US006397380B1

a» United States Patent (10) Patent No.: US 6,397,380 B1
Bittner et al. 5) Date of Patent: May 28, 2002
(54) COMPUTER-PROGRAM COMPILERS (56) References Cited
COMPRISING A PROGRAM
AUGMENTATION CAPABILITY U.S. PATENT DOCUMENTS
4,656,583 A * 4/1987 Auslander et al. 364/300
(75) Inventors: Calvin John Bittner, Essex Junction, 472071 A * 1;1988 Gates ot al o 364;900
VT (US); Bertrand M. Grossman, 4,802,001 A * 1/1989 Cocke et al. .ooeooveee... 395/709
New York, NY (US); Richard Dimick 5,127,104 A * 6/1992 Demiscccoveerverenene 395/650
Jenks; Stephen Michael Watt, both of 5,136,686 A * 8/1992 KOZa ...ccceveeernrereeennnnnn. 395/13
Yorktown Heights, NY (US); Richard 5,280,613 A * 1/1994 Chanetal 395/700
Quimby Williams, Colchester, VT (US) 5,355,496 A * 10/1994 Fantetal. 395/700
5396,631 A * 3/1995 Hayashiccccccooon...... 395/700
(73) Assignee: International Business Machines 5,428,805 A * 6/1995 Morganccceeeennns 395/800

Corporation, Armonk, NY (US) * cited by examiner

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1315 days.

Primary Examiner—St. John Courtenay, III
(74) Antorney, Agent, or Firm—Scully, Scott, Murphy &
Presser; Stephen C. Kaufman

(21) Appl. No.: 08/634,515 57 ABSTRACT
(22) Filed: Apr. 18, 1996 A method for optimizing and transforming a compiler pro-
L gram in a computer system. The method comprises the steps
Related U.S. Application Data of constructing a compiler comprising a program augmen-

S o tation capability; and, locating this capability in association

(63) Continuation of application No. 08/327,086, filed on Oct. with phases of a standard compilation process. The program
21, 1994, now abandoned. . o . . .

augmentation capability may comprise symbolic automatic

(51) Int. CL7 oo GO6F 9/45 differentiation, or generation of Taylor series, or generation
(52) US.Cl oo 717/9 of Hessian or Jacobian matrices.
(58) Field of Searchc.cccoceuvveiine. 395/701-710;
717/9 11 Claims, 5 Drawing Sheets
52
0
56 62 66 70
s Z Vi 14 ouTPUT
P O 1.0 & GENET: (D) [ge (0) | TARGET
54 72 - 80 587
78 /8
Ve t
74 /76 >
/
/! %0 86
’
y’ 84
A SbS |—-————= OPT -
64 88-" 8-

U.S. Patent May 28, 2002 Sheet 1 of 5 US 6,397,380 B1

Z 16 :
OUTPUT
TARGET

!
o=
o -
(o] w —
N
\m
1 o
Q-
P am
| o \
e’ n
[/
ME T &
e N = @ ©
M)
'} 4:55
— \\ L h
ém < N [\
j‘ -7 N [-
~N ~r
N O
w n\ N\ | L‘_
- - (%)
\ w o
L 7]
\O
" \
| Q
P
~—
3\ &

46\\
SP
48
MSP.
50

U.S. Patent May 28, 2002 Sheet 2 of 5

OUTPUT]
TARGET

o

US 6,397,380 B1

FIG. 2

~
")
AR
oh.l<
~
d @
*
©
N
-
©
©
o~ o —
3 glg ()5
\ N= | o
o
! o HO
AN
o \ L ©
Ll o =~
A NI AN :0‘5
/ \\ It.'o
N [
ﬁ \\l
o~
w — \ wn
o
\bf o
T \omn
Q—
~ \
* <
©
~| <
V‘n
_/
©
Yo
N a

U.S. Patent May 28, 2002 Sheet 3 of 5 US 6,397,380 B1

oUTPUT]
TARGET

=

~1
©
Sln
Ol w
t\\m" <
@
N
0

52
66
ILG
i 82»1
OPT
SN

M
|]
b o '
GN [» o) L O
\—/'\ r_t\ ‘\\ -
» \\\ :g L
© N |
~ \\l
N\ - _ %
\«
r~
; \ «
(e
|«
=g s
_/
(o]
(7o)
\

IP

US 6,397,380 B1

Sheet 4 of 5

May 28, 2002

U.S. Patent

9
\Iw@ \\ww
1d0 f=————=——+ Sais 7
vm.\ A
! ,/ |
98 7
/ d
\/\,. 9/ \.vh
\Nw \\ w&-
Y AR |
85 08 S
~-L 38~ 91 9 B . dl
1399VL[~ (o) (1) (31) 0]
09"~
76”7

US 6,397,380 B1

Sheet 5 of 5

May 28, 2002

U.S. Patent

1304Vl

| 1nd1N0

0g”

G "Old
7 -89 ,-gg 9
1d0/ = ——=—— —
e WY) mo_ﬂ
/
/
98 s
i < o] |ae
/8L
8 ! 08 ¢8 !
(R - CL~N Y |- LR 4l
o 2@ L2 @ ()
0L 99 29" 96~
S

¢S

US 6,397,380 B1

1

COMPUTER-PROGRAM COMPILERS
COMPRISING A PROGRAM
AUGMENTATION CAPABILITY

This is a continuation of application(s) Ser. No.
08/327,086 filed on Oct. 21, 1994 now abandoned.

FIELD OF THE INVENTION

This invention relates to computer-program compilers
comprising a program augmentation capability.

BACKGROUND OF THE INVENTION

Computer-program compilers comprise programs or
hardware that can translate programs written in a source
language into those written in a target language. For
example, the source language may comprise a high level
language such as Fortran, and the target language may also
comprise a high level language e.g., a transformed Fortran,
or alternatively, an assembly code or machine language.

SUMMARY OF THE INVENTION

Our work comprises combining and integrating two dis-
parate concepts, as they relate to computer program com-
pilers.

The first concept centers around compiler techniques
comprising code optimization, which seek a transformation
of the program with an aim of improving (optimizing) an
efficiency or performance of a target program. For example,
a goal of an optimizing compiler may be to generate a
smaller or a faster set of object code that exactly duplicates
a function of the program as it was written.

The second concept comprises directly providing a com-
piler with a program augmentation capability; e.g., an auto-
matic symbolic differentiation capability (comprising a
forward, reverse, or hybrid mode) which can augment the
compiled program to include values for derivatives of the
program’s function. This second concept also comprises
other augmentations to the compiled program e.g., consis-
tency verification under dimensional analysis.

We combine these two concepts in the following way.

First, we recognize that an efficient employment of sym-
bolic derivatives may be enhanced by identifying expres-
sions that have equal values and eliminating redundant
calculations along any path in the target program. Hence, no
mathematical expression along any path in a target program
is evaluated more than once. This is an optimization of the
target program and it may be achieved for any operation, or
sequence of operations, that are valid in the language of the
source program. These include, but are not limited to,
feedback loops, conditional branching and GO TO jumps in
the control flow, subroutine calls, MAX, MIN or ABS
(Absolute) evaluations, and table look-up data. We refer to
this optimization as redundant expression elimination.
Furthermore, we recognize that not all intermediate deriva-
tives are needed. Therefore, the program augmentation
capability preferably does not generate them in the first
place. We refer to this optimization as an employment of
global dependency information.

Secondly, we observe that extant compilers do not directly
comprise a symbolic differentiation capability. Instead, this
function can be done by an automatic symbolic differentia-
tion preprocessing program.

Thirdly, we observe that extant automatic differentiation
programs comprise a structure/sequence wherein automatic
symbolic differentiation is done locally on a statement-by-

10

15

20

25

30

35

40

45

50

55

60

65

2

statement basis. That is to say, the structure/sequencing of an
extant automatic differentiation program is such that it can
not avail itself of global dependency information or redun-
dant expression elimination as it references automatic sym-
bolic differentiation. Accordingly, from a vantage point of
our invention, it is not possible to obtain an optimal or highly
efficient code using extant automatic differentiation program
structures.

We have now discovered a novel compiler structure/
sequencing apparatus that is predicated on our employment
of global dependency information and redundant expression
elimination (in contrast to prior art local schema), which
enables one to comprehend automatic symbolic differentia-
tion as being inherently enhanced by its incorporation in
proximity to, or within, a compiler’s code optimization,
thereby generating highly efficient code.

In a first aspect, the present invention comprises a method
for optimizing and transforming a program to be compiled
in a computer system. The method comprises the steps of:

1) constructing a compiler comprising a program aug-
mentation capability; and

2) locating this capability in association with phases of a
standard compilation process.

In a second aspect, the present invention comprises a
compiler apparatus for compiling a program to be executed
on a general purpose target computer system. The compiler
apparatus comprises:

1) a front end (FE) for initially processing an input

program;

2) a symbol-information data structure (SIDS) in com-
munication with the front end for recording information
about symbols in an input program;

3) an intermediate language generator (ILG) in commu-
nication with the front end and the symbol-information
data structure for producing intermediate language
instruction;

4) an optimizer (OPT) in communication with the
symbol-information data structure and the intermediate
language generator;

5) a means for locating a program augmentation capabil-
ity in operative association with the optimizer; and

6) a back end (BE) in communication with the optimizer
and/or the intermediate language generator for trans-
lating a program into target code.

The present invention as defined can realize several

significant advantages.

First of all, as alluded to above, the qualities and attributes
of the highly efficient code presently generated, arise in part
from the fact that in our employment of e.g., symbolic
differentiation done in operative association with the com-
piler optimizer, we can immediately avoid redundant calcu-
lations in the target program. This situation, concomitantly,
can advantageously reduce the time needed to perform a
required calculation which, in turn, can save money and
speed up developmental processes. Other advantages are
enumerated below.

BRIEF DESCRIPTION OF THE DRAWING

The invention is illustrated in the accompanying drawing,
in which:

FIG. 1 shows a block diagram of a representative extant
computer compiler;

FIG. 2 shows a block diagram of a compiler apparatus of
the present invention; and

FIGS. 3, 4 and 5 show additional alternative embodiments
of the FIG. 2 compiler apparatus.

US 6,397,380 B1

3

DETAILED DESCRIPTION OF THE
INVENTION

We now reference the present invention by first setting
forth a conceptual backdrop and insights into various aspects
of the prior art. This approach, when set in apposition to a
following detailed description of the present invention, can
highlight novel aspects of the present invention.

Attention, accordingly, is now directed to FIG. 1 which
shows a block diagram of a representative extant computer
program compiler 10. In overview, the FIG. 1 compiler 10
accepts as an input (I) 12 a high-level language program, and
operates on it to an end of generating an output (O) 14
comprising an output target language program 16. In
particular, the compiler 10 comprises a front end (FE) 18, a
symbol-information data structure(s) (SIDS) 20 for record-
ing information about symbols in an input program, an
intermediate language generator (ILG) 22, an optimizer
(OPT) 24, and a back end (BE) 26.

The FIG. 1 front end 18 typically converts the input
program 12 to a (possibly) different internal form (IF) that
may be conveyed (arrow 28) to the intermediate language
generator 22. As part of the preparation of the internal form,
the front end 18 may save information (arrow 30) in, and
possibly retrieve information (arrow 32) from, the symbol-
information data structure(s) 20. These symbol-information
data structures, if they are used, may either be separate from
or adjoined to the intermediate form.

Note that the intermediate language generator 22 pro-
duces intermediate language instructions (IL) from the inter-
nal form of the program, possibly consulting (arrow 34) the
symbol-information data structure(s) 20. The intermediate
language instructions are typically more similar to the output
language (O) than to the input language (I). The intermediate
language form of the program may be conveyed to the back
end 26 either directly (arrow 36) or by way of the optimizer
24 (arrows 38 and 40). If the intermediate language (IL)
form of the program is conveyed to the optimizer (OPT) 24,
then the optimizer produces a functionally equivalent and
preferably faster or smaller version of the program, typically
again in the intermediate form. This version of the program
may then be conveyed (arrow 40) to the back end 26. To this
end, the optimizer 24 may be in communication (arrow 42)
with the symbol-information data structure(s) 20.

Once an intermediate language form of the program is
received by the back end 26, either directly (arrow 36) or
after optimization (arrow 40), the back end 26 converts the
program to a functionally equivalent version expressed in
the output language.

It is explicitly noted that the output program may be in the
same language as I, IF, or I, even though it is typically in
a form distinct from all of these.

Note finally (but most importantly with respect to the
present invention), that the FIG. 1 input (I) 12 comprising
the high-level program for operation thereupon by the
compiler 10, is itself a component of an input block 44. The
input block 44, in turn, comprises a subject program struc-
ture (SP) 46 sequenced to a program augmentation capabil-
ity (PAC) 48, in turn, sequenced to the modified subject
program structure (MSP) 50.

In net assessment of the FIG. 1 prior art compiler 10, we
observe that a program augmentation capability 48 is outside
of, and independent of, the compiler operation. Our inven-
tion may be sharply contrasted with this structure/sequence,
as the present invention comprises a unique integration of
program augmentation as a compiler technique incorporated
in the code optimization, or in direct proximity thereto.

10

30

35

40

45

50

55

60

4

‘We now turn our attention to FIG. 2, which shows a block
diagram of a preferred compiler apparatus 52 of the present
invention.

An important advantage of the FIG. 2 compiler apparatus
52 is that it can optimally incorporate invariant conventional
components of the FIG. 1 compiler, mutatis mutandis, thus
securing great efficiencies of transformation and
implementation, yet readily accommodating necessary
changes reflective of the present invention. Accordingly, the
following initial disclosure of the FIG. 2 structure and
operation may be presented as a paraphrase to the FIG. 1
discussion, above.

In overview, the FIG. 2 compiler apparatus 52 can accept
as an input (I) 54 a high-level language program (IP) 56, and
can operate on it to an end of generating an output (O) 58
comprising an output target language program 60. In
particular, the compiler apparatus 52 comprises a front end
(FE) 62, a symbol-information data structure(s) (SIDS) 64
for recording information about symbols in an input
program, an intermediate language generator (ILG) 66, an
optimizer (OPT) 68, and a back end (BE) 70. These entities
can all be realized by conventional components.

The FIG. 2 front end 62 preferably converts the input
program 56 to a (possibly) different internal form (IF) 72
that may be conveyed to the intermediate language generator
66. As part of the preparation of the internal form, the front
end 62 may save information (arrow 74) and possibly
retrieve information (arrow 76) about the program and
symbol information structure(s) 64. These symbol informa-
tion structures, if they are used, may either be separate from,
or adjoined to, the intermediate form.

Note that the intermediate language generator 66 can
produce intermediate language instructions (IL) from the
internal form of the program, possibly consulting the symbol
information structure(s) (arrow 78).

The intermediate language instructions are typically more
similar to the output language (O) 58 than the input language
(I) 56. The intermediate language form of the program may
be conveyed to the back end 70 either directly (arrow 80) or
by way of the optimizer (arrows 82 and 84). If the interme-
diate language (IL) form of the program is conveyed to the
optimizer 68, then the optimizer produces a functionally
equivalent and preferably faster or smaller version of the
program, typically again in the intermediate form. This
version of the program may then be conveyed to the back
end 70 or may be subject to some number of additional
optimization passes (arrow 86). To this end, the optimizer 68
may be in communication (arrow 88) with the symbol-
information data structure(s) 64.

Once an intermediate language form of the program is
received by the back end 70, either directly (arrow 80) or
after optimization (arrow 84), the back end 70 converts the
program to a functionally equivalent version in the output
language.

It is explicitly noted that the output program may be in the
same language as I, IF, or IL, even though it is typically in
a form that is distinct from all of these.

In sharp contrast to FIG. 1 however, the FIG. 2 compiler
apparatus 52 comprises a critical and novel salient, namely
an explicit inclusion of a program augmentation capability
90 located in association with phases of a standard compi-
lation process, in particular, as a compiler technique incor-
porated in a code optimizer, or in direct (spatial, temporal)
proximity thereto. This point is now elaborated.

First of all, it is noted that the program augmentation
capability subsumes e.g., differentiation (including symbolic

US 6,397,380 B1

5

automatic differentiation), solution of ordinary differential
equations by Taylor series in which the Taylor series can be
automatically generated, or generation of Hessian matrices.
In and of themselves, program augmentation capabilities are
known conventional techniques. See, for example, L. B.
Rall, Automatic Differentiation: Techniques and
Applications, in Lecture Notes in Computer Science, Vol.
120, Springer-Verlog, Berlin, 1981.

As just alluded to, the program augmentation capability of
the present invention is located (temporarily, spatially) in
association with phases of a standard compilation process.
For example, and to articulate what we define as phases, the
FIG. 2 embodiment locates this capability 90 subsequent to
the intermediate language generator 66 and antecedent to the
optimizer 68.

FIG. 3 has a variation of this concept. Here, a program
augmentation capability 92 is located intra the optimizer 68.

FIG. 4 shows a further variation: here, a program aug-
mentation capability 94 is located subsequent to the front
end 62, (which preferably collects symbol information
(arrow 76)), and antecedent to the intermediate language
generator 66.

An important advantage of the present invention may now
be readily discerned. FIG. 5 repeats the specifics of the FIG.
2 embodiment, but further comprises additional, enhanced
optimization (indicated by a thatched-box optimizer 68" in
which enhanced optimization may be specifically dedicated
to directly handling the output of the program augmentation
capability 90. For example, the optimizer 68 may be
extended for handling differential dependencies when the
program augmentation capability comprises symbolic auto-
matic differentiation.

As an example of the present invention, input and target
programs for a function Ids(Vgs, Vds, Vsx) appear in
Appendices A and B, respectively. The target program in
Appendix B was automatically generated from the input
program in Appendix A by the compiler apparatus 52
described herein. Both the input and target programs were in
Fortran; however, as stated above, the input and target
programs could have been implemented in any computer
language. Line numbers were added to Appendices A and B
to identify input and results.

The automatically generated target program for Ids; i.e.,
the partial derivatives of Ids with respect to the independent
variables Vgs, Vds and Vsx appearing in Appendix B,
illustrates several features of the optimization described in
this embodiment. These include a differential algebra com-
piler that can operate upon an input program that contains
conditional branching (line 7 in Appendix A) and subroutine
function calls (line 8 in Appendix A), and the absence of
redundant calculation in the automatically generated target
program by the substitution of common subexpression with
new variables (e.g., variables t7t, t9t, t13t, t46t, t66t in
Appendix B). Subroutines in the input program may com-
prise Fortran code or tabulated data. For tabulated data,
derivatives are obtained by functions that numerically
approximate the tabulated data. It is noteworthy that partial
derivative terms that are always equal to 0 are automatically
removed and factors that are always equal to 1 are auto-
matically removed.

Other embodiments of this invention include compilers
designed to generate target programs for arrays of deriva-
tives such as those found in Jacobian or Hessian matrices
and power series expansions, as noted above.

10

15

20

25

30

35

40

45

50

55

60

65

6

IF (Vsx .LT. —phib) Vsx = —phib

Vt0 = TABUL3(VtTab, Vsx, Vds, Leff)

Vit = Vt0 + be*(DSQRT(phib+Vsx) - DSQRT(phib)) -
de*DSQRT(Vds)

Eeff = 0.5*Cox*(Vgs + Vt0 + be*(DSQRT(phid+Vsx) —
DSQRT(phib)) & -1.0 + DEXP(-Vds) /Eps

Mueff = Mu0/(1.0 + Theta*Eeff + Eta*Vds)

Gamma = Cox*Mueff*(Weff/Leff)

Ids = gamma*(Vgs — Vt - 0.5*Vds)*Vds

STOP

END

APPENDIX A
1 IMPLICIT REAL*8 (A-7)
2 phib = 0.3
3 theta = 0.1
4 eta =0.1
5 mu0 = 500
6 cox = 1.0
7
8
9

APPENDIX B

[R SRS

IMPLICIT REAL*8 (A-Z)
REAL*8 Dtbaul3(4)
DgammaDvds = 0

DvtODvsx =0
DvtDvds = 0
DvtODvds =0
DeeffDvsx = 0
DidsDvgs = 0
DmueffDvsx = 0
DeefDvds = 0
DgammaDvgs = 0
DmueffDvds = 0
DvsxDvsx = 1
DidsDvsx = 0
DvdsDvds = 1
DvtDvsx = 0
DeeffDvgs = 0
DidsDvds = 0
DgammaDvsx = 0
DmueffDvgs = 0
DvgsDvgs = 1
phib = 0.3D0
theta = 0.1D0
eta = 0.1D0
mu0 = 500

cox = 1.DO

IF (vsx .LT. —phib) THEN
IF (Vsx .LT. —phib) Vsx = —phib

VSX = -0.3D0
DvsxDvsx = 0
END IF

Vt0 = TABUL3(VtTab, Vsx, Vds, Leff)

vt0 = Gtab3(vttab,vsx,vdsvleff,Dtabul3)

DvtODvsx = Dtabul3(2)*DvsxDvsx

DvtODvds = Dtabul3(3)*DvdsDvds

Vit = Vt0 + be*(DSQRT(phib+Vsx) - DSQRT(phib)) -
de*DSQRT(Vds)

t7t = dsqrt(0.3D0+vsx)

t9t = be*(-0.547722557505D0+t7t)

t10T = dsqrt(vds)

vt = —de*t10t+t9t+vt0

t14t = be*DvsxDvsx

t13t = 1/t7t

DvtDvsx = 0.5D0*t14T*t13t+Dvt0Dvsx

DvtDvds = -05D0*de*dvdsDvds/t10t+Dvt0Dvds

Eeff = 0.5*Cox*(Vgs + Vt0 + be*(DSQRT(phib+Vsx) —
DSQRT(phib)) & -1.0 + DEXP(-Vds))/Eps

t23t = dexp(-vds)

t25t = 1/eps

eeff = 0.5D0*(-1.D8+vgs+vtO+tOt+t23t) *t25t
DeeffDvgs = 0.5D0*DvgsDvgs*t25t

DeeffDvsx = 0.25D0*t14t¥t13t*t25t+0.5D0*DvtODvsx*t25t
DeeffDvds =
0.5D0*Dvt0Dvds*t25t-0.5D0*DvdsDvds *t23t*t25t
Mueff = Mu0/(1.0 + Theta*Eeff + Eta*Vds)

t39t = 0.1D0*vds

US 6,397,380 B1

7

APPENDIX B-continued

t40t = 0.1D0*eeff

meuff = 500/(1.DO-+40t+39t)

t46t = 1/(1.DO+t39t+t40t) **2

DmueffDvgs = —50.D0*DeeffDvgs*t46t

DmueffDvsx = -50.D0*DeeffDvsx*t46t

DmueffDvds = -50.D0*DvdsDvds*t46t-50.D0*DeeffDvds*t46t
Gamma = Cox*Mueff*(Weff/Leff)

t56t = 1/leff

gamma = mueff*weff*t56t

DgammaDvgs = weff*DmueffDvgs*t56t

DgammaDvsx = weff*DmueffDvsx*t56t

DgammaDvds = weff*DmueffDvds*t56t

Ids = gamma* (Vg — Vt - 0.5*Vds)*Vds

t66t = —0.5D0*vds—vt+vgs

ids = gamma*vds*t66t

DidsDvgs = gamma*vds*DvgsDvgs+vds *DgammaDvgs*t66t
DidsDvsx = -gamma*vds*DvtDvsx+vds*DgammaDvsx*t66t
DidsDvds =

—gamma *vds*DvtDvds*(gamma*t66t-0.5D0* gamma *vds)*
&DvdsDvds+vds*DgammaDvds*t66t

STOP

END

12

13 C>

14
15

What is claimed:

1. A method for optimizing and transforming a compiler
program in a computer system, the method comprising the
steps of:

(1) constructing a compiler having means for utilizing
global dependency information and redundant expres-
sion elimination to augment mathematical functions in
a source program; and

(2) locating said augmentation means interposed and
internal to phases of the compiler standard compilation
process to access said global dependency information.

2. A method according to claim 1, wherein said augmen-
tation means comprises automatic differentiation.

3. A method according to claim 2, wherein said; augmen-
tation means comprises symbolic automatic differentiation.

4. A method a according to claim 1, wherein one of said
phases of said standard compilation process comprises a step
of optimizing, the method comprising a step of locating said
augmentation means intra the optimizing step.

10

15

20

25

30

35

8

5. A method according to claim 1, wherein said standard
compilation process comprises a front end feeding into an
intermediate language generator, the method comprising a
step of locating said augmentation means subsequent to the
front end and antecedent to the intermediate language gen-
erator.

6. A method according to claim 5, wherein said augmen-
tation means comprises automatic differentiation.

7. A method according to claim 1, wherein said standard
compilation process comprises an intermediate language
generator feeding into an optimizer, comprising a step of
locating said augmentation means subsequent to the inter-
mediate language genera or and antecedent to the optimizer.

8. A method according to claim 7, wherein said augmen-
tation means comprises automatic differentiation.

9. A method according to claim 1, wherein the standard
compilation process comprises constructing a system com-
prising:

1) a front end (FE) for initially processing input program;

2) a symbol-information data structure (SIDS) in com-
munication with the front end for recording information
about symbols in an input program;

3) an intermediate language generator (ILG) in commu-
nication with the front end and the data structure for
producing intermediate language instruction;

4) an optimizer (OPT) in communication with data struc-
ture and the intermediate language generator;

5) said augmentation means interposed with the opti-
mizer; and

6) a back end (BE) in communication with the optimizer
and the intermediate language generator for translating
program into target code.

10. A method according to claim 9, further comprising
providing an optimizer for handling an output of said
augmentation means.

11. A method according to claim 10, wherein the opti-
mizer is extended for handling differential dependencies
when said augmentation means comprises symbolic auto-
matic differentiation.

