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Secure Multi-Party Computation (MPC)

• MPC enables multiple parties – each holding their own private data – 
to evaluate a computation without revealing any of the private data 
held by each party

• Each party can only learn any info based on what they can learn from 
the output and their own input

• Two families: Garbles circuits (2 party) and secret sharing (multi party)



Garbled circuits



Oblivious transfer

• Two parties: Alice and Bob

• Alice has two messages m1 & m2 and Bob wants to fetch either 
m1 or m2

• Alice cannot know if Bob picked m1 or m2
• If Bob picked m1, he does not know anything about m2

• Want to learn more? Wiki link

https://en.wikipedia.org/wiki/Oblivious_transfer


Garbled circuit

1. An underlying function is translated to a Boolean circuit with 2 inputs 
(can be done by a third party)

2. Alice garbles (i.e., encrypts) the circuit
3. Alice sends the garbled circuit along with her encrypted input to Bob
4. Bob needs to garble his own input and only the garbler (Alice) knows 

how to garble/encrypt it
1. Alice and Bob use oblivious transfer

5. Bob evaluates the circuit and obtains encrypted output and shares 
with Alice



Alice replaces 0 and 1 with 
randomly generated labels for 
0 and 1 in each circuit 

Alice encrypts the 
output column using 
the 2 input labels

Output can be decrypted only using two correct input labels

Alice permutes the 4 entries and sends it to Bob 
along with her labeled input



If Alice’s input is , she sends

Bob needs the labels for his input that he obtains using Oblivious Transfer

If Bob’s input is Bob first asks for b0=0 between Alice’s labels

After the data transfer, Bob evaluates the circuit one gate at a time and tries to decrypt the 
rows in the garbled circuit, where he can decrypt only one row



Complexity

1. Take any function and transform it into a Boolean circuit

2. Have the garbler garble the entire circuit – every possible input and 
output combination per gate in the circuit

3. Communicate between the two parties using OT to transfer labels 
per bit of plaintext, per gate

4. Evaluate and decrypt the output



Secret sharing



• Encryption techniques are computationally secure
• A powerful adversary can break the encryption technique

• Google, with sufficient computational capabilities, broke SHA-1 (https://shattered.io/)

• Information-theoretical security
• Secure regardless of the computational power of an adversary
• Quantum secure

Why Secret-Sharing?

10The following slides are from Shantanu Sharma



Additive Secret-Sharing
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Secret s = 5

Bob knows 3

Carl knows 2

Assumption: of S servers, at most S-1 servers collude with each other

Split a secret into S shares, store Si on server i
Reconstruct by fetching shares from all and adding them

Easy to add (or subtract) secret shared 
data

𝑎 + 𝑏 = 	Σ𝑎𝑖 + Σ𝑏𝑖 = Σ(𝑎𝑖 + 𝑏𝑖)

Cons: Even if one party is down, secret 
cannot be reconstructed



Shamir’s  Secret-Sharing (SSS) [Shamir79] – Key Idea
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• Need at least 2 non-colluding servers
• One point Þ Infinite number of lines
• Two points Þ Only one line

• Where f(0) is the secret

• Alice wants to share her secret value 5 to Bob and Carl
• Bob and Carl do not communicate with each other 



Shamir’s  Secret-Sharing (SSS) [Shamir79] – Key Idea
• One point Þ Infinite number of lines
• Two points Þ Only one line

• Where f(0) is the secret

• Alice wants to share her secret value 5 to Bob and Carl
• Bob and Carl do not communicate with each other 

• Impact of degree of the polynomial vs security
• 𝑓 servers collude Þ polynomial degree should be 𝑓 + 1

• Servers do not collude Þ a polynomial of the degree 1

• Fault tolerant
• Due to creating multiple shares
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Shamir’s Secret-Sharing (SSS)

Secret
S

Secret Owner Non-Communicating Public Servers

Share 2 (s2)

Share 1 (s1)

Share 3 (s3)
Share 4 (s4)

s1

s2

s3

s4

Mathematical operations
f(x) = S + ax

Each server 
cannot learn 
the secret S

Secret-Share Creation:
e.g., under the assumption that 
no server will collude

Reference: Adi Shamir. “How to share a secret.” Communications of the ACM 22, no. 11 (1979): 612-613. 14



Secret
S

Secret Owner Non-Communicating Public Servers

Share 2 (s2)

Share 1 (s1)

s1

s2

s3

s4

Lagrange Interpolation

Secret Reconstruction
e.g., under the assumption that 
no server will collude

Reference: Adi Shamir. “How to share a secret.” Communications of the ACM 22, no. 11 (1979): 612-613. 15

Shamir’s Secret-Sharing (SSS)



Secret
S

Secret Owner Non-Communicating Public Servers

Share 2 (s2)

Share 4 (s4)

s1

s2

s3

s4

Secret Reconstruction
e.g., under the assumption that 
no server will collude

Lagrange Interpolation

Reference: Adi Shamir. “How to share a secret.” Communications of the ACM 22, no. 11 (1979): 612-613. 16

Shamir’s Secret-Sharing (SSS)



MPC conclusion marks

• SSS can be used to also support multiplication (how?)
• SSS supports both addition and multiplication

• Conceptually, GC and SSS can execute most programs
• However, both have large communication overheads
• Many solutions to minimize ‘online’ rounds

• Both techniques are used in developing secure dbs
• Primarily differs from ORAM dbs in supporting computations over columns
• MPC-based dbs don’t always hide access patterns

https://medium.com/partisia-blockchain/beavers-trick-e275e79839cc


Trusted Execution Environments (TEEs)



Trusted Execution Environments - Intel SGX
• A secure enclave is an isolated unit of data and code execution that cannot be accessed 

even by privileged code (e.g., the operating system or hypervisor)

• Memory encryption: only enclave process can access a program’s memory

• Remote attestation: proof that the code running in the enclave is the one intended, and 
that it is running on a genuine Intel SGX platform

• Sealing: encrypt and authentical the enclave’s data to allow stopping and restarting an 
enclave process w/o losing state

• Developers must partition code as sensitive and non-sensitive. Sensitive code run in the 
enclave, non-sensitive in host space

• Learn more here

https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html


Processor
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Trusted Execution Environments (TEEs)

●Processor fused with secret keys at manufacture time

●Enables the processor to set aside Processor Reserved 
Memory (PRM) at boot time

●Able to instantiate secure virtual containers called 
enclaves

●Enclaves can load programs with confidentiality, 
integrity and freshness guarantees

The following slides are from Sajin Sasy
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● All data within PRM remain encrypted at 
all times
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Trusted Execution Environments (TEEs)
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● All data within PRM remain encrypted at 
all times

● P can have its own key pair enabling users 
to send private data to P, that only P can 
decrypt.
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Trusted Execution Environments (TEEs)
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Trusted Execution Environments (TEEs)
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SGX is vulnerable to side channel attacks

Processor

Memory

PRM Rest of memory

Side-channels
Software

if (secret==1): 
 Branch A
else:
 Branch B

(1) Control Flow
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Processor

Memory

PRM Rest of memory

Side-channels
Software

(1) Control Flow (2) Memory Access Patterns

if (secret==1): 
 Branch A
else:
 Branch B

X = A[secret]

Attacks exploit input dependent 
access behavior on CPU caches, 

registers, and page faults to 
uncover plaintext data

Learn more about attacks: link

SGX is vulnerable to side channel attacks

We need obliviousness

https://opaque.co/how-to-defend-against-side-channel-attacks-on-sgx/


Levels of Obliviousness

Processor

P
Rest of Memory

PRM
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Processor

P
Rest of Memory
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PRM

Levels of Obliviousness



Processor

P
Rest of Memory

1) External-Memory

External-Memory Oblivious: Access to data outside of the PRM are
independent of any secret data.

PRM

6

Levels of Obliviousness
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P

PRM
Rest of Memory

Protected-Memory Oblivious: Access to data within the PRM are
independent of any secret data.

1) External-Memory
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Levels of Obliviousness



Processor
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Rest of Memory

1) External-Memory

2) Protected-Memory
 

Protected-Memory Oblivious: Access to data within the PRM are
independent of any secret data.

PRM

6

Levels of Obliviousness



Processor

P
Rest of Memory

1) External-Memory

2) Protected-Memory
i. Page
ii. Caches

OS is responsible for page table management; Page-granular attacks induce
page faults to extract memory locations accessed by the program.

Adversary can observe timing info on caches in the Processor to also launch attacks

PRM

6

Levels of Obliviousness



Processor

P
Rest of Memory

Control-Flow oblivious: Secret-dependent control flow branches leak
information about the underlying secret; ensure that the program has no 
secret-dependent control-flow branches.

PRM

if (secret-dep clause)

6

Levels of Obliviousness

1) External-Memory

2) Protected-Memory
i. Page
ii. Caches



Processor

P
Rest of Memory

PRM

if (secret-dep clause)

Fully Oblivious: A program is fully oblivious if it satisfies all above 
definitions of obliviousness

Responsibility of the app developer to design oblivious code 6

Levels of Obliviousness

1) External-Memory

2) Protected-Memory
i. Page
ii. Caches

3) Control flow
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Privacy-Preserving Computations

Homomorphic
Cryptography

Distributed Trust /
Multi-Party Computation

Trusted Execution 
Environments (TEEs)

Impractical overheads Incurs large bandwidth overheads Vulnerable to side channel attacks

Non-collusion of 
computation parties

Compute directly on encrypted 
data

Data is secret shared and 
computed upon by servers

Data computations inside 
secure containers

Well-understood
hardness assumptions

Assumes trustworthy
hardware


