The Scratchpad II Newsletter: Vol. 2 Num. 1

November 1, 1987 13

We find the equations defining the intersection of the
two loci. This correspond to the sum of the associ-
ated ideals.

id := ideal m + ideal n
2 1 2 1

(5) [x - e} A -1

2 2

Type: DIDEAL{RN,OP(Z,NNI},Dx,y),0MP(Ex,y],RN))
We can check if the locus contains only a finite
number of points, that is, if the ideal is zero-
dimensional. :
iszerodim id

(6) true

Type: B
iszerodim(ideal m}

(7} false

Type: B
We can find polynomial relations among the gener-

ators (f and g are the parametric equations of the
. knot). | '

T Of 1= x4l
2
(8) x -1
Type: OMP{[x,y],RN}
g = x*(x"2-1)
3
(9) x -x
Type: DMP({[x,y],RN}
relationsIdeal [f,g]

2 3 2
{10) [- % + 3% + %C ]
Type: L P RN

We can compute the primary decomposition of an
ideal.

1: L DMP{[x,y,z]1,RF I)
Type: YOID
T2=(x¥*2+2%y**2 x*z**2-y*z,2**2-4]

2 2 2 F4
(12} Ix +2y ,xz ~y 2,z - 4]

Type: L OMP{Ix,y,21,RF I)

1d:=primaryDecomp ideal 1
1 2 1 2
(13) [Ix+ -y,y ,z+2,[x - -y,y ,z~-21]
2 2
Type: L DIDEAL(RF I,DP(3,NNI),{x,y,z]1,0MP{[x,y,z],RF I}}

We can intersect back:

"Sntersect”/1d
1 2 2
(18) [x -~ -y z,y ,z -4]
4
Type: DIDEAL(RF I,0P(3,NNI),0x,y,z]1,DMP{[x,y,z],RF I)}

We can compute the radical of every primary com-
ponent. Their intersection is equal to the radical of
the ideal of /,

rr:="intersect"/[radical 1d.i for { in 0..1]

2
(15) [x,y,z - 4]
Type: DIDEAL{RF I,DP(3,NNI),[x,y,zI,DMP({x,y,z],RF I})

s5:=radical idea1_1

2
(16) [x,y,z - 4]
Type: DIDEAL(RF I,DP(3,NNI),[x,y,2],DMP([x,y,2]1,RF I)}

References

(1] Gianni, P., Trager, B., and Zacharias, G.,
“Grobner Bases and Primary Decomposition of
Polynomial Ideals,” to appear in Jownal of
Symbolic Computation.

Patriziz Gianni

Mappings as First Class Objects

Defining and Applying Mappings

Mappings can be as important as the values on
which they act. In Scratchpad II functions are
treated as first class objects; function-valued variables
can be used in any way that variables of other types

may be used.

Mappings may be defined interactively in the inter-
preter or they may be defined in a library of compiled
code, as are the operations provided by types.



14 November 1, 1987

The Scratchpad II Newsletter: Vol, 2 Num. 1

The simplest thing that can be done with a function
object is to apply it to arguments to obtain a value.

5+6
{1} 11

Type: I

If there are several functions with the same name, the
interpreter will choose one of them. An attempt is
made to choose the function according to certain
generality criteria.

When a particular function is wanted, the plus on
GF(7) for example, it can be specified by a package
call using “$".

. 5 *GF(7) 6

(2) 4
Type: GF 7

Manipulating Mapping Values

Probably the next simplest thing is to assign a func-
tion value to & variable.

== assigning + from GF(7) to a variable
PlusMod? := +5GF(7); plusMod7(5, 6}

(3) 4
Type: GF 7

To access the value of the function object for a top
level map it must be declared first.

double: I => [
double n == 2*n

f := double; f 13
(6) 28
Type: I

Mappings can be accepted as parameters or returned
as values. Here we have an example of a function
as & parameter

-- apply takes a function as lst parameter
~- and invokes it on the 2nd parameter

apply: ([ -> I, [) =» I
apply(f, n) == f n

apply(double, 32)

(9) &4
Type: RN

and as a return value

== trig returns a function as its value
trig: [ -> (BF ->» BF)

trig n ==
if oddp n then sin$BF else cos$BF

ti=trigl; to0,1
(12} 0.099 83341 66468 28152 30681 4198
Type: BF

Several operations are provided to construct new
functions from old. The most common method of
combining functions is to compose them.,

“*” is used for functional composition.

quadruple := double * double; quadruple 3
a3 12
Type: [’

“**" is used to iteraté composition.

octupte := double**3; octuple 3
(14) 24

Type: 1

diag gives the diagonal of a function. That is, if g is
diag f then g(a) is equal to f{a,a).
square := diag _*$I; square 3
(15} 9
Type: I

twist transposes the arguments of a function, If g is
defined as twist f then g(a,b) has the value
f(b,a).

power :3 **$RN;

rewop := twist power; rewop(3, 2)
(17} 8

Type: RN

Mappings of lower arity can be defined by restricting
arguments to constant values. The operations cur
and cul fix a constant argument on the right and on
the left, respectively. For unary functions, cu is used.



The Scratchpad II Newsletter: Vol. 2 Num. 1

November 1, 1987 15

square := cur{power, 2);
square 4 == square(a) = power{a,2)

(18) 1§
Type: RN

It is also possible to increase the arity of a function

by providing additional arguments. For example,

vur makes a unary function trivially binary; the sec-
.ond argument is ignored.

. binarySquare := vur{square};
binarySquare(1/2, 1/3)

’ 1
(19) -
&

Type: RN

The primitive combinator for recursion is recur. If
g is recur(f) then g(n,x) is given by
fin,f(n-1,..F{1,x)..)).

fTimes := recur ‘SNNI}
factorial := cur{fTimes, 1::NNI);
factorial 4

(20} 24
Type: NNI

Mappings can be members of aggregate data objects.
Here we collect some in a list. The unary function
incfn,i takes the i-th successor of its argument.

incfn 1= [(succ$SUCCPKG)*™ i for i in 0..5];
incfn.4 9
(21} 13

Type: I

Mappings as Program-Environment Pairs

In practice, a mapping consists of two parts: a piece
of program and an environment in which that pro-
gram is executed. The display of mapping values
appear as theMap(s, n), where s is a hideous
internal symbol by which the program part of the
mapping is known, and n is a numeric code to
succinctly distinguish the environmental part of the
mapping,

recipMods := recip$GF(5)
(22) theMap(MGF;recip;$U;17,642)
Type: GF 5 -> Union{(GF 5,failed)

PlusMed := +$G6F(5)
(23) theMap(MGF;+;3$:12,642)
Type: (GF 5,GF 5) => GF §

plusMod? := +4GF(7)
{24} theMap{MGF;+;34;12,997)
Type: (GF 7,6F 7) -> GF 7

Notice above that the program part of plusMod5 is
the same as for pTusMod7 but that the environment
parts are different. In this case the environment
contains, among other things, the value of the
modulus. The environmient parts of recipMod5 and
plusModb are the same.

Creating “Own” Variables

When a given mapping is restricted to a constant ar-
gument, the value of the constant becomes part of
the environment. In particular when the argument
is a mutable object, closing over it yields a program
with an own variable. For example, define shiftfib
as a unary mapping which modifies its argument.

Fibvals := Record(a0: I, al: I)

(25) Record(a0: I,al: I)
Type: DOMAIN

shiftfib: Fibvals -> |

shiftfib r ==
t :=r.ad
r.a0 := r.al
r.2l := r.al +t
t

Now fibs will be a nullary program with state.
Since the parameter [0,1] has not been assigned to
a variable it is only accessible by fibs.
fibs := cu(shiftfib, [0,11$Fibvals)

(29) theMap(%512274,721)
Type: ()} =» I

[fibs() for 1 in 0..30]

(30)

o, 1,1, 2, 3,5, 8,13, 21, 34, 55, 89, 144,

233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,
17711, 28657, 46368, 75025, 121393, 196418, 317811,
514229, 8320401

Type: L I



16 November 1, 1987

The Scratchpad Il Newsletter: Vol. 2 Num. 1

Fixed Point Operations

A fixed point x of a map f'is a point in the domain
of f such that x = f(x). Given a function which
operates on a recursively defined data type, it is often
possible to compute a useful fixed point. A powerful
method for manipulating infinite structures is to
compute the fixed point of structure transforming
functions. As well as providing a functional mech-
anism for constructing self-referential structures, a
combination of lazy evaluation and self-reference
may be achieved.

Consider a recursively defined data type T and the
class of functions mapping T — T. Certain functions
in this class have trivial fixed points: the identity and
constant valued functions. Some functions in the
class may have no fixed point. (The fact that ne-
gation has no fixed point leads to the Russell para-
dox.) Other functions may have a fixed point which
it is impossible to compute effectively.

If we restrict our attention to functions which do not
perform operations on their argument but rather just
include it in a new structure which is returned as the
value then we may always compute a fixed point.

As an example, an infinite repeating list of values can
be obtained as follows:

cons1234{1) == cons(1,cons{2,cons{3,cons(4,1))))

repeatingl234 ;= fixedPoint consl234

A fixed point finding operation is provided which
operates on a stream transforming function and finds
its fixed point, a stream.
a:=integers 1

(2} 01,2,3,4,5,6,7,8,9,10,...]
The function below prefixes a 1 to an integer stream.

fl{x: ST I}: ST [ == cons(l,x)
fl a
(4 1,1,2,3,4,5,6,7,8,9,10,...]

and the fixed point of f7 is an infinite stream of 1's
b := fixedPoint fl
(5) 1]

Similarly

f2(x: ST I): ST I == append([1,2,3,4,5,6], x)
fixedPoint f2

(8y [1,2,3,4,5,6,11]

Here is another way to define the Fibonacci number
stream. The plus operation takes two streams and
adds them pair-wise.
f3(fib: ST I): ST [ == cons(1,fib+cons(0,fib)}
fib

(10) [1.1,2.2,2.2,2,2,2,2,...!

fixedPoint f3
(11 n,1,2,3,5,8,13,21,34,55,...]

The stream of Catalan numbers:

fd(cat: ST I): ST I == cons(l,cat*cat)
fixedPoint 4

{14) [1,1,2,5,14,42,132,429,1430,4862,..,]

The function integ integrates a stream viewed as the

" coefficients of a power series,

integ b

111111111 ]

2345578910
Here we compute the fixed point of the function g
that integrates a strearn, and adds the constant term
L.
gle: ST RN -> ST RN) == cons(l,integ e)
fixedPoint g

111 1 1 1 1 1

(18) [1,1,=,=,==, ===, === === wmmam mmmea

i ] 1 ] [ 'lll]
2 6 24 120 720 5040 40320 362880

It is also possible to find the fixed point of a function
that transforms a pair of streams to a pair of streams.

k{tr: L ST I}: L ST I == [cons{0,tr.1),1/(1-tr.0)]

k([cons{0,b),b])

(e0) [fo,11,01,1,2,4,8,16,32,64,128,266,...1]

The fixed point' of % is two mutually recursive
streams. Computing this provides another way to
obtain the stream of Catalan numbers.



The Scratchpad II Newsletter: Vol. 2 Num. 1

November 1, 1987 17

fixedPoint(k, 2)

(21)
(fo,1,1,2,5,14,42,132,429,1430,...1,

f1,1,2,5,14,42,132,429,1430,4862,...]1

Stephen M. Watt
William H. Burge

Work in Progress

This section describes some work on the Scratchpad
Il system that is being undertaken but is not vet
complete.

Support for Data Structures in
Scratchpad IT

An effort to “categorize” the data structures available
in Scratchpad II is now under way. Until recently,
the algebraic facilities in Scratchpad II have made use
of only a few data structures, in particular, records,
lists and vectors. However, now that the new com-
piler is being written in Scratchpad II, the need for
other traditional data structures has arisen. For ex-
ample, various parts of the new compiler make use
of stacks, sets, tables and doubly linked lists. New
applications of Scratchpad II will make use of dic-
tionaries, graphs, priority queues, etc.. Furthermore,
as the system evolves, the need for specialized and
highly efficient data structures will arise. One such
example is Stream which provides a mechanism for
lazy evaluation. To systematically describe the re-
lationships between data structures and the oper-
ations available for them, we are building a category
hierarchy for data structures.

The following partial definition for the categories
Collection, IndexedAggregate and FiniteLinear-
Aggregate should illustrate our point. Note that
Type is the category in which all domains in the
system belong.

Collection(S:Type): Category with
~= number of items fn the collection
#: $ -> NonNegativelnteger

=+ top level copy of the collectian
copy: § -> §

map: {((5,5)->5,§) -» §

i1f § has shallowlyMutable then
mapInPlace: ((S,S)->5,$) -> §

IndexedAggregate(Index:Type,S:Type): Category ==
Collection § with
elt: (§,index) -» §

if § has shallowlyMutable then
setelt: ($,Index,5) -> §

FiniteLinearAggregate(S:Type)}: Category ==
IndexedAggregate{Integer,S} with
concatenate: ($,§) -> §

if S has OrderedSet then
sort: § -> §

== sort using the "<" frem S

if § has shallowlyMutable then
sortinPlaca: § ~> §

The category Collection describes homogeneous ag-
gregates of objects with the operations #, copy, map
and the operation mapInPlace (if a collection has the
attribute shaliowlyMutable}, A collection must
have the attribute shallowlyMutable if any of its
operations update (mutate) it. The prefix
“shallowly” indicates that we are referring to the re-
placement of one component with another, rather
than updating the component itself. For example,
the maplnPlace operation updates a collection “in
place” whereas the map operation creates a new
structure., Notice that this implies that for
shallowlyMutable collections, the map operation
may be defined by applying maplInPlace to a copy
of the collection. Indexed aggregates are collections
which are indexed by objects of some type. A table
of key/entry pairs is an example of an indexed ag-
gregate. A table is a collection of entries indexed by
keys. A finite linear aggregate is an indexed aggregate
where the index is an Integer. For example, a string
is a finite linear aggregate of characters.

This categorization of the data structures provides
two main benefits. The first and primary benefit is
the inheritance and sharing of code. For example, a
generic sorting routine can be written for shallowly-
Mutable finite linear aggregates whose components
belong to an ordered set (one could implement
quick-sort in terms of the operations #, elt and
setelt). Secondly, hicrarchies give a useful and sys-
tematic method for defining consistent and compre-
hensive sets of operations on types. They explain
certain similarities and differences between types.
For example, lists and strings are both finite linear
aggregates and hence can be concatenated, but lists
are also recursive aggregates.

There is an additional benefit from having a hierar-
chical organization for the data structures. We in-
tend to provide as part of the user interface a way in
which a user can explore category hierarchies. The



