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Abstract

We consider “symbolic polynomials” that generalize the usual polyno-
mials by allowing multivariate integer valued polynomials as exponents.
We explore how a variety of algebraic properties specialize under the eval-
uation of the exponent variables.

1 Introduction

We have earlier introduced the notion of “symbolic polynomials”, these be-
ing objects that are like polynomials, but allowing symbolic expressions as the
exponents. For example, the expression x6nym

2+m − 4 is a symbolic polyno-
mial. This type of expression occurs frequently in applications of symbolic
computation, but computer algebra systems have typically not dealt with them
particularly well. Instead of making the full specturm of algebraic algorithms
available, when symbols lie in the exponents, systems tend to fall back on
näıve syntactic expression manipulation. For example, the previous expres-
sion would not be recognized as a difference of squares that can be factored as

x6nym
2+m − 4 = (x3ny

m2+m
2 + 2)(x3ny

m2+m
2 − 2), with the exponents m2+m

2
always giving values in N when m ∈ N.

In this paper, we review the basic ideas of symbolic polynomials and ex-
plore properties of evaluation mappings on exponent variables. We discuss how
evaluation behaves for differential ring operations and for GCD and factoriza-
tion structure. We then present some preliminary thoughts relating to Gröbner
bases.

2 Symbolic Polynomials

We define symbolic polynomials as follows.

Definition 1. The ring of symbolic polynomials in base variables x1, ..., xv and
exponent variables n1, ..., np over the coefficient ring R is the ring consisting of
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finite sums of the form ∑
i

cix
ei1
1 xei22 · · ·xeinn

where ci ∈ R and eij ∈ Int[n1,n2,...,np](Z). Multiplication is defined by

c1x
e11
1 · · ·xe1nn × c2x

e21
1 · · ·xe2nn = c1c2x

e11+e21
1 · · ·xe1n+e2n

n

We denote this ring R[n1, . . . , np;x1, . . . , xv].

We make use of integer-valued polynomials, Int[n1,...np](D). For an integral
domain D with quotient field K, univariate integer-valued polynomials, usually
denoted Int(D), may be defined as

Int[X](D) = {f(X) | f(X) ∈ K[X] and f(a) ∈ D, for all a ∈ D}

For example 1
2n

2+ 1
2n ∈ Int[n](Z). Integer-valued polynomials have been studied

by Ostrowski [1] and Pólya [2], and we take the obvious multivariate general-
ization. Note that we could alternatively define symbolic polynomials as given
by an algebra of terms with monomials and a finite number of ring operations.

These objects are both theoretically interesting and useful in applications
of computer algebra. The usual operations of ring arithmentic and diffierential
algebra (+, −, ×, ∂/∂xi) are straightforward. By restricting the exponents to
be integer-valued polynomials, we find effective algebraic algorithms for greatest
common divisor and factorization [3] and functional decomposition [4].

3 Evaluation

With 1, we have natural evaluation maps to Laurent polynomials,

σ : Zp → R[n1, . . . , np;x1, . . . , xv]→ R[x±1 . . . , x
±
v ]

where σ(a1, . . . , ap) evaluates ni at ai. For example, σ(−2, 4) : Z[n1, n2;x] →
Q[x, x−1] evaluates the symbolic polynomial 2xn

2
1+n2 + x3n1+n2 to the Lau-

rent polynomial 2x8 + x−2. It is possible to work with evaluation homomor-
phisms that produce polynomial values in R[x1, . . . , xv], but this requires that
the σ(a1, . . . , ap) be partial and keeping track of the domains of definition is
typically more difficult that working with Laurent polynomials. Working with
total evaluation maps does require, however, extending certain polynomial al-
gorithms, see e.g. [5].

The evaluation maps are easily seen to be differential ring homomorphisms,
i.e. when σ = σ(b1, . . . , bp) for any values bi,

σ0 = 0

σ1 = 1 if R has unity

σ(u+ v) = σu+ σv

σ(u× v) = σu× σv
σ(∂u/∂xi) = ∂σu/∂xi.
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4 Specialization

We have seen [3] that R[n1, . . . , np;x1, . . . , xv] is a GCD domain if R[x1, . . . , xv]
is a GCD domain and likewise R[n1, . . . , np;x1, . . . , xv] is a UFD (unique fac-
torization domain) if R[x1, . . . , xv] is a UFD. Note that R[n1, . . . , np;x1, . . . , xv]
and R[x±1 . . . , x

±
v ] have more units than R[x1, . . . , xv] since any monomial with

unit coefficient in R is a unit in the larger rings.
The GCDs and complete factorizations in R[n1, . . . , np;x1, . . . , xv] do not

necessarily give GCDs and complete factorizations in R[x±1 . . . , x
±
v ] under σ,

but they are closely related.

Theorem 1 (Symbolic GCD Specialization). Suppose R[x1, . . . , xv] is a GCD
domain and u, v ∈ R[n1, . . . , np;x1, . . . , xv]. Then, for all evaluation maps σ =
σ(b1, . . . , bp),

σ gcd(u, v) | gcd(σu, σv) ∈ R[x±1 . . . , x
±
v ].

Thus the evaluation of a symbolic polynomial GCD will give a common divi-
sor of the corresponding symbolic polynomials, but not necessarily the greatest
common divisor. The evaluation of the symbolic polynomial GCD will, how-
ever, be maximal in the sense that (up to units) it is the “greatest” symbolic
polynomial whose image divides the GCD under all evaluations.

A similar property holds for factorization:

Theorem 2 (Symbolic Factorization Specialization). Suppose R[x1, . . . , xv] is
a UFD and u ∈ R[n1, . . . , np;x1, . . . , xv] with complete factorization

u = f1 × · · · × fk.

Then, for all evaluation maps σ = σ(b1, . . . , bp),

σfi | σu ∈ R[x±1 . . . , x
±
v ].

Similarly to the case of symbolic polynomial GCDs, the evaluation of a com-
plete factorization of a symbolic polynomial is a factorization of the original
polynomial evaluated, but it is not necessarily a complete factorization. That
is, some of the σfi may factor further in R[x±1 . . . , x

±
v ]. The evaluation of the

symbolic polynomial complete factorization will, however, be the “most com-
plete” factorization for which every factor divides the original polynomial under
all evaluations.

5 Toward Gröbner Bases

A natural next topic is about the ideals of R[n1, . . . , np;x1, . . . , xv] and how
they relate to the ideals of R[x1, . . . , xv]. We are therefore motivated to ask
whehter Gröbner bases exist for symbolic polynomials, and, if so, to explore
their behaviour under specialization.

We begin by noting that the existence and construction of Gröebner bases
for Laurent polynomials has been addressed earlier [6]. This work introduces
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a notion of generalized term orders based on conic decompositions. It finds
application, for example, in computing elementary ideals of Alexander ma-
trices [7]. Examples of generalized term orders given by [6] for monomials
xi11 · · · · · xivv use gradings such as |i1| + · · · + |iv|, −min{0, i1, . . . , iv}, and
i1 + · · ·+ iv − (v + 1) min{0, i1, . . . , iv}.

We are currently exploring the use of polynomial norms on the exponents of
symbolic polynomials to give gradings on symbolic monomial ideals. Gröbner
bases based on derived term orders should find useful application.

We note, though, that such term orders will not necessarily specialize under
evaluation to term orders in the ring of Laurent polynomials. Consider two
monomials, xp1 and xp2 . For different evaluation maps, we may have p1 < p2,
p1 = p2 or p1 > p2 in Z, affecting the relative order of the two monomials in
any term order. An potential approach to relating term orders for symbolic
polynomials to term orders for Laurent polynomials would be to compute cylin-
drical algebraic decompositions on the sets of exponent polynomials for each
base variable. This could be used to identify regions of exponent evaluation
where monomials maintain their relative order. This is an ongoing topic of
investigation.

6 Conclusion

We have seen that many algebraic properties of symbolic polynomials are pre-
served completely, or in a weaker form, under evaluation of the exponent vari-
ables. For Gröbner basis computation, it is an ongoing topic of investigation to
relate term orders for symbolic polynomials to term orders under evaluation of
the exponents.
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