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Abstract—The present work is motivated by the problem
of mathematical handwriting recognition where symbols are
represented as plane curves, (X(λ), Y (λ)) parameterized by arc
length λ ∈ [0, L]. Earlier work has shown that approximating the
coordinate functions as certain truncated orthogonal polynomial
series yields fast and effective recognition. It has been previously
shown how to compute Legendre series representation in real
time, as the curve is being traced out. In this article we show
how to compute Legendre-Sobolev series representation in real
time. The idea is to numerically integrate the moments of the
coordinate functions as the curve is being traced. We show how
the Legendre-Sobolev coefficients may be constructed either from
the Legendre series coefficients or directly from the moments.
Computing via Legendre series coefficients requires two matrix
vector products, while the direct method requires only one.

Keywords-mathematical handwriting recognition, numerical
approximation, algebraic curves, orthogonal polynomial series

I. INTRODUCTION

Among different methods for handwriting recognition, we
are mainly interested in online methods in which recognition
has to be done in real time. In such methods, recognition can
not happen until the process of writing of one stroke is com-
plete. Since we are looking for online recognition methods,
it is important to use the power of available processors in
our recognition devices, such as pen-based tablets, telephones,
whiteboards and PCs, doing calculations as strokes are written
rather than waiting until they are complete.

Most of the techniques for handwriting recognition includ-
ing the ones based on elastic matching [9], [12], [10], need
each character to be traced out completely, before any analysis
can occur for recognition of the corresponding character. That
means one keeps processors idle while characters are being
traced out and that causes delay in recognition process.

In [2], the authors propose truncated orthognonal poly-
nomial series representation of parametric plane curves for
handwriting recognition. In [3], it is shown how to construct
Legendre series coefficients from moments that are computed
in real time as the curve is being written. The main point is
to avoid having to wait until pen up (when the arc length
is known) to compute the functional inner product. The
authors of [3] also report on the complexity of their method
followed by experimental results that show this representation

of coordinate curves is as good as that obtained by earlier
stroke-at-once methods. In fact, this method requires constant
number of post-pen-up operations to compute the coefficients
of coordinate curves in Legendre basis.

Representing parametrized coordinate curves X(λ) and
Y (λ) in orthogonal basis not only helps in establishing online
handwriting recognition methods but it helps in analyzing
the geometry of each handwritten character, like finding the
extremum points of each character. Such analysis becomes
important in mathematical handwriting recognition, when the
characters appearing in a math formula have varying seman-
tically meaningful baselines [7], [8].

While representing coordinate curves of characters in Leg-
endre basis helps in developing online handwriting recognition
methods, authors of [4] have reported experimental results that
demonstrate that representing coordinate curves in Legendre-
Sobolev basis has higher detection rates compared to when
these curves are represented in Legendre basis.

We therefore require an algorithim to calculate in real-time
the representation of curves in a Legendre-Sobolev basis. This
is the goal of the present paper. We do this by computing
matrix M , as in Proposition 2, which leads to a method
for computing Legendre-Sobolev coefficients from moment
integrals by a matrix multiplication.

Note that for parametrized coordinate curves X(λ) and
Y (λ) in any orthogonal basis, there are three different
parametrizations that arise naturally: parametrization by time,
by arc length, and by affine arc length. The last two
parametrizations depend only on the curve itself, while the
first one also depends on the speed with which the hand-
written character is being written. That might explain why
parametrizations by arc length or affine arc length yield better
recognition rates.

In [4], it is shown that Legendre-Sobolev yields similar
results for recognition rates with respect to both arc length
and affine arc length, while for elastic matching arc length
parametrization is better than the rest. In this paper, we only
use parametrization by arc length.

This paper is organized as follows. After presenting pre-
liminaries in Section II, we explain how one can compute
matrix M , which was mentioned earlier, in Section III. Then
Section IV investigates condition number of matrix M . Sec-



tion V is dedicated to the numerical method we have used in
this paper for computing moment integrals. Finally, Section VI
applies experimentation around the ideas presented here.

II. PRELIMINARIES

Earlier work [2], [3] has shown that the coordinate curves
X(λ) and Y (λ) for handwritten characters can be modeled by
truncated orthogonal series and the series coefficients can be
used for classification and therefore recognition of characters.
The parameter λ can be chosen to be either time or length of
the handwritten curve. In this paper, we assume that sample
values of X(λ) and Y (λ) are received as a real time signal
and λ is corresponding to the length of handwritten curves.
We use these values to compute “moment integrals” and from
moment integrals we approximate the coefficients of curves
X(λ) and Y (λ) in an orthogonal basis. We present several
basic notions and ideas that are used throughout this paper.

A. Series of orthogonal functions

The Legendre inner product between two functions f, g :
[−1, 1]→ R is defined by

〈f(λ), g(λ)〉L :=

∫ 1

−1
f(λ) g(λ)dλ. (1)

We also consider the following inner product which is given by

〈f(λ), g(λ)〉LS :=

∫ 1

−1
f(λ) g(λ)dλ+ µ

∫ 1

−1
f ′(λ)g′(λ)dλ

(2)
where µ ∈ R>0. The latter is a special case of Legendre-
Sobolev inner product. In fact, a Legendre-Sobolev inner prod-
uct may involve terms corresponding to higher order deriva-
tives, but for the purpose of this paper we restrict ourselves to
the first order derivatives. Systems of orthogonal polynomials
{H0, H1, H2, . . .} corresponding to either of the above inner
product can be computed by Gram-Schmidt orthogonalization
to the monomial basis {1, λ, λ2, . . .}. We denote the Legendre-
Sobolev polynomials corresponding to the inner product given
by Equation (2) of degree n by Sµn(λ) or Sn(λ), whenever
there is no ambiguity. We also denote Legendre polynomials
of degree n by Pn(λ). These have been studied by Althammer
[1] and are thus sometimes given that name.

A function f : [−1, 1] → R (under some assumptions)
can be represented by an infinite linear combination of the
orthogonal polynomials {H0(λ), H1(λ), H2(λ), . . .} as

f(λ) =

∞∑
i=0

αiHi(λ)

where {H0(λ), H1(λ), H2(λ), . . .} is the orthogonal basis
corresponding to either Legendre or Legendre-Sobolev inner
product. The coefficients of the series in the new basis can be
computed by

αi :=
〈f(λ), Hi(λ)〉
〈Hi(λ), Hi(λ)〉

, i = 0, 1, 2, . . .

where 〈., .〉 stands for either Legendre or Legender-Sobolev
inner product, and it is also assumed that the integrals involved
in the inner product are well-defined for f .

Note that the closest polynomial of degree d to the function
f with respect to Euclidean norm induced by the given inner
product is given by the truncated series

f(λ) '
d∑
i=0

αiHi(λ).

Such an approximation allows one to think of functions as
points (α0, α1, . . . , αd) in an (d+1)-dimensional vector space.
The variational integral of the square distance between two
curves is then given by the Euclidean norm in this vector
space. We can measure how close two functions are to each
other in this vector space as follows:

f '
d∑
i=0

αiHi(λ) , g '
d∑
i=0

βiHi(λ),

then one can measure how close f, g are by computing:

‖ f − g ‖'

√√√√ d∑
i=0

(αi − βi)2.

This method of measuring the distance of two functions is very
important in hand-writing recognition method used in [4].

B. Polynomial norms

In this paper, we use three different polynomial norms to
compute error rates in approximated polynomials. We use
Legendre and Legendre-Sobolev norms which are induced by
the inner product given by Equations (1) and (2), respectively.
We also use max norm that is given by

‖f(λ)‖max := max
a≤λ≤b

(|f(λ)|),

where f(λ) :=
∑d
i=0 αiλ

i, and λ ∈ [a, b].

C. Interpolating coordinate curves X(λ) and Y (λ)

The moments of a function f defined on the interval [a, b]
are the integrals: ∫ b

a

λk f(λ)dλ.

A key aspect of the approach used in [2] for the purpose
of interpolating the coordinate curves X(λ) and Y (λ) corre-
sponding to handwritten strokes is to recover these curves from
their moments. This is the Hausdorff moment problem [5], [6],
known to be ill-conditioned. For the purpose of this paper, the
moments of a function f are defined over an unbounded half-
line since the curve may be traced over an arbitrary length:

mk(f, `) :=

∫ `

0

λk f(λ)dλ.

In our application, we assume that discrete sample values of
f are received as a real-time signal. We use these values to
compute approximate values for the moment integrals. After a



curve is traced out, we will have computed its moments over
some length L, with L known only at the time the pen is
lifted. The problem is now to scale L to a standard interval
and compute the truncated Legendre series coefficients for the
scaled function from the moments of the unscaled function.

Proposition 1 (See Section 6 in [3]). Suppose that
mk(f(λ), L) is defined as

∫ L
0
f(λ)λkdλ where L is the

length of a given curve and f(λ) is either X(λ) or Y (λ),
for k = 0, . . . , d. Let also f̂(λ) =

∑d
k=0 αkPk(λ) be the

corresponding scaled function of f(λ) in the interval [−1, 1].
Then for k = 0, . . . , d, we can compute αk as follows:

αk = (−1)k
2k + 1

L

k∑
i=0

(
−1

L
)i
(
k

i

)(
k + i

i

)
mi(f, L). (3)

Note that the coefficients (−1)i
(
k
i

)(
k+i
i

)
are independent of

the problem and may be computed as constants, in advance.
Given the first k moments of f and the first k − 1 powers
of L, we may compute α and Lk in a number of arithmetic
operations depending only on k (see Section 6 in [3]).

When the last point arrives and pen is lifted up, we apply
linear substitution [0, L]→ [−1, 1] to re-scale the moments to
the interval [−1, 1] and change the basis from the monomial
basis {1, λ, λ2, . . . , λd} to the orthogonal polynomial basis
{1, P1(λ), P2(λ), . . . , Pd(λ)}.

III. METHODS

Proposition 1 shows how one can compute the coefficients
of coordinate curves X(λ) and Y (λ) of handwritten characters
in the Legendre basis. The goal of this section is to show
how to compute such coefficients in a Legendre-Sobolev basis
using moment integrals. To this end, we first compute the
conversion matrix M2 where[
P0(λ) · · · Pn(λ)

]T
= M2

[
Sµ0 (λ) · · · Sµn(λ)

]T
.

Then we compute matrix M from M2 such that[
β0 · · · βd

]
=
[
m0(f, L) · · · md(f, L)

]
DM,

(4)
where d is the degree, β0, β1, . . . , βd are the coefficients and
f is one of the coordinate curves in Legendre-Sobolev basis
and D is a diagonal matrix which will be only known at the
time the pen is lifted. Knowing the matrices M and D and
also moment integrals, one can compute the coefficients of
coordinate curves X(λ) and Y (λ) in the Legendre-Sobolev
basis.

According to Equation (1.7) in [11], for n ≥ 0 and µ ≥ 0,
we have

Sµn(λ) =

bn2 c∑
k=0

an−2k(µ) (Pn−2k(λ)− Pn−2k−2(λ)) , (5)

where P−2(λ) = P−1(λ) = 0, and

a0(µ) := 1, av(µ) :=

b v−1
2 c∑

k=0

(
µ

4
)k

(v + 2k − 1)!

(2k)!(v − 2k − 1)!
for v ≥ 1.

In the following theorem, we show how one can compute
matrix Nµ such that[
Sµ0 (λ) · · · Sµn(λ)

]T
= Nµ

[
P0(λ) · · · Pn(λ)

]T
.

Note that Nµ is a matrix whose entries are polynomials in µ.

Theorem 1. For n ≥ 1 and µ ≥ 0,

Sµn(λ) = an(µ)Pn(λ) +

bn−1
2 c∑

k=1

(an(µ)− an+2(µ))Pn−2k(λ).

(6)

Proof. We consider two different cases; first let n be equal to
2m+ 1 for some m ∈ Z>0. Then,

S2m+1(λ) =

m∑
k=0

a2m−2k+1(µ)(P2m−2k+1(λ)− P2m−2k−1(λ))

= a2m+1(µ)(P2m+1(λ)− P2m−1(λ))+
a2m−1(µ)(P2m−1(λ)− P2m−3(λ))+
...
+a3(µ)(P3(λ)− P1(λ))+
a1(µ)(P1(λ)− P−1(λ)).

(7)
Since P−1(λ) is defined to be zero, then we can rewrite
Equation (7) as follows:

S2m+1(λ) = a2m+1(µ)P2m+1(λ)+
m−1∑
k=0

(a2m−2k−1(µ)− a2m−2k+1(µ))P2m−2k−1(λ).

(8)
Now let n be of the form 2m for m ∈ Z>0. Then,

S2m(λ) = S0 +
∑m−1
k=0 a2m−2k(µ)×

(P2m−2k(λ)− P2m−2k−2(λ))
= a2m(µ)(P2m(λ)− P2m−2(λ))+

a2m−2(µ)(P2m−2(λ)− P2m−4(λ))+
...
+a3(µ)(P4(λ)− P2(λ))+
a1(µ)(P2(λ)− P0(λ)).

(9)

Since S0(λ) = P0(λ), we can rewrite Equation (9) as follows:

S2m(λ) = a2m(µ)P2m(λ)+
m−2∑
k=0

P2m−2k−2(λ) (a2m−2k−2(µ)− a2m−2k(µ)) .

(10)
Based on Equations (8) and (10), we obtain

Sn(λ) = an(µ)Pn(λ) +
∑bn−1

2 c
k=1 (an(µ)− an+2(µ))Pn−2k(λ).

2

Based on Equation (6), we have[
Sµ0 (λ) · · · Sµn(λ)

]T
= Nµ

[
P0(λ) · · · Pn(λ)

]T
,

where Nµ is a (n + 1) × (n + 1) lower triangular matrix
whose main diagonal is formed by ak(µ) and other entries
are formed by either 0 or a`(µ) − a`+2(µ), for k = 0, . . . , n



and ` = 1, . . . , n−2. We use N instead of Nµ whenever there
is no ambiguity. For arbitrary n, matrix N can be formulated
as follows, for i, j = 1, . . . , n+ 1:

[N ]i,j =


0 if i < j
ai−1(µ) if i = j
ai−2`−1(µ)− ai−2`+1(µ) =
aj−1(µ)− aj+1(µ)

if j = i− 2`, for
` = 1, . . . , b i−12 c

0 otherwise
(11)

Theorem 2. For n ≥ 1, and µ ≥ 0, we have[
P0(λ) · · · Pn(λ)

]T
= M2

[
S0(λ) · · · Sn(λ)

]T
,

where for i, j = 1, . . . , n+ 1,

[M2]i,j =



0 if i < j
1

ai−1(µ)
if i = j

1
ai−2`−1(µ)

− 1
ai−2`+1(µ)

=
1

aj−1(µ)
− 1

aj+1(µ)

if j = i− 2`, for
` = 1, . . . , b i−12 c

0 otherwise
(12)

Proof. First, note that M2 = N−1. The formula for computing
the inverse of any invertible lower triangular matrix N is:

N−1i,j =


0 for i < j
1
Ni,i

for i = j

− 1
Ni,i

∑i−1
k=j Ni,kN

−1
k,j for i > j

(13)

Using the formula in Equation (13), we compute the inverse
of matrix N given by Equation (11). When i < j or i = j
then the results follow immediately based on Equation (13).
Suppose that i > j. We prove by induction, that the inverse
matrix of N can be computed as Equation (12). The induction
is done over `, where ` corresponds to (2 `− 1)th and (2 `)th
lower diagonals of matrix M2, for ` = 1, . . . , bn2 c.

Basic step: We first compute the entries of [M2]i,j that be-
long to the first lower diagonal of matrix M2 where j = i−1.
Based on Formula (13), we have

[M2]i,i−1 = −1
[N ]i,i

[N ]i,i−1[M2]i−1,i−1
= − 1

ai−1(µ)
(0× 1

ai−2(µ)
) = 0.

Now, let j = i − 2; then again, one can obtain the following
results for entries of M2 on the second lower diagonal:

[M2]i,i−2 = −1
[N ]i,i

([N ]i,i−2[M2]i−2,i−2+

[N ]i,i−1[M2]i−1,i−2)
= − 1

ai−1(µ)
((ai−3(µ)− ai−1(µ))× 1

ai−3(µ)
+

0× 0)
= 1

ai−3(µ)
− 1

ai−1(µ)
.

Induction step: Suppose that for ` = 1, . . . , `′, with `′ ∈ N,
we have [M2]i,j = 1

aj−1(µ)
− 1

aj+1(µ)
when j = i − 2 ` and

[M ]i,j = 0 when j = i − 2 ` + 1. Now let j = i − 2 `′ − 1,

then we have

[M2]i,i−2 `′−1 = −1
[N ]i,i

 `′∑
`=1

[N ]i,i−2 `[M2]i−2 `,i−2 `′−1+

`′∑
`=0

[N ]i,i−2 `−1[M2]i−2 `−1,i−2 `′−1

 .

Since [N ]i,i−2 `−1 = 0, for ` = 0 . . . , `′, thus

[M2]i,i−2 `′−1 = − 1

[N ]i,i

 `′∑
`=1

[N ]i,i−2 `[M2]i−2 `,i−2 `′−1

 .

Now let j′ := i− 2 `′ − 1 and i′` = i− 2 `, for ` = 1 . . . , `′.
We want to show that [M2]i′`,j′ = 0, for all ` = 1 . . . , `′.
In fact, one can show easily that j′ = i′` − 2 k` + 1 where
k` := `′−`+1, for ` = 1, . . . , `′. Note that k` takes its values
from the set {`′, `′− 1, . . . , 1}, respectively, for ` = 1, . . . , `′.
By induction hypothesis, we know that [M2]i′`,j′ = 0. Thus

[M2]i,i−2 `′−1 = − 1

[N ]i,i

 `′∑
`=1

[N ]i,i′` [M2]i′`,j′

 = 0.

To complete the proof, we need to prove that when j = i −
2 `′ − 2, then [M2]i,i−2 `′−2 = 1

ai−2 `′−3(µ)
− 1

ai−2 `′−1(µ)
.

[M2]i,i−2 `′−2 = −1
[N ]i,i

`′+1∑
`=1

[N ]i,i−2 `[M2]i−2 `,i−2 `′−2+

`′∑
`=0

([N ]i,i−2 `−1[M2]i−2 `−1,i−2 `′−2


= −1

ai−1(µ)

 `′∑
`=1

[N ]i,i−2 `[M2]i−2 `,i−2 `′−2+

(ai−2 `′−3(µ)− ai−2 `′−1(µ)) 1
ai−2 `′−3(µ)

)
.

Now let j′ := i− 2 `′ − 2 and i′` = i− 2 `, for ` = 1 . . . , `′.
Again, one can easily show that j′ = i′` − 2 k` where k` :=
`′ − ` + 1, for ` = 1, . . . , `′. Note that k` takes its values
from the set {`′, `′− 1, . . . , 1}, respectively, for ` = 1, . . . , `′.
By induction hypothesis, we know that [M2]i′`,j′ = 1

aj′−1(µ)
−

1
aj′+1(µ)

= 1
ai−2 `′−3(µ)

− 1
ai−2 `′−1(µ)

. One can obtain

[M2]i,i−2 `′−2 = −1
ai−1(µ)

[(ai−2 `′−3(µ)− ai−2 `′−1(µ))×
1

ai−2 `′−3(µ)
+
(

1
ai−2 `′−3(µ)

− 1
ai−2 `′−1(µ)

)
×

[(ai−3(µ)− ai−1(µ)) + (ai−5(µ)− ai−3(µ))
+ · · ·+ (ai−2 `′−1(µ)− ai−2 `′+1(µ))]]
= 1

ai−2 `′−3(µ)
− 1

ai−2 `′−1(µ)
.

2

Now that we have computed M2, we can compute matrix M
which was mentioned at the beginning of this section. Suppose
M1 is the corresponding matrix for computing Legendre
coefficients αk from mk(f(λ), L) , for k = 0, . . . , d, see
Proposition 1. Thus[

α0 · · · αd
]

=
[
m0(f, L) · · · md(f, L)

]
M1,



where, for i, j = 1, . . . , d+ 1, we have

[M1]i,j =

{
(−1)i+j (2j−1)Li

(
j−1
i−1
)(
i+j−2
j−1

)
if i ≤ j

0 if i > j

Note that matrix M1 can be written as the product of a lower
triangular matrix M ′1 and a diagonal matrice D as M1 = D×
M ′1, where for i, j = 1, . . . , n+ 1,

[M ′1]i,j =

{
(−1)i+j(2j − 1)

(
j−1
i−1
)(
i+j−2
j−1

)
if i ≤ j

0 if i > j

[D]i,j =

{
1
Li if i = j
0 otherwise.

Proposition 2. Suppose that mk(f(λ), L) is defined as∫ L
0
f(λ)λkdλ, where L is the length of a given handwritten

curve and f(λ) is either X(λ) or Y (λ), the coordinate curves
corresponding to the handwritten curve, for k = 0, . . . , d.
Let also f̂(λ) =

∑d
k=0 αkPk(λ) =

∑d
k=0 βkS

µ
k (λ) be the

corresponding scaled function of f(λ) in the interval [−1, 1].
Then, for k = 0, . . . , d, we can compute βk as follows:

[
β0 · · · βd

]
=
[
m0(f, L) · · · md(f, L)

]
DM ′1M2.

(14)

In the rest of this section, our goal is to compute matrix
M := M ′1M2. Entries of M are computed as follows:

[M ]i,j =
∑d+1
k=1[M ′1]i,k[M2]k,j =

∑d+1
k=j [M

′
1]i,k[M2]k,j

= [M ′1]i,j [M2]j,j +
∑d+1
k=j+2[M ′1]i,k[M2]k,j

= [M ′1]i,j [M2]j,j +
∑b d+1−j

2 c
`=1 [M ′1]i,j+2`[M2]j+2`,j .

(15)
Note that in Equation (15), the last equality in the first line is
derived from the fact that M2 is a lower triangular matrix and
the equality in the last line is true because [M2]j+2`−1,j = 0,
for ` = 1, . . . , bd+1−j

2 c. For the last equation, we consider
two different cases:
• i ≤ j: For this case the elements [M ′1]i,j+2` are non-zero,

for ` = 0, . . . , bd+1−j
2 c. Thus,

[M ]i,j = (−1)i+j(2j − 1)
(
j−1
i−1
)(
i+j−2
j−1

)
1

aj−1(µ)
+(

1
aj−1(µ)

− 1
aj+1(µ)

)
×∑b d+1−j

2 c
`=1 (−1)i+j(2j + 4`− 1)

(
j+2`−1
i−1

)(
i+j+2`−2
j+2`−1

)
.

• i > j: Then the elements [M ′1]i,j+2` are all zero except
for ` ≥ i−j

2 . Thus we obtain

[M ]i,j =
∑b d+1−j

2 c
`=d i−j

2 e
[M ′1]i,j+2`[M2]j+2`,j

= (−1)i+j
(

1
aj−1(µ)

− 1
aj+1(µ)

)
×∑b d+1−j

2 c
`=d i−j

2 e
(2j + 4`− 1)

(
j+2`−1
i−1

)(
i+j+2`−2
j+2`−1

)
.

Note that when i = d+ 1,

Md+1,j =

{
0 if d+j is even(
2 d
d

) (2d2+d−1)(aj−1(µ)−aj+1(µ))
aj−1(µ)aj+1(µ)

otherwise

According to the notations in Proposition 2, for k =
0, . . . , d, we have

βk =

d∑
j=0

mj(f(λ), L)[M ]j+1,k+1

Lj+1
. (16)

On the one hand, M only depends on d and µ, and thus, this
matrix can be precomputed. On the other hand, computation
of Lk can be done with one operation, see [3]. Furthermore,
each βk can be computed with 3d + 3 operations, assuming
that moment integrals are known. Thus,

∑d
k=0 3d + 3 =

(d + 1)(3d + 3) operations are required for computation of
all βk, for k = 0, . . . , d. Since for the purpose of handwriting
recognition, d is fixed and small, thus the quadratic exponent
of d is negligible and the coefficients of the coordinate curves
of handwritten characters in the Legendre-Sobolev basis can
be computed in constant time. In Section V, we explain how
moment integrals are computed for the purpose of this paper.

IV. CONDITION NUMBER

Let gµd (x) be the characteristic polynomial of matrix MMT

in variable x, where (d + 1) × (d + 1) is the size and MT

is the transpose matrix of M . Since matrix MMT is real
and symmetric, all the roots of gµd (x) are real numbers. Let
σ1 ≤ · · · ≤ σd+1 be the roots of gµd (x). Then the norm-2
condition number of M is computed by κ2(M) =

√
σd+1

σ1
.

For d = 9, one can compute gµ9 (x) which has the following
form:

gµ9 (x) = x10 + t92(µ)x9 + t84(µ)x8 + t76(µ)x7+
t68(µ)x6 + t510(µ)x5 + t412(µ)x4 + t314(µ)x3+
t214(µ)x2 + t114(µ)x1 + t014(µ)x0,

(17)
where tmn (µ) is a polynomial of degree n in µ and is the
coefficient of the monomial xm in gµ9 (x). Here, we have
not shown the polynomials tmn (µ) due to the lack of space.
Note that the entries of M are not polynomials in µ. Thus,
for simplification of computations, we have computed Taylor
expansions of the entries of M around µ = 0, and then
attempted to compute the characteristic polynomial gµ9 (x).
Figure 1 demonstrate how the norm-2 condition number of
matrix M changes with respect to d, where the size of matrix

Fig. 1. Norm-2 condition number of matrix M w.r.t d and µ.



Fig. 2. Based-10-log-scaled norm-2 condition number of M w.r.t d and µ.
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Fig. 3. The black solid curve is a handwritten curve, while the dashed ones
are approximations of the handwritten curve in Legendre-Sobolev basis of
degrees 12, 18, 20, and µ = 0.25, showing the effect of condition number.

M is d + 1, and µ is the parameter appearing in Legendre-
Sobolev inner product. Since the changes of the values of the
condition number of matrix M are really high, see Figure 1,
we have plotted the based-10 log scaled condition number of
matrix M , as well, in Figure 2. Note that for creating this plot,
condition number of matrix M is computed for d = 4, . . . , 20
and 0 < µ ≤ 0.5. Based on our experimentation, the value of
the condition number increases dramatically when d > 18 and
µ > 0.3. In Figure 3, the solid curve is a handwritten curve,
and the dashed curves are the approximations of the black
solid curve using truncated Legendre-Sobolev series of degrees
12, 18, 20 and µ = 0.25. As one can see, the approximation
corresponding to degree 20 becomes very chaotic.

V. MOMENT INTEGRALS

To compute the integrals
∫ L
0
λk f(λ)dλ, where L is the

length of the handwritten curve, we use an adapted version
of trapezoid method for numerical integration. Suppose that
we receive the coordinates (X(`i), Y (`i)) of the handwrit-
ten curve at time i with corresponding arc lengths `0 =
0, `1, `2, . . . , `m = L for some m ∈ N.

Since we receive the coordinates (X(`i), Y (`i)) one at a
time when tracing out the handwritten curve, we compute
moment integrals by computing the following:

m−1∑
i=0

∫ `i+1

`i

λk f(λ)dλ.

For computing
∫ `i+1

`i
λk f(λ)dλ we use trapezoid method

when the number of steps in this integration method is

nsi ∈ N. Let ∆λi = `i+1−`i
nsi

. Then we approximate the latter
integral by

∫ `i+1

`i

λk f(λ)dλ =

nsi−1∑
j=0

(
f(λij )λkij + f(λij+1

)λkij+1

2

)
∆λi

where λij := `i + j∆x, for j = 0, . . . , nsi − 1. Note that
when nsi > 1, the quantities f(λij ) are not known, for j =
1, . . . , nsi− 1. Thus we use linear spline interpolation to find
such values as following:

f(λij ) := f(`i) +
λij − `i
`i+1 − `i

(f(`i+1)− f(`i)) .

In Section VI, we show how the total number of steps used
in the numerical integration method for computing moment
integrals can affect the forward error in f(λ) in Legendre-
Sobolev basis.

VI. EXPERIMENTS

Suppose the coordinate curves of a handwritten letter “S”
are given by Equations (18) and (19):

X(λ) = − 1883991
100 λ3 − 138501

20 λ9 + 3041491
100 λ8+

2790504
25 λ6 + 263031

100 λ2 − 10513199
100 λ5−

3724291
50 λ7 + 16809

25 λ10 + 604057
10 λ4+

1807
25 −

20797
50 λ,

(18)

Y (λ) = 855949
50 λ3 + 684931

100 λ9 − 3200151
100 λ8−

12334211
100 λ6 − 327317

100 λ2 + 5572319
50 λ5+

8169529
100 λ7 − 61831

100 λ10 − 5848441
100 λ4+

6253
100 + 12128

25 λ,

(19)

where 0 ≤ λ ≤ 2. Then one can compute X(λ) and Y (λ)
in Legendre-Sobolev basis, for µ = 0.25. For the given letter
“S”, one can verify that L = 690.8961469874615.

Figure 4 demonstrates how the number of steps in the
numerical integration method used for computing moment
integrals affects relative error for computing coefficients of
X(λ) (given by Equation (18)) in Legendre-Sobolev basis
w.r.t different polynomial norms. The computations in this
figure are done by double precision. Our experiments showed
that higher precision results in the same error rates as double
precision.
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Fig. 5. The solid black curve is the given curve in monomial basis, while
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moment integrals computed by exact integration. The other two curves are
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the moment integrals are computed by numerical integration w.r.t different
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Fig. 4. This figure shows how the number of steps in numerical integration
for computing moment integrals affects relative error of both moment integrals
w.r.t norm-2 and coordinate curve X(λ) w.r.t different norms represented in
this paper: (right) relative error of coordinate curve X(λ) v.s number of steps
in the numerical integration method for computing moment integrals (left)
relative error of coordinate curve X(λ) v.s norm-2 relative error of moment
integrals matrix when these moment integrals are corresponding to the ones
computed in the left graph.
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Fig. 6. This figure shows the relation between norm-2 relative error of the
matrix of moment integrals and relative error of X(λ) in Legendre-Sobolev
basis, w.r.t different polynomial norms for letter S.

In Figure 5, the black curve is corresponding to coordinate
curves given by Equations (18) and (19). The rest of the
curves are corresponding to the same curve, where X(λ)
and Y (λ) are computed in Legendre-Sobolev basis based
on computations of moment integrals and multiplying such

moments by M ; for the blue curve, moment integrals are
computed by exact integration and for the other two curves,
moment integrals are computed by numerical integration. As
one can see for when the number of steps in integration
exceeds 100, the difference between the red and blue curve
is really small.

Figure 6 demonstrates error rates for X(λ), given by Equa-
tion (18), arising from our method for computing Legendre-
Sobolev coefficients from moment integrals, when there is
some errors in such integrals. Our method refers to computing
Legendre-Sobolev coefficients of X(λ) by multiplying its
moments by matrix M . The computations in this graph are
done with high precision when the number of digits is 100.

Figure 7 shows the absolute error polynomial ∆X(λ), when
X(λ) is computed in Legendre-Sobolev basis.

As for letter “S”, we can repeat the same computations for
letter “Z” which is given by coordinate curves below:

X(λ) = 8018135λ25 − 184122133λ24 + 1963740491λ23−
12887030261λ22 + 58057748146λ21−
189363255215λ20 + 457944788302λ19−
820603554099λ18 + 1047542179023λ17−
805267306124λ16 − 33534962822λ15+
1143077678314λ14 − 1924407366996λ13+
2003464645667λ12 − 1508577522702λ11+
857870845235λ10 − 372653355690λ9+
123250439506λ8 − 30628162000λ7+
5591644024λ6 − 725374922λ5 + 63700003λ4−
3521783λ3 + 109078λ2 − 1091λ+ 161,

(20)

Y (λ) = 2067937λ25 − 40256869λ24 + 331918218λ23−
1347575656λ22 + 1032521518λ21+
19857114176λ20 − 133063329052λ19+
494989230846λ18 − 1295311702444λ17+
2564667950403λ16 − 3970321001968λ15+
4886882153238λ14 − 4821817961103λ13+
3823890682331λ12 − 2433321765499λ11+
1235747399680λ10 − 496237117534λ9+
155475228012λ8 − 37312970133λ7+
6691099587λ6 − 866765142λ5 + 77380557λ4−
4447024λ3 + 148139λ2 − 2372λ+ 477,

(21)
where 0 ≤ λ ≤ 2.

Figure (8) is Figure (6) counterpart for letter “Z”, and
it demonstrates that there is the same pattern for errors in
approximating curves corresponding to letters “S” and “Z”,
but the error rates for letter “Z” are higher. Furthermore,
in Figure (9), the black solid curve is corresponding to
Equations (20) and (21), and the dashed curves are the
approximations of the black curve using truncated Legendre-
Sobolev basis polynomials of degree 10 with µ = 0.25, and
different error rates in computation of moment integrals.
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Fig. 8. Relation between norm-2 relative error of the matrix of moment
integrals and (left) relative error, (right) based-10 log of relative error of X(λ)
in Legendre-Sobolev basis, w.r.t different polynomial norms for handwritten
letter Z.
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Fig. 9. The solid black curve is the given curve in monomial basis, while the
blue and red curves are the approximated curves of black curve of degree 10
in Legendre-Sobolev basis with their moment integrals computed numerically
and with different error rates.

VII. CONCLUSION

We have presented a method for real-time computation
of Legendre-Sobolev approximations by means of moment
integrals and linear algebra. This method may be used in real-
time online handwriting recognition.

One of the main results of this paper is Theorem 2 in which
we have computed a matrix M2 that can be used to compute
the coefficients of coordinate curves in a Legendre-Sobolev
basis from such coefficients in Legendre basis. Furthermore,
computation of another matrix M gives a method for comput-

ing Legendre-Sobolev coefficients from moment integrals by
one matrix multiplication.

In this paper, we have used linear approximation in com-
putation of moment integrals. One interesting direction would
be to investigate how to compute moment integrals efficiently
and accuratly with higher order approximations.
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