Review lecture - 2

CS348 Spring 2023
Instructor: Sujaya Maiyya
Sections: 002 \& 004 only

Announcements

- Milestone 2
- Due Tuesday, June $11^{\text {th }}$
- Late policy: 25% penalty per 24 hrs
- Assignment 3 - released
- Due July $20^{\text {th }}$
- Late policy: 15\% penalty per 24 hrs
- Expect delays in grading due to a change in TA
- We will announce on Piazza when grades are ready

Topics covered so far

- Relational model (lecture 2)
- SQL (lectures 3-6)
- Database design (lectures 7-10)

Conceptual/Logical
 level

Review these topics

- Storage management \& indexing (lectures 11-12)
- Query processing \& optimizations (lectures 13-14)

Storage hierarchy

A typical hard drive

Top view

"Zoning": more sectors/data on outer tracks

Disk access time

Disk access time: time from when a read or write request is issued to when data transfer begins

Sum of:

- Seek time: time for disk heads to move to the correct cylinder
- Rotational delay: time for the desired block to rotate under the disk head
- Transfer time: time to read/write data in the block (= time for disk to rotate over the block)
- Total data access time = seek time + rotational delay + transfer time

Random disk access

\rightarrow Successive requests are for blocks that are randomly located on disk

Delay $=$ Seek time + rotational delay + transfer time

- Average seek time
- Seek the right cylinder for each access
- "Typical" value: 5 ms
- Average rotational delay
- Rotate for the right block for each access
- "Typical" value: 4.2 ms (7200 RPM)

Sequential disk access

\rightarrow Successive requests are for successive block numbers, which are on the same track, or on adjacent tracks

Delay $=$ Seek time + rotational delay + transfer time

- Seek time
- 1 time delay: seek the right cylinder once
- Rotational delay
- 1 time delay: rotate to the right block once
- Easily an order of magnitude faster than random disk access!

Record layout

Record = row in a table

- Variable-format records
- Rare in DBMS—table schema dictates the format
- Relevant for semi-structured data such as XML
- Focus on fixed-format records
- With fixed-length fields only, or
- With possible variable-length fields

Fixed-length fields

- All field lengths and offsets are constant
- Computed from schema, stored in the system catalog
- Example: CREATE TABLE User(uid INT, name CHAR(20), age INT, pop FLOAT);

- If block size != 36, one row maybe split across multiple blocks or move to next block \& leave the remaining space empty
- What about NULL?
- Add a bitmap at the beginning of the record

Variable-length records

- Example: CREATE TABLE User(uid INT,
name VARCHAR(20), age INT, pop FLOAT, comment VARCHAR(100));
- Put all variable-length fields at the end
- Approach 1: use field delimiters ('\0’ okay?)

- Approach 2: use an offset array

- Scheme update is messy if it changes the length of a field

Block layout

How do you organize records in a block?

- NSM (N-ary Storage Model)
- Most commercial DBMS
- PAX (Partition Attributes Across)
- Ailamaki et al., VLDB 2001

NSM

- Store records from the beginning of each block
- Use a directory at the end of each block
- To locate records and manage free space
- Necessary for variable-length records

Cache behavior of NSM

- Query: select uid from User Where pop > 0.8;
- Assumptions: no index, and cache line size < record size
- Lots of cache misses \& wasted prefetching

142 Bart 10
0.9123 Milhouse
100.2857 Lisa
80.7
456 Ralph 8
0.3
Cache

- Most queries only access a few columns
- Cluster values of the same columns in each block
- Better sequential reads for queries that read a single column

Reorganize after every update (for variable-length records only) and delete to keep fields together

Column vs. row oriented db

User:	uid	name	pop	age
	1	Bart	.6	12
	2	Lisa	.9	10
	3	Abe	.3	65

Indexes

Dense v.s. sparse indexes

- Dense: one index entry for each search key value
- One entry may "point" to multiple records (e.g., two users named Jessica)
- Sparse: one index entry for each block
- Records must be clustered according to the search key on disk

Dense v.s. sparse indexes

- Dense: one index entry for each search key value
- One entry may "point" to multiple records (e.g., two users named Jessica)
- Sparse: one index entry for each block
- Records must be clustered according to the search key

Can tell directly if a record exists

Clustering v.s. non-clustering indexes

- An index on attribute A is a clustering index if tuples in the relation with similar values for A are stored together in the same block.
- Other indices are non-clustering (or secondary) indices.
- Note: A relation may have at most one clustering index, and any number of non-clustering indices.

B^{+}-tree

- A hierarchy of nodes with intervals
- Balanced: good performance guarantee
- Disk-based: one node per block; large fan-out

Sample B+-tree nodes

to records with these k values;
or, store records directly in leaves

Lookups

- SELECT * FROM R WHERE $k=179$;
- SELECT * FROM R WHERE $k=32$;

Range query

- SELECT * FROM R WHERE $k>32$ AND $k<179$;

Insertion

- Insert a record with search key value 32

And insert it right there

Another insertion example

- Insert a record with search key value 152

Node splitting

More node splitting

- In the worst case, node splitting can "propagate" all the way up to the root of the tree (not illustrated here)
- Splitting the root introduces a new root of fan-out 2 and causes the tree to grow "up" by one level

Index-only plan

- For example:
- SELECT firstname, pop FROM User WHERE pop > '0.8' AND firstname = 'Bob';
- non-clustering index on (firstname, pop)
- A (non-clustered) index contains all the columns needed to answer the query without having to access the tuples in the base relation.
- Avoid one disk I/O per tuple
- The index is much smaller than the base relation

Query processing

Notation

- Relations: R, S
- Tuples: r, s
- Number of tuples: $|R|,|S|$
- Number of disk blocks: $B(R), B(S)$
- Number of memory blocks available: M
- Cost metric
- Number of I/O's
- Memory requirement

Table scan

- Scan table R and process the query
- Selection over R
- Projection of R without duplicate elimination
- I/O's: $B(R)$
- Trick for selection:
- stop early if it is a lookup by key
- Memory requirement: 2 (blocks)
- 1 for input, 1 for buffer output

- Increase memory does not improve I/O
- Not counting the cost of writing the result out
- Same for any algorithm!

Basic nested-loop join

$R \bowtie_{p} S$

- For each r in a block B_{R} of R : For each S in a block B_{S} of S : Output $r s$ if p is true over r and s
- R is called the outer table; S is called the inner table
- I/O's: $B(R)+|R| \cdot B(S)$

Blocks of R are moved into memory only once

Blocks of S are moved into memory $|R|$ number of times

- Memory requirement: 3

Improvement: block nested-loop join

$R \bowtie_{p} S$

- For each block B_{R} of R : For each block B_{S} of S :

For each r in B_{R} :
For each S in B_{S} :
Output $r s$ if p is true over r and s

- I/O's: $B(R)+B(R) \cdot B(S)$

Blocks of R are moved into memory only once

Blocks of S are moved into memory $B(R)$ number of times

- Memory requirement: 3

More improvements

- Stop early if the key of the inner table is being matched
- Make use of available memory
- Stuff memory with as much of R as possible, stream S by, and join every S tuple with all R tuples in memory
- I/O's: $B(R)+\left\lceil\frac{B(R)}{M-2}\right\rceil \cdot B(S)$
- Or, roughly: $B(R) \cdot B(S) / M$
- Memory requirement: M (as much as possible)
- Which table would you pick as the outer? (exercise)

Indexes: Selection using index

- Equality predicate: $\sigma_{A=v}(R)$
- Use an ISAM, B^{+}-tree, or hash index on $R(A)$
- Range predicate: $\sigma_{A>v}(R)$
- Use an ordered index (e.g., ISAM or B^{+}-tree) on $R(A)$
- Hash index is not applicable
- Indexes other than those on $R(A)$ may be useful
- Example: B^{+}-tree index on $R(A, B)$
- How about B^{+}-tree index on $R(B, A)$?

Index nested-loop join

$R \bowtie_{R . A=S . B} S$

- Idea: use a value of $R . A$ to probe the index on $S(B)$
- For each block of R, and for each r in the block:

Use the index on $S(B)$ to retrieve s with $s . B=r . A$ Output rs

- I/O's: $B(R)+|R|$ (index lookup) $+\mathrm{I} /$ O for record fetch
- Typically, the cost of an index lookup is 2-4 I/O's (depending on the index tree height if $\mathrm{B}+$ tree)
- Beats other join methods if $|R|$ is not too big
- Better pick R to be the smaller relation
- Memory requirement: 3 (extra memory can be used to cache index, e.g. root of B+ tree)

External merge sort

Recall in-memory merge sort: Sort progressively larger runs, $2,4,8, \ldots,|R|$, by merging consecutive "runs"

Problem: sort \boldsymbol{R}, but \boldsymbol{R} does not fit in memory

- Phase 0: read M blocks of R at a time, sort them, and write out a level-0 run
- Phase 1: merge $(M-1)$ level-0 runs at a time, and write out a level-1 run

- Phase 2: merge ($M-1$) level-1 runs at a time, and write out a level-2 run
- Final phase produces one sorted run

Example

> 3 memory blocks available; each holds one number
$>$ Input: $1,7,4,5,2,8,9,6,3$
$>$ Phase o
Arrows indicate the blocks in memory

Example

> 3 memory blocks available; each holds one number
$>$ Input: $1,7,4,5,2,8,9,6,3$
> Phase o
Arrows indicate the blocks in memory

Example

> 3 memory blocks available; each holds one number
$>$ Input: $1,7,4,5,2,8,9,6,3$
$>$ Phase o
Arrows indicate the blocks in memory

Example

> 3 memory blocks available; each holds one number
$>$ Input: $1,7,4,5,2,8,9,6,3$
$>$ Phase o
Arrows indicate the blocks in memory

Example

> 3 memory blocks available; each holds one number
$>$ Input: $1,7,4,5,2,8,9,6,3$
$>$ Phase o
Arrows indicate the blocks in memory

Example

> 3 memory blocks available; each holds one number
$>$ Input: $1,7,4,5,2,8,9,6,3$
$>$ Phase o
Arrows indicate the blocks in memory

Example

>3 memory blocks available; each holds one number
$>$ Input: $1,7,4,5,2,8,9,6,3$
$>$ Phase 0
Arrows indicate the blocks in memory
\Rightarrow Phase 1

Example

>3 memory blocks available; each holds one number
$>$ Input: $1,7,4,5,2,8,9,6,3$
$>$ Phase 0
Arrows indicate the blocks in memory
\Rightarrow Phase 1

Example

>3 memory blocks available; each holds one number
$>$ Input: $1,7,4,5,2,8,9,6,3$
$>$ Phase 0
Arrows indicate the blocks in memory
> Phase 1

Example

>3 memory blocks available; each holds one number
$>$ Input: $1,7,4,5,2,8,9,6,3$
$>$ Phase 0
Arrows indicate the blocks in memory
\Rightarrow Phase 1

Example

>3 memory blocks available; each holds one number
$>$ Input: $1,7,4,5,2,8,9,6,3$
$>$ Phase 0
Arrows indicate the blocks in memory
\Rightarrow Phase 1

Example

>3 memory blocks available; each holds one number
$>$ Input: $1,7,4,5,2,8,9,6,3$
$>$ Phase 0
Arrows indicate the blocks in memory
> Phase 1

Example

>3 memory blocks available; each holds one number
$>$ Input: $1,7,4,5,2,8,9,6,3$
$>$ Phase 0
Arrows indicate the blocks in memory
\Rightarrow Phase 1

Example

>3 memory blocks available; each holds one number
$>$ Input: $1,7,4,5,2,8,9,6,3$
$>$ Phase 0
Arrows indicate the blocks in memory
\Rightarrow Phase 1

Example

>3 memory blocks available; each holds one number
$>$ Input: $1,7,4,5,2,8,9,6,3$
$>$ Phase 0
Arrows indicate the blocks in memory
\Rightarrow Phase 1

Example

>3 memory blocks available; each holds one number
$>$ Input: $1,7,4,5,2,8,9,6,3$
$>$ Phase 0
Arrows indicate the blocks in memory
\Rightarrow Phase 1

Example

>3 memory blocks available; each holds one number
$>$ Input: $1,7,4,5,2,8,9,6,3$
$>$ Phase 0
Arrows indicate the blocks in memory
\Rightarrow Phase 1
> Phase 2 (final)

Example

>3 memory blocks available; each holds one number
$>$ Input: $1,7,4,5,2,8,9,6,3$
$>$ Phase 0
Arrows indicate the blocks in memory
\Rightarrow Phase 1
> Phase 2 (final)

Sort-merge join

$R \bowtie_{R . A=S . B} S$

- Sort R and S by their join attributes; then merge
- $r, s=$ the first tuples in sorted R and S
- Repeat until one of R and S is exhausted:

If $r . A>s . B$
then $s=$ next tuple in S
else if $r . A<s . B$
then $r=$ next tuple in R
else output all matching tuples, and $r, s=$ next in R and S

- I/O's: sorting $+O(B(R)+B(S))$
- In most cases (e.g., join of key and foreign key)
- Worst case is $B(R) \cdot B(S)$: everything joins

Query optimization

A query's trip through the DBMS

Logical plan

- Nodes are logical operators (often relational algebra operators)
- There are many equivalent logical plans

Physical (execution) plan

- A complex query may involve multiple tables and various query processing algorithms
- E.g., table scan, basic \& block nested-loop join, index nested-loop join, sort-merge join, ... (Lecture 13)
- A physical plan for a query tells the DBMS query processor how to execute the query
- A tree of physical plan operators
- Each operator implements a query processing algorithm
- Each operator accepts a number of input tables/streams and produces a single output table/stream

Examples of physical plans

SELECT Group.name

FROM User, Member, Group
WHERE User.name = 'Bart'
AND User.uid = Member.uid AND Member.gid = Group.gid;

- Many physical plans for a single query
- Equivalent results, but different costs and assumptions!
© DBMS query optimizer picks the "best" possible physical plan

Cost estimation

Physical plan example:
PROJECT (Group.name)
INDEX-NESTED-LOOP-JOIN (gid)
Index on Group(gid)
Input to Join(uid):

What is its input size?
How many tuples with
name=‘Bart'?

- We have: cost estimation for each operator
- Example: INDEX-NESTED-LOOP-JOIN(uid) takes $\mathrm{O}(B(R)+|R| \cdot($ index lookup + record fetch $)$)
- We need: size of intermediate results

Cardinality estimation

Cardinality estimation for:

- Equality predicates
- Range predicates
- Joins
- Textbook has more operators

Selections with equality predicates

- $Q: \sigma_{A={ }^{2}} R$
- DBMSs typically store the following in the catalog
- Size of $R:|R|$
- Number of distinct A values in $R:\left|\pi_{A} R\right|$
- Assumptions
- Values of A are uniformly distributed in R
- $|Q| \approx \frac{|R|}{\left|\left|\pi_{A} R\right|\right.}$
- Selectivity factor of $(A=v)$ is $1 /\left|\pi_{A} R\right|$

Example

Physical plan example:

PROJECT (Group.name) INDEX-NESTED-LOOP-JOIN (gid) ndex on Group(gid)

- \mid User $|=1000,| \pi_{\text {name }}($ User $)|=50 \rightarrow| \sigma_{\text {name="Bart" }}($ User $) \mid=$?
- Assumptions:
- Values of name are uniformly distributed in User
- $\mid \sigma_{\text {name }=\text { "Bart" }}($ User $) \left\lvert\,=\frac{1000}{50}=20\right.$

Range predicates

- $Q: \sigma_{A>v} R$
- Not enough information!
- Just pick, say, $|Q| \approx|R| \cdot 1 / 3$
- With more information
- Largest R.A value: high (R.A)
- Smallest R.A value: low (R.A)

$$
\operatorname{high}(R . A)-\operatorname{low}(R . A)
$$

- $|Q| \approx|R| \cdot \frac{\operatorname{high}(R \cdot A)-v}{\operatorname{high}(R \cdot A)-\operatorname{low}(R \cdot A)}$

Two-way equi-join

- Q: $R(A, B) \bowtie S(A, C)$
- Assumption: containment of value sets
- Every tuple in the "smaller" relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
- That is, if $\left|\pi_{A} R\right| \leq\left|\pi_{A} S\right|$ then $\pi_{A} R \subseteq \pi_{A} S$
- Certainly not true in general
- But holds in the common case of foreign key joins
- $|Q| \approx \frac{|R| \cdot|S|}{\max \left|\left|\pi_{A} R\right|\right| \pi_{A} S| |}$
- Selectivity factor of $R . A=S . A$ is $1 / \max \left(\left|\pi_{A} R\right|,\left|\pi_{A} S\right|\right)$

Example

- Database:
- User(uid, name, age, pop), Member(gid, uid, date), Group(gid, gname)
- |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
- $\mid \pi_{\text {name }}($ User $) \mid=50$
- $\mid \pi_{\text {uid }}($ Member $) \mid=500$
- Estimate size \mid User \bowtie Member $\mid=$?
- $\left|\pi_{\text {uid }}(U s e r)\right|=1000$
- $\mid \pi_{\text {uid }}($ Member $) \mid=500$
- 1000*50000/max $(500,1000)=50000$

Search space is huge

- Characterized by "equivalent" logical query plans

SELECT Group.name FROM User, Member, Group WHERE User.name = 'Bart'

 AND User.uid = Member.uid AND Member.gid = Group.gid;

Transformation rules (a sample)

- Convert $\sigma_{p-} \times$ to/from $\bowtie_{p}: \sigma_{p}(R \times S)=R \bowtie_{p} S$
- Example: $\sigma_{\text {User.uid }=\text { Member.uid }}($ User \times Member $)=$ User \bowtie Member
- Merge/split σ 's: $\sigma_{p_{1}}\left(\sigma_{p_{2}} R\right)=\sigma_{p_{1} \wedge p_{2}} R$
- Example: $\sigma_{a g e>20}\left(\sigma_{p o p=0.8} U s e r\right)=\sigma_{a g e>20 \wedge p o p=0.8} U s e r$
- Merge/split π^{\prime} s: $\pi_{L_{1}}\left(\pi_{L_{2}} R\right)=\pi_{L_{1}} R$, if $L_{1} \subseteq L_{2}$
- Example: $\pi_{\text {age }}\left(\pi_{\text {age,pop }} U s e r\right)=\pi_{a g e} U s e r$

Transformation rules (a sample)

- Push down/pull up σ :
$\sigma_{p \wedge p_{r} \wedge p_{S}}\left(R \bowtie_{p^{\prime}} S\right)=\left(\sigma_{p_{r}} R\right) \bowtie_{p \wedge p^{\prime}}\left(\sigma_{p_{s}} S\right)$, where
- p_{r} is a predicate involving only R columns
- p_{s} is a predicate involving only S columns
- p and p^{\prime} are predicates involving both R and S columns
- Example:
$\sigma_{U 1 . \text { name }=\text { U2.name } \wedge U 1 . p o p ~}>0.8 \wedge U 2$. pop >0.8

$=\sigma_{\text {pop }>0.8}\left(\rho_{U 1} U \operatorname{User} \bowtie_{U 1 . \text { id } \neq U 2 . u i d} \rho_{U 2} U s e r\right) \bowtie_{U 1 . u i d \neq U 2 . u i d \wedge U 1 . n a m e=U 2 . n a m e}\left(\sigma_{\text {pop }>0.8}\left(\rho_{U 2} U s e r\right)\right)$

Transformation rules (a sample)

- Push down π : $\pi_{L}\left(\sigma_{p} R\right)=\pi_{L}\left(\sigma_{p}\left(\pi_{L, L^{\prime}} R\right)\right)$, where
- L^{\prime} is the set of columns referenced by p that are not in L
- Example:

$$
\pi_{a g e}\left(\sigma_{p o p>0.8} U s e r\right)=\pi_{\text {age }}\left(\sigma_{p o p>0.8}\left(\pi_{a g e, p o p} U s e r\right)\right)
$$

- Many more (seemingly trivial) equivalences...
- Can be systematically used to transform a plan to new ones

Relational query rewrite example

Heuristics-based query optimization

- Start with a logical plan
- Push selections/projections down as much as possible
- Why? Reduce the size of intermediate results
- Join smaller relations first, and avoid cross product
- Why? Joins are more optimized and have alternate implementations
- Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)

