
Review of lectures 1-10
CS348 Spring 2023

Instructor: Sujaya Maiyya
Sections: 002 and 004 only



Announcements

• Assignment 2: Due on June 20th 
• Late policy: 5% penalty per 24 hours

• Project Milestone 1: Due on June 22nd 
• Late policy: 25% penalty per 24 hours

• Midterm: On June 26th

• Everything until lecture 10 (except lecture 6 on advance SQL)
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Relational data model

• A database is a collection of relations (or tables)
• Each relation has a set of attributes (or columns)
• Each attribute has a unique name and a domain (or type)
• The domains are required to be atomic

• Each relation contains a set of tuples (or rows)
• Each tuple has a value for each attribute of the relation
• Duplicate tuples are not allowed

• Two tuples are duplicates if they agree on all attributes

FSimplicity is a virtue!
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Single, indivisible 
piece of information



Types of integrity constraints

• Tuple-level 
• Domain restrictions, attribute comparisons, etc.

• E.g. age cannot be negative
• E.g. for flights table, arrival time > take off time

• Relation-level 
• Key constraints (focus in this lecture) 

• E.g. uid should be unique in the User relation 
• Functional dependencies (Textbook, Ch. 7)

• Database-level
• Referential integrity – foreign key (focus in this lecture)

• uid in Member must refer to a row in User with the same uid
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Key (Candidate Key)

Def: A set of attributes 𝐾 for a relation 𝑅 if
• Condition 1: In no instance of 𝑅 will two different 

tuples agree on all attributes of 𝐾
• That is, 𝐾 can serve as a “tuple identifier”

• Condition 2: No proper subset of 𝐾 satisfies the 
above condition
• That is, 𝐾 is minimal

• Example: User (uid, name, age, pop)
• uid is a key of User
• age is not a key (not an identifier)
• {uid, name} is not a key (not minimal)

• One candidate key is assigned to be primary key
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Satisfies only 
Condition 1

, but a superkey



Relational algebra
• A language for querying relational data based on “operators”
• Not used in commercial DBMSs (SQL)
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RelOp

RelOp

• Core operators:
• Selection, projection, cross product, union, difference, 

and renaming

• Additional, derived operators:
• Join, natural join, intersection, etc.

• Compose operators to make complex queries

Output or 
intermediate result 
tables are transient



Operators can only be applied one row 
at a time

• You must be able to evaluate the condition over 
each single row of the input table!
• Example: the most popular user

𝜎!"!	$	%&%'(	!"!	)*	+,%'	𝑈𝑠𝑒𝑟
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WRONG!



Summary of operators
Core Operators 
1. Selection: 𝜎!𝑅
2. Projection: 𝜋"𝑅
3. Cross product: 𝑅×𝑆
4. Union: 𝑅 ∪ 𝑆
5. Difference: 𝑅 − 𝑆
6. Renaming: 𝜌# $!→$!" ,$#→$#" ,… 𝑅

Derived Operators 
1. Join: 𝑅 ⋈! 𝑆
2. Natural join: 𝑅 ⋈ 𝑆
3. Intersection: 𝑅 ∩ 𝑆
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Note: Only use 
these operators for 

assignments & 
exams



Why do we need core operator 𝑋?

• Difference
• The only non-monotone operator

• Projection
• The only operator that removes columns

• Cross product
• The only operator that adds columns

• Union
• The only operator that adds rows

• Selection
• The only operator that conditionally removes rows
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Expression tree notation
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𝜌 !"#→!"#(,&"#→&"#( 𝜌 !"#→!"#),&"#→&"#)

𝑀𝑒𝑚𝑏𝑒𝑟 𝑀𝑒𝑚𝑏𝑒𝑟

⋈!"#('!"#)	∧	&"#(*&"#)

𝜋!"#(

IDs of users who belong to at least two groups



A trickier example

• Who are the most popular?
• Who do NOT have the highest pop rating?
• Whose pop is lower than somebody else’s?
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User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)



A trickier example

• Who are the most popular?
• Who do NOT have the highest pop rating?
• Whose pop is lower than somebody else’s?
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𝜋!"#

𝑈𝑠𝑒𝑟

−

𝑈𝑠𝑒𝑟𝑈𝑠𝑒𝑟

𝜌+,-.( 𝜌+,-.)

⋈+,-.(.0102+,-.).010

𝜋+,-.(.!"#

A deeper question:
When (and why) is “−” needed?

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)



Non-monotone operators

• If some old output rows may become invalid à the 
operator is non-monotone

• Example: difference operator 𝑅 − 𝑆
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RelOp
Add more rows    

to the input...   

What happens
to the output?

uid gid

123 gov

857 abc

uid gid

123 gov

901 edf

− =
uid gid

857 abc

857 abc

This old row 
becomes invalid 
because the new 
row added to S

𝑆𝑅



Non-monotone operators

• If some old output rows may become invalid (causing some 
row removal) à the operator is non-monotone
• Otherwise (old output rows always remain “correct”) à the 

operator is monotone

14

RelOp
Add more rows    

to the input...   

What happens
to the output?

uid gid

123 gov

857 abc

uid gid

123 gov

901 edf

− =
uid gid

857 abc

189 abc

189 abc

This old row is 
always valid no 

matter what 
rows are added 

to R

𝑆𝑅



Classification of relational operators

• Selection: 𝜎!𝑅
• Projection: 𝜋"𝑅
• Cross product: 𝑅×𝑆
• Join: 𝑅 ⋈! 𝑆
• Natural join: 𝑅 ⋈ 𝑆
• Union: 𝑅 ∪ 𝑆
• Difference: 𝑅 − 𝑆
• Intersection: 𝑅 ∩ 𝑆
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Monotone
Monotone
Monotone
Monotone
Monotone
Monotone
Monotone w.r.t. 𝑅; non-monotone w.r.t 𝑆

Monotone



SQL (lectures 3-6)
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DDL

• CREATE TABLE table_name 
(…, column_name column_type, …);

• DROP TABLE table_name;
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CREATE TABLE User(uid INT, name VARCHAR(30), age INT, pop DECIMAL(3,2));
CREATE TABLE Group (gid CHAR(10), name VARCHAR(100));
CREATE TABLE Member (uid INT, gid CHAR(10));

DROP TABLE User;
DROP TABLE Group;
DROP TABLE Member;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Drastic action: 
deletes ALL info 

about the table, not 
just the contents



Basic queries for DML: SFW statement

• SELECT 𝐴%, 𝐴&, …, 𝐴'
FROM 𝑅%, 𝑅&, …, 𝑅(
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;

• Also called an SPJ (select-project-join) query

• Corresponds to (but not really equivalent to) 
relational algebra query:

𝜋)!,)",…,)# 𝜎,-'./0/-' 𝑅%×𝑅&×⋯×𝑅(
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SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra
• Duplicates in input tables, if any, are first eliminated
• Duplicates in result are also eliminated (for UNION)
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fruit

apple

apple

orange

fruit

orange

orange

orange

Bag1 Bag2 (SELECT * FROM Bag1)
UNION
(SELECT * FROM Bag2);

fruit

apple

orange

(SELECT * FROM Bag1)
EXCEPT
(SELECT * FROM Bag2);

fruit

apple

(SELECT * FROM Bag1)
INTERSECT
(SELECT * FROM Bag2);

fruit

orange



SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra

• Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL
• Think of each row as having an implicit count (the 

number of times it appears in the table)
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fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
EXCEPT ALL
(SELECT * FROM Bag2);

fruit

apple

proper-subtract 
the two counts

apple: 2
orange:1

apple: 1
orange:2

apple: 1
orange:0



Set versus bag operations

Poke (uid1, uid2, timestamp)
• uid1 poked uid2 at timestamp

Question: How do these two queries differ?
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Q1:
(SELECT uid1 FROM Poke)
EXCEPT
(SELECT uid2 FROM Poke);

Q2:
(SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke);

Users who poked others but 
never got poked by others

Users who poked others 
more than others poked them



• Use query result as a table
• In set and bag operations, FROM clauses, etc.

• Example: names of users who poked others more 
than others poked them

Table subqueries
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SELECT DISTINCT name 
FROM User,

(SELECT uid1 as uid FROM Poke)
EXCEPT ALL
(SELECT uid2 as uid FROM Poke) AS T

WHERE User.uid = T.uid;



WITH clause

• The WITH clause provides a way of defining a 
temporary relation whose definition is available 
only to the query in which the with clause occurs

• Supported by many but not all DBMSs
• Can be written using subqueries
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WITH max_pop(popVal) AS (SELECT 
max(pop) FROM user)
SELECT uid, name FROM user, max_pop 
WHERE user.pop = max_pop.popVal

WITH max_pop AS (SELECT max(pop) AS 
popVal FROM user)
SELECT uid, name FROM user, max_pop 
WHERE user.pop = max_pop.popVal



• 𝑥 IN (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if 𝑥 is in the result of 
𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦

• Example: users at the same age as (some) Bart

IN subqueries
24

SELECT *
FROM User,
WHERE age IN (SELECT age 
    FROM User 
    WHERE name = ‘Bart’);



• EXISTS (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 
is non-empty

• Example: users at the same age as (some) Bart

• This happens to be a correlated subquery—a subquery 
that references tuple variables in surrounding queries

EXISTS subqueries
25

SELECT *
FROM User AS u,
WHERE EXISTS (SELECT * FROM User 
    WHERE name = ‘Bart’
   AND age = u.age);



Aggregates

• Standard SQL aggregate functions: COUNT, SUM, 
AVG, MIN, MAX

• Example: number of users under 18, and their 
average popularity
• COUNT(*) counts the number of rows
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SELECT COUNT(*), AVG(pop)
FROM User
WHERE age <18;

COUNT
(*)

AVG
(pop)

6 0.625



Grouping

• SELECT … FROM … WHERE …
GROUP BY list_of_columns;

• Example: compute average popularity for 
each age group
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SELECT age, AVG(pop)
FROM User
GROUP BY age;



Example of computing GROUP BY
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uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Compute GROUP BY: group 
rows according to the values 
of GROUP BY columns

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

Compute SELECT 
for each group 

age avg_pop

10 0.55

8 0.50

SELECT age, AVG(pop) FROM User GROUP BY age;



HAVING examples
• Used to filter groups based on the group properties 

(e.g., aggregate values, GROUP BY column values)
• List the average popularity for each age group with 

more than a hundred users

• Can be written using WHERE and table subqueries
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SELECT age, AVG(pop) 
FROM User 
GROUP BY age
HAVING COUNT(*)>100;

SELECT T.age, T.apop
FROM (SELECT age, AVG(pop) AS apop, COUNT(*) AS gsize  
 FROM User GROUP BY age) AS T
WHERE T.gsize>100;



ORDER BY example

• List all users, sort them by popularity (descending) 
and name (ascending)

• ASC is the default option
• Strictly speaking, only output columns can appear in 

ORDER BY clause (although some DBMS support more)
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SELECT uid, name, age, pop
FROM User 
ORDER BY pop DESC, name;



Three-valued logic to handle NULL

• Comparing a NULL with another value (including 
another NULL) using =, >, etc., the result is NULL

• WHERE and HAVING clauses only select rows for 
output if the condition evaluates to TRUE
• NULL is not enough

• Aggregate functions ignore NULL, except COUNT(*)

31

TRUE = 1, FALSE = 0, UNKNOWN = 0.5
𝑥 AND 𝑦 = min(𝑥, 𝑦)
𝑥 OR 𝑦 = max(𝑥, 𝑦)

NOT 𝑥 = 1 − 𝑥



Unfortunate consequences

• Q1a = Q1b?

• Q2a = Q2b?

• Be careful: NULL breaks many equivalences
• Use IS NULL or NOT NULL for null comparisons
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Q1a. SELECT AVG(pop) FROM User;

Q1b. SELECT SUM(pop)/COUNT(*) FROM User;

Q2a. SELECT * FROM User;

Q2b SELECT * FROM User WHERE pop=pop;



Outerjoin examples
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gid name

abc Book Club

gov Student Government

dps Dead Putting Society

nuk United Nuclear Workers

uid gid

142 dps

123 gov

857 abc

857 gov

789 foo

Group

Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

Group⟗Member

A full outerjoin between R and S:
• All rows in the result of 𝑅 ⋈ 𝑆, plus
• “Dangling” 𝑅 rows (those that do not join 

with any 𝑆 rows) padded with NULL’s for 
𝑆’s columns

• “Dangling” 𝑆 rows (those that do not join 
with any 𝑅 rows) padded with NULL’s for 
𝑅’s columns

nuk United Nuclear Workers NULL

foo NULL 789



Outerjoin examples
34

gid name

abc Book Club

gov Student Government

dps Dead Putting Society

nuk United Nuclear Workers

uid gid

142 dps

123 gov

857 abc

857 gov

789 foo

Group

Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

nuk United Nuclear Workers NULL

Group⟕Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

foo NULL 789

Group⟖Member

• A left outerjoin (𝑅⟕𝑆) includes rows in 𝑅 ⋈ 𝑆 
plus dangling 𝑅 rows padded with NULL’s

• A right outerjoin (𝑅⟖𝑆) includes rows in 𝑅 ⋈
𝑆 plus dangling 𝑆 rows padded with NULL’s



Outerjoin syntax

☞A similar construct exists for regular (“inner”) joins:

☞For natural joins, add keyword NATURAL; don’t use ON
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SELECT * FROM Group LEFT OUTER JOIN Member
              ON Group.gid = Member.gid;

SELECT * FROM Group RIGHT OUTER JOIN Member
              ON Group.gid = Member.gid;

SELECT * FROM Group FULL OUTER JOIN Member
              ON Group.gid = Member.gid;

≈ 𝐺𝑟𝑜𝑢𝑝 ⟕
!"#$%.'()*+,-.,".'()

𝑀𝑒𝑚𝑏𝑒𝑟

≈ 𝐺𝑟𝑜𝑢𝑝 ⟖
!"#$%.'()*+,-.,".'()

𝑀𝑒𝑚𝑏𝑒𝑟

≈ 𝐺𝑟𝑜𝑢𝑝 ⟗
!"#$%.'()*+,-.,".'()

𝑀𝑒𝑚𝑏𝑒𝑟

SELECT * FROM Group JOIN Member ON Group.gid = Member.gid;

SELECT * FROM Group NATURAL JOIN Member;

Theta join: gid is 
repeated

Natural join: gid 
appears once



Insert/Delete/Update
• Insert one row
• User 789 joins Dead Putting Society
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INSERT INTO Member VALUES (789, 'dps');

• Delete everything from a table

• Delete according to a WHERE condition
• Example: User 789 leaves Dead Putting Society

• Update: User 142 changes name to “Barney”

DELETE FROM Member;

DELETE FROM Member WHERE uid=789 AND gid=‘dps’;

UPDATE User
SET name = 'Barney’ 
WHERE uid = 142;



Types of SQL constraints

• NOT NULL
• Key
• Referential integrity (foreign key)
• General assertion
• Tuple- and attribute-based CHECK’s
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NOT NULL & Key constraint examples
38

CREATE TABLE User
(uid INT NOT NULL,
 name VARCHAR(30) NOT NULL,
 twitterid VARCHAR(15) NOT NULL,
 age INT,
 pop DECIMAL(3,2));

CREATE TABLE User
(uid INT NOT NULL PRIMARY KEY,
 name VARCHAR(30) NOT NULL,
 twitterid VARCHAR(15) NOT NULL UNIQUE,
 age INT,
 pop DECIMAL(3,2));

At most one 
primary key per 
table

Any number of 
UNIQUE keys per 
table

CREATE TABLE Member
(uid INT NOT NULL,
 gid CHAR(10) NOT NULL,
PRIMARY KEY(uid,gid));

This form is 
required for multi-
attribute keys



Referential integrity in SQL

• Referenced column(s) must be PRIMARY KEY
• Referencing column(s) form a FOREIGN KEY
• Example
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CREATE TABLE Member
(uid INT NOT NULL REFERENCES User(uid),
 gid CHAR(10) NOT NULL,
PRIMARY KEY(uid,gid), 
FOREIGN KEY (gid) REFERENCES Group(gid));

This form is required for multi-
attribute foreign keys

CREATE TABLE MemberBenefits
(…..
FOREIGN KEY (uid,gid) REFERENCES Member(uid,gid));

Some system allow them to be 
non-PK but must be UNIQUE



Enforcing referential integrity 

Example: Member.uid references User.uid
• Delete or update a User row whose uid is 

referenced by some Member row
• Reject or ON DELETE CASCADE or ON DELETE SET NULL
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uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… ….

User Member

Option 1: Reject Option 2: Cascade 
(ripple changes to all 
referring rows)

CREATE TABLE Member
(uid INT NOT NULL 
REFERENCES User(uid)
ON DELETE CASCADE,
…..);



General assertion

• CREATE ASSERTION 𝑎𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛_𝑛𝑎𝑚𝑒
CHECK assertion_condition;
• assertion_condition is checked for each 

modification that could potentially violate it

• Example: Member.uid references User.uid
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CREATE ASSERTION MemberUserRefIntegrity
CHECK (NOT EXISTS
       (SELECT * FROM Member
        WHERE uid NOT IN
        (SELECT uid FROM User)));

Assertions are 
statements 
that must 

always be true

Can include 
multiple 

tables



Triggers

• A trigger is an event-condition-action (ECA) rule
• When event occurs, test condition; if condition is 

satisfied, execute action
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CREATE TRIGGER PickyPopGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW
 WHEN (newUser.pop < 0.5)
  AND (newUser.uid IN (SELECT uid
                        FROM Member
                        WHERE gid = ‘popgroup')) 
  DELETE FROM Member
  WHERE uid = newUser.uid AND gid = ‘popgroup';

Event 

Condition

Action

Transition variable



Trigger options

• Possible events include:
• INSERT ON table; DELETE ON table; UPDATE [OF column] 

ON table

• Timing—action can be executed:
• AFTER or BEFORE the triggering event
• INSTEAD OF the triggering event on views (lecture 5)

• Granularity—trigger can be activated:
• FOR EACH ROW modified
• FOR EACH STATEMENT that performs modification
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Transition variables/tables
• OLD ROW: the modified row before the triggering event
• NEW ROW: the modified row after the triggering event
• OLD TABLE: a read-only table containing all old rows 

modified by the triggering event
• NEW TABLE: a table containing all modified rows after the 

triggering event

 AFTER Trigger                                          BEFORE Trigger

44

Event Row Statement

Delete old r; old t old t

Insert new r; new t new t

Update old/new r; old/new t old/new t

Event Row Statement

Update old/new r -

Insert new r -

Delete old r -



Certain triggers are only possible at 
statement level
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CREATE TRIGGER MaintainAvgPop
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
  OLD TBALE AS oldUsers
FOR EACH STATEMENT
 WHEN (0.5 > (SELECT AVG(pop) from User)
 BEGIN
  DELETE FROM User WHERE uid IN (SELECT uid 

 FROM newUsers)
  INSERT INTO User (SELECT * FROM oldUsers)
 END

Event 

Condition

Transition 
tables

Action



Views

• A view is like a “virtual” table
• Defined by a query, which describes how to compute 

the view contents on the fly
• Stored as a query by DBMS instead of query contents 
• Can be used in queries just like a regular table

46

CREATE VIEW PopGroup AS
        SELECT * FROM User
        WHERE uid IN (SELECT uid 
                              FROM Member
                            WHERE gid = ‘popgroup');

DROP VIEW popGroup;

Base 
tables

SELECT AVG(pop) FROM PopGroup;

SELECT AVG(pop)
FROM (SELECT * FROM User
            WHERE uid IN
            (SELECT uid FROM Member
             WHERE gid = ‘popgroup'))
             AS popGroup;

SELECT MIN(pop) FROM PopGroup;
SELECT … FROM PopGroup;



DB Design (lectures 7-10):
E/R models

Design theory
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E/R basics

• Entity: a “thing,” like an object
• Entity set: a collection of things of the same type, 

like a relation of tuples or a class of objects
• Represented as a rectangle

• Relationship: an association among entities
• Relationship set: a set of relationships of the same 

type (among same entity sets)
• Represented as a diamond

• Attributes: properties of entities or relationships, 
like attributes of tuples or objects
• Represented as ovals
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General cardinality constraints

• General cardinality constraints determine lower and 
upper bounds on the number of relationships of a 
given relationship set in which a component entity 
may participate

• Example:

49



Weak entity sets
• If entity E’s existence depends on entity F, then 

• F is a dominant entity
• E is a subordinate entity 
• Example: Rooms inside Buildings are partly identified by 
Buildings’ name

• Weak entity set: containing subordinate entities
• Drawn as a double rectangle
• The relationship sets are called supporting 

relationship sets, drawn as double diamonds
• A weak entity set must have a many-to-one or 

one-to-one relationship to a distinct entity set

• Strong entity set: containing no subordinate entities

50

Rooms

Buildings

InImplies 
(1,*)



Specialization or ISA relationships

• Similar to the idea of subclasses in object-oriented 
programming: subclass = special case, fewer 
entities, and possibly more properties
• Represented as a triangle (direction is important)

• Example: paid users are users, but they also get 
avatars (yay!)

51

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Automatically “inherits” key, attributes, 
relationships
Can participate in other relationships



Composite and multi-valued attributes

• Composite attributes: composed of fixed number 
of other attributes
• E.g. Address 

• Multi-valued attributes: attributes that are set-
valued
• e.g. Hobbies  (double edges)

52

Address

Street

City

Province
Hobbies

Employee



Translating entity sets

• An entity set translates directly to a table
• Attributes → columns
• Key attributes → key columns
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Users Groups
gid

name
IsMemberOf

uid

name

fromDate

User (uid, name) Group (gid, name)



Translating weak entity sets

• Remember the “borrowed” key attributes
• Watch out for attribute name conflicts

54

Rooms In Buildings
name

year

Rnumber

capacity

In

Seats
Snumber

L/R?
Building (name, year)

Room (building_name, room_number, capacity)
Seat (building_name, room_number, seat_number, left_or_right)



Translating double diamonds?

• No need to translate because the relationship is 
implicit in the weak entity set’s translation
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Rooms In Buildings
name

year

number

capacity

In

Seats
number

L/R?

Relationship
RoomInBuilding 
 (room_building_name, room_number,)

is subsumed by entity
Room (building_name, room_number, capacity)



Comparison of three approaches of 
translating subclasses & ISA
• Entity-in-all-superclasses
• User (uid, name), PaidUser (uid, avatar)
• Pro: 
• Con:

• Entity-in-most-specific-class
• User (uid, name), PaidUser (uid, name, avatar)
• Pro:
• Con:

• All-entities-in-one-table
• User (uid, [type, ]name, avatar)
• Pro:
• Con:
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All users are found in one table
Attributes of paid users are scattered in different tables

All attributes of paid users are found in one table
Users are scattered in different tables

Everything is in one table
Lots of NULL’s; complicated if class hierarchy is complex



Translating composite and multi-valued 
attributes 

57

Address

Street

City

Province
Hobbies

Employee

Composite:
Employee(eId,…,Street, City, Province,..)

Multi-valued:
EmployeeHobbies(eID, hobby)
 Foreign key: eId references Employee
Employee join EmployeeHobbies to get all info 

eID



Functional dependencies
• A functional dependency (FD) is a constraint 

between two sets of attributes in a relation

• FD has the form 𝑋 → 𝑌, where 𝑋 and 𝑌 are sets of 
attributes in a relation 𝑅
• 𝑋 → 𝑌 means that whenever two tuples in 𝑅 agree 

on all the attributes in 𝑋, they must also agree on 
all attributes in 𝑌

• If X	is a superkey of R , then X → R (all the attributes)

𝑿 𝒀 𝒁
𝑎 𝑏 𝑐
𝑎 ? ?

… … …

𝑿 𝒀 𝒁
𝑎 𝑏 𝑐
𝑎 𝑏 ?

… … …Must be 𝑏 Could be anything
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Implied FDs: Armstrong’s Axioms

Ø A set of fds can imply other fds via 3 intuitive rules: Armstrong’s Axioms

1. Reflexivity: If Y⊆ X, then X → Y (trivially)

Ø iID, name → iID 

Ø English: Each iID and name value determine a unique iID value

2. Augmentation: if X → Y, then XZ → YZ (trivially)

Ø If iID → salary then iID, name → salary, name

Ø English: if each iID determines a unique salary value, then each (iID, 

name) value pair determines a unique (salary, name) value

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

… … … … … … 59



Implied FDs: Armstrong’s Axioms

3. Transitivity: if X → Y and Y → Z, then X → Z

Ø Suppose each instructor can be in a single department and each dep 

has a single budget

Ø FD1: iID → depName FD2: depName → budget, then 

iID → budget

Ø English: If each iID value determines a unique depName value, which in 

turn determines a unique budget value, then each iID value determines a 

unique budget value.
InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

… … … … … … 60



Other Rules Implied by Armstrong’s Axioms

1. Decomposition: If X → YZ, then X → Y and X → Z

Proof: 

i.  X → YZ

ii. YZ → Y (by reflexivity);   YZ → Z (by reflexivity)

iii. X → Y (by transitivity);  X → Z (by transitivity)

2. Union: If X → Y and X → Z then X → YZ (Prove as exercise)

3. Pseudo-transitivity: If X → Y and YZ → T then XZ→ T (Prove as exercise)

Using these rules, you can prove or disprove a (derived) FD given a 
set of (base) FDs
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Closure of FD sets: ℱ,

• How do we know what additional FDs hold in a 
schema? 

• A set of FDs ℱ logically implies a FD 𝑋 → 𝑌 if 𝑋 → 𝑌
holds in all instances of 𝑅 that satisfy ℱ

• The closure of a FD set ℱ (denoted ℱ5): 
• The set of all FDs that are logically implied by ℱ
• Informally, ℱ;includes all of the FDs in ℱ, i.e., ℱ ⊆ 𝐹;, 

plus any dependencies they imply.
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ℱ ℱ/
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Attribute closure

• The closure of attributes 𝑍 in a relation 𝑅	(denoted 
𝑍5) with respect to a set of FDs, ℱ, is the set of all 
attributes 𝐴%, 𝐴&, …  functionally determined by 𝑍 
(that is, Z → 𝐴%𝐴&…)

• Algorithm for computing the closure 
Compute𝑍5(𝑍, ℱ):
• Start with closure = 𝑍
• If 𝑋 → 𝑌 is in ℱ and 𝑋 is already in the closure, then also 

add 𝑌 to the closure
• Repeat until no new attributes can be added
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Example for computing attribute 
closure

FD 𝑍/

initial 𝐵, 𝐹

64

ℱ includes:
A, B → F  
A → C
B → E, D
D, F → G

Given relation R(ABCDEFG)
Compute𝑍5({𝐵, 𝐹}, ℱ):

𝐵, 𝐹 → 𝐸,𝐷, 𝐺

B → E, D B, F, E, D

D, F → G 𝐵, 𝐹, 𝐸, 𝐷, 𝐺

64



Using attribute closure

Given a relation 𝑅 and set of FD’s ℱ
• Does another FD 𝑋 → 𝑌 follow from ℱ?
• Compute 𝑋; with respect to ℱ
• If 𝑌 ⊆ 𝑋;, then 𝑋 → 𝑌 follows from ℱ

• Is 𝐾 a key of 𝑅?
• Compute 𝐾; with respect to ℱ
• If 𝐾; contains all the attributes of 𝑅, 𝐾 is a super key
• Still need to verify that 𝐾 is minimal (how?)

• Hint: check the attribute closure of its proper subset.
• i.e., Check that for no set X formed by removing attributes from 
𝐾	is 𝐾!the set of all attributes
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“Good” Schema Decomposition

• Lossless-join decompositions
• We should be able to construct the instance of the 

original table from the instances of the tables in the 
decomposition

66

A decomposition {𝑅D, 𝑅E} of 𝑅 is lossless iff the common 
attributes of 𝑅D and 𝑅E form a superkey for either schema, 

𝑅%∩ 𝑅& → 𝑅% or 𝑅% ∩ 𝑅& → 𝑅&
*If 𝑋	is a superkey of R , then 𝑋 → 𝑅 (all the attributes)  [last lecture]



“Good” Schema Decomposition

• Lossless-join decompositions
• Dependency-preserving decompositions

• Next, how to obtain such decompositions?
• BCNF à guaranteed to be a lossless join decomposition!

67

Given a schema 𝑅 and a set of FDs ℱ, 
decomposition of 𝑅 is dependency preserving 

if there is an equivalent set of FDs	ℱ′, 
none of which is interrelational in the decomposition. 



Boyce-Codd Normal Form (BCNF)

• A relation 𝑅 is in BCNF iff whenever 𝑋 → 𝑌 ∈ ℱ5 
and 𝑋𝑌 ⊆ 𝑅, then either 
• (𝑋 → 𝑌) is trivial (i.e., 𝑌 ⊆ 𝑋), or 
• 𝑋 is a super key of 𝑅 (i.e., 𝑋 → 𝑅)

• That is, all non-trivial FDs follow from “key → other attributes”

• Example: 𝑅 = Sno,Sname,City,Pno,Pname,Price

• The schema is not in BCNF because, for example, Sno
determines Sname,City, is non-trivial but is not a 
superkey of 𝑅
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ℱ includes:
FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	 FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒



BCNF decomposition algorithm

• Find a BCNF violation
• That is, a non-trivial FD 𝑋 → 𝑌 in ℱ; of	𝑅 where 𝑋 is not 

a super key of 𝑅
• Example: 𝑅 = Sno,Sname,City,Pno,Pname,Price

• Decompose 𝑅 into 𝑅% and 𝑅&, where
• 𝑅D has attributes 𝑋 ∪ 𝑌; 
• 𝑅E has attributes 𝑋 ∪ 𝑍, where 𝑍 contains all attributes 

of 𝑅 that are in neither 𝑋 nor 𝑌

• Repeat (till all are in BCNF)
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ℱ includes:
FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	 FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒

𝑅 = Sno,Sname,City,Pno,Pname,Price

R2 Sno,Pno,Pname,Price

BCNF violation: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦

R1 Sno,Sname,City



BCNF decomposition example
• 𝑅 = Sno,Sname,City,Pno,Pname,Price
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ℱ includes:
FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	 FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒

Sno,Sname,City,Pno,Pname,Price

R2 Sno,Pno,Pname,Price

BCNF violation: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦

R1 Sno,Sname,City BCNF: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦
𝑃𝑛𝑜 → 𝑃𝑛𝑎𝑚𝑒 𝑆𝑛𝑜, 𝑃𝑛𝑜 → 𝑃𝑟𝑖𝑐𝑒

BCNF violation: 𝑃𝑛𝑜 → 𝑃𝑛𝑎𝑚𝑒

R2b Sno,Pno,Price R2a Pno,Pname
BCNF: 𝑃𝑛𝑜 → 𝑃𝑛𝑎𝑚𝑒BCNF: 𝑆𝑛𝑜, 𝑃𝑛𝑜 → 𝑃𝑟𝑖𝑐𝑒

{SNo}+={Sno, Sname, City}
à a superkey of R1



“Good” Schema Decomposition

• Lossless-join decompositions
• Dependency-preserving decompositions
• BCNF à guaranteed to be a lossless join 

decomposition!
• Depend on the on the sequence of FDs for decomposition
• Not necessarily dependency preserving
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Example: consider R={A, B, C} ℱ includes:  FD1: 𝐴𝐵 → 𝐶       FD2: C → 𝐵

BCNF violation: C → 𝐵

{A, C} {C, B} 
𝐴𝐵 → 𝐶 is interrelational and cannot be tested directly



“Good” Schema Decomposition

• Lossless-join decompositions
• Dependency-preserving decompositions
• BCNF à guaranteed to be a lossless join 

decomposition!
• Depend on the on the sequence of FDs for decomposition
• Not necessarily dependency preserving

• 3NF à both lossless join and dependency preserving
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Third normal form (3NF)

• A relation 𝑅 is in 3NF iff
whenever 𝑋 → 𝑌 ∈ ℱ5 and 𝑋𝑌 ⊆ 𝑅, then either 
• (𝑋 → 𝑌) is trivial (i.e., 𝑌 ⊆ 𝑋), or 
• 𝑋 is a super key of 𝑅 (i.e., 𝑋 → 𝑅) or 
• Each attribute in 𝐘 − 𝑿 is contained in a candidate key of 𝑹

• Example: consider R={A, B, C}
• Satisfies 3NF, but not BCNF

• 3NF is looser than BCNF à Allows more redundancy 
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ℱ includes:  FD1: 𝐴𝐵 → 𝐶       FD2: 𝐶 → 𝐵

{B}-{C} = {B} is part of the key {AB}



Finding minimal cover

• A minimal cover for ℱ can be computed in 3 steps. 
1. Replace 𝑋 → 𝑌𝑍 with the pair 𝑋 → 𝑌 and 𝑋 → 𝑍
2. Remove 𝐴 from the left-hand side of 𝑋 → 𝐵 in ℱ if B ∈

𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑋!(𝑋 − {𝐴}, ℱ)
3. Remove 𝑋 → 𝐴 from ℱ if 𝐴 ∈ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑋!(𝑋, ℱ − 𝑋 → 𝐴 )
• Note that each step must be repeated until it no longer succeeds in 

updating ℱ.

• Example: 𝑅 = Sno,Sname,City,Pno,Pname,Price, 𝑃𝑇𝑦𝑝𝑒
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ℱ: FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       
      FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	
      FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒
      FD4: 𝑆𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒	 → 𝑃𝑟𝑖𝑐𝑒
      FD5: 𝑃𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒	 → 𝑃𝑡𝑦𝑝𝑒

𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒,
𝑆𝑛𝑜 → 𝐶𝑖𝑡𝑦

Remove FD3

𝑃𝑛𝑜	 → 𝑃𝑡𝑦𝑝𝑒



Computing 3NF decomposition 

Efficient algorithm for computing a 3NF 
decomposition of 𝑅 with FDs ℱ:
1. Initialize the decomposition with empty set
2. Find a minimal cover for ℱ, let it be ℱ∗

3. For every X → Y ∈ ℱ∗, add a relation {XY} to the 
decomposition 

4. If no relation contains a candidate key for 𝑅, then 
compute a candidate key 𝐾 for R, and add 
relation {K} to the decomposition. 
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Example for 3NF decomposition
• 𝑅 = Sno,Sname,City,Pno,Pname,Price

• Minimal cover ℱ∗

• Add relation for candidate key
• Optimization for this example: combine relations R1a 

and R1b 
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ℱ: FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       
      FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	
      FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒
      FD4: 𝑆𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒	 → 𝑃𝑟𝑖𝑐𝑒

ℱ∗: FD1a: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒 
      FD1b: 𝑆𝑛𝑜 → 𝐶𝑖𝑡𝑦     
      FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	
      FD4: 𝑆𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒	 → 𝑃𝑟𝑖𝑐𝑒

R1a(Sno, Sname)
R1b(Sno, City)

R2(Pno, Pname)
R4(Sno,Pname,Price)

R5(Sno,Pno)

Exercise

Exercise



Next lecture

• DB Architecture Overview & Physical Data 
Organization
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