package.

degree of the approximation is d = 18 and µ = 0.125. To do so, we first com-
pute the coefficients of Y ′(λ) in the given Legendre-Sobolev basis. The command
DerivativeInLS implements this functionality, see Fig. 19.

Then, we need to compute the comrade matrix corresponding to Y ′(λ). In
fact, the roots of the system {Y ′(λ) = 0} are equivalent to the eigenvalues of
the comrade matrix corresponding to Y ′(λ), Fig. 20. Now, we can compute the
critical points on the handwritten curve as given in Fig. 21.

5.2 Regions of the characters in a handwritten math expression

Using the coefficients of the Legendre-Sobolev approximations of handwritten
characters, one can find the corresponding regions of individual characters, au-
tomatically, by relying on computation of critical points of the corresponding
parametrized approximations. In Fig. 22, we have approximated the individual

Fig. 20: Critical point computation using LegendreSobolev package.

> pnts := [seq(eval([XLS,YLS], x = realyroots[i]), i = 1..nops(realyroots))] :
b := plots : −pointplot(pnts, symbol = solidbox, color = red,
legend = “Points on the approximated curve in LS basis with Y′(λ) = 0”) :
a1 := plot([XLS,YLS, x = −1..1], color = black,
legend = “The approximated handwritten curve in LS basis with d = 18, µ = 1

8
”) :

plots : −display([b, a1]);

200 250 300 350 400

150

200

250

X(λ)

Y (λ)

The approximated handwritten curve in Legendre-Sobolev basis with d = 18, µ = 1
8

Points on the approximated curve in Legendre-Sovolev basis with Y ′(λ) = 0

Fig. 21: Critical points corresponding to the approximated curve in Legendre-
Sobolev basis constructed from moment integrals, with µ = 0.125.

Fig. 22: Finding the regions of the characters in a math expression.

characters in a handwritten math expression by degree 10 polynomials in the
Legendre-Sobolev basis with µ = 1

5 . The command BoundingBox(Cx,Cy, µ) im-
plements this method, where Cx and Cy are the X(λ) and Y (λ) coordinate
approximation coefficients in the Legendre-Sobolev basis.

6 Concluding Remarks

The new Maple package LegendreSobolev performs various operations on poly-
nomials in Legendre-Sobolev bases. All these operations rely on linear algebra
arithmetic operations.

The package LegendreSobolev offers a command for recovering the coeffi-
cients of polynomials in Legendre-Sobolev bases from their moment integrals.
This functionality is very useful in the problem of on-line handwriting recogni-
tion, when having the ability of real-time encoding of handwritten characters
from their digital inks is crucial. It is also possible to study the geometrical
features of handwritten characters by relying on computations of critical and
singular points in Legendre-Sobolev bases.

Investigation of how these features might improve the mathematical hand-
writting recognition rates is a work in progress.

References

[1] P. Althammer. Eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen und deren
Anwendung auf die beste approximation. J. Reine Ang. Math., 211:192–204, 1962.

[2] P. Alvandi and S. M. Watt. Real-Time Computation of Legendre-Sobolev Approxima-
tions. In SYNASC, pages 67–74, 2018.

[3] P. Alvandi and S. M. Watt. Handwriting Feature Extraction via Legendre-Sobolev Matrix
Representation. 2019 (preprint).

[4] S. Barnett. A companion matrix analogue for orthogonal polynomials. Linar Algebr.
Appl, 12(8):197–202, 1975.

[5] G. Carballo, R. lvarez Nodarse, and J.S. Dehesa. Chebychev polynomials in a speech
recognition model. Applied Mathematics Letters, 14(5):581 – 585, 2001.

[6] B. W. Char and S. M. Watt. Representing and Characterizing Handwritten Mathematical
Symbols through Succinct Functional Approximation. In ICDAR, volume 2, pages 1198–
1202, 2007.

[7] O. Golubitsky and S. M. Watt. Online stroke modeling for handwriting recognition. In
CASCON, pages 72–80, 2008.

[8] O. Golubitsky and S. M. Watt. Online computation of similarity between handwritten
characters. In Document Recognition and Retrieval XVI, part of the IS&T-SPIE Elec-
tronic Imaging Symposium, pages C1–C10, 2009.

[9] O. Golubitsky and S. M. Watt. Online Recognition of Multi-Stroke Symbols with Or-
thogonal Series. In ICDAR, pages 1265–1269, 2009.

[10] F. Hausdorff. Summationsmethoden und Momentfolgen. I. 9:74–109, 1921.
[11] F. Hausdorff. Summationsmethoden und Momentfolgen. II. 9:74–109, 1921.
[12] R. Hu and S. M. Watt. Identifying Features via Homotopy on Handwritten Mathematical

Symbols. In SYNASC, pages 61–67, 2013.
[13] K. Wang, N. An, B. N. Li, Y. Zhang, and L. Li. Speech emotion recognition using fourier

parameters. IEEE Transactions on Affective Computing, 6(1):69–75, 2015.
[14] Y. Zhiqi. Gesture learning and recognition based on the chebyshev polynomial neural

network. In 2016 IEEE Information Technology, Networking, Electronic and Automation
Control Conference, pages 931–934, 2016.

[15] L. Zhu and S. Zhu. Face recognition based on orthogonal discriminant locality preserv-
ing projections. Neurocomputing, 70(7):1543 – 1546, 2007. Advances in Computational
Intelligence and Learning.

