Transactions 2

CS348 Spring 2023 Instructor: Sujaya Maiyya Sections: **002 & 004 only**

Outline For Today

1. Motivation For Transactions

Last lecture: User's Perspective

- 2. ACID Properties
- 3. Different Levels of Isolation Beyond Serializability

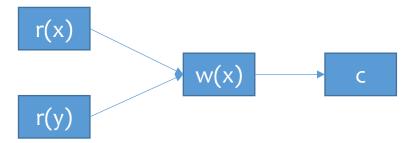
Serializability:

- Execution Histories
- Conflict Equivalence
- Checking For Conflict Equivalence

Concurrency control

Today's lecture: System's Perspective

Goals of Execution History Model & Conflict Equivalences


Concurrency is achieved by interleaving operations across txns.

 $\begin{array}{c|c} Txn 1 & Txn 2 \\ r:(...,$20) \\ r:(...,$20) \\ w:(...,$25) \\ w:(...,$30) \end{array}$

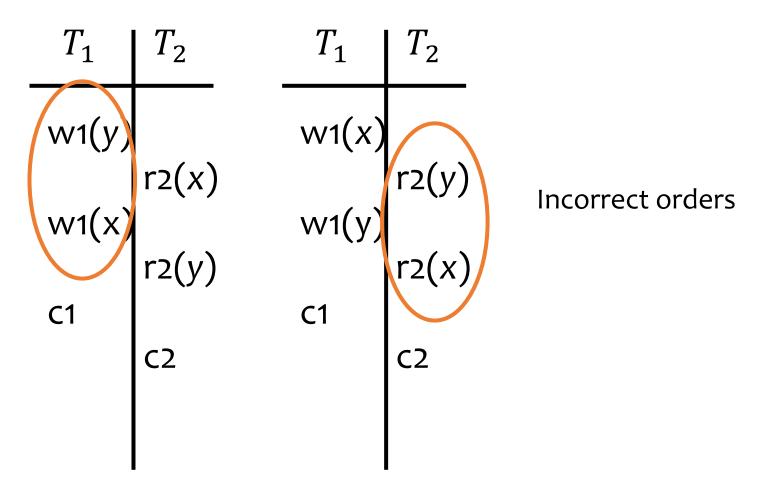
- Q: Does an interleaving correspond to a serializable execution?
- Execution history model and conflict equivalences is a formal method to answer this question.

Representing Single Transactions

- Database is a set of *data items* (often will denote as x, y, z...)
- Txn T_i is a *total* order of read/write & commit/abort operations on items
 - r_i(x) indicates T_i reads item x
 - w_i(x) indicates T_i writes item x
 - c indicates commit (a indicates aborts)
 - Suppose: T_i does the following in this chronological order:
 - Read(x), Read(y), $x \leftarrow x + y$, Write(x), commit
 - $T_i = \{r_i(x) < r_i(y) < w_i(x) < c_i\}$ or simply as:
 - $T_i = \{r_i(x), r_i(y), w_i(x), c_i\} \text{ or } r_i(x), r_i(y), w_i(x), c_i\}$
- DAG representation

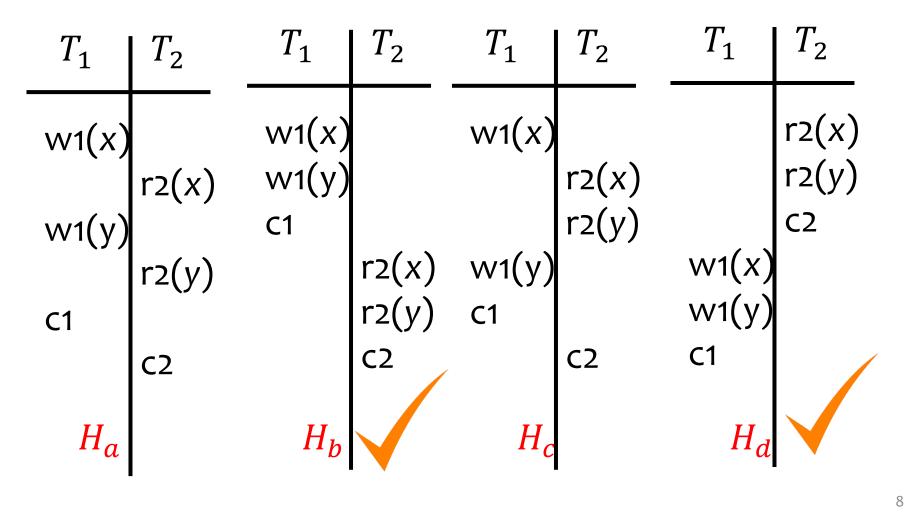
Execution histories (or schedules)

- An execution history over a set of transactions $T_1 \dots T_n$ is an interleaving of the operations of $T_1 \dots T_n$ in which the operation ordering imposed by each transaction is preserved.
- Two important assumptions:
 - Transactions interact with each other only via reads and writes of objects
 - A database is a fixed set of independent objects
- Example: $T_1 = \{w_1[x], w_1[y], c_1\}, T_2 = \{r_2[x], r_2[y], c_2\}$
 - $H_a = w_1[x]r_2[x]w_1[y]r_2[y]c_1c_2$
 - $H_b = w_1[x]w_1[y]c_1r_2[x]r_2[y]c_2$
 - $H_c = w_1[x]r_2[x]r_2[y]w_1[y]c_1c_2$ [next slide expands this example]
 - $H_d = r_2[x]r_2[y]c_2 w_1[x]w_1[y]c_1$


Examples for valid execution history

• $T_1 = \{w_1[x], w_1[y], c_1\}, T_2 = \{r_2[x], r_2[y], c_2\}$

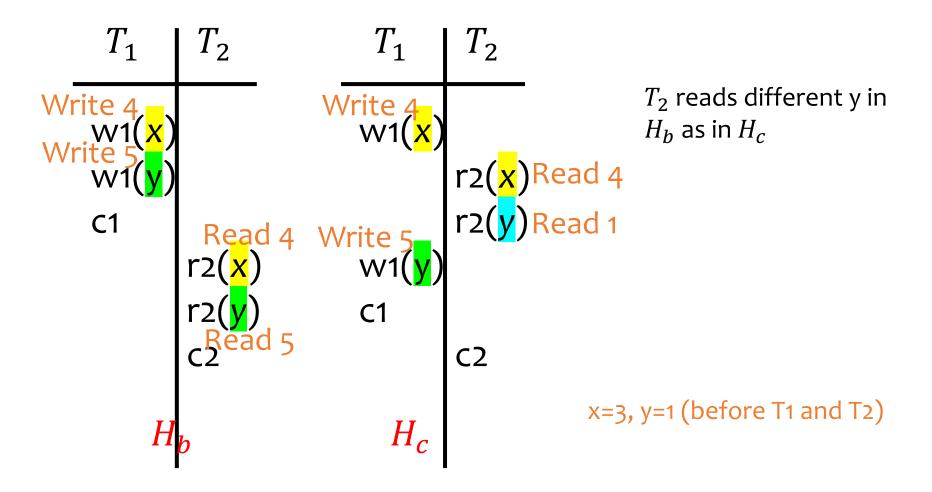
T_1	T_2	<i>T</i> ₁	<i>T</i> ₂	<i>T</i> ₁	<i>T</i> ₂	T_1	<i>T</i> ₂
w1(x)	r2(x) r2(y) c2	w1(x)		w1(x)			r2(x) r2(y) c2
	r2(x)	w1(y)			$r_2(x)$		r2(y)
w1(y)		C1		w1(y) c1	r2(y)		C2
	r2(y)		$r_2(x)$	w1(y)		W1(X)	
C1			r2(y)	C1		w1(x) w1(y) C1	
	C2		C2		C2	C1	
H _a		H_b		H _c		H_d	


Examples for invalid execution history

 $T_1 = \{w_1[x], w_1[y], c_1\}, T_2 = \{r_2[x], r_2[y], c_2\}$

Serial execution histories

- $T_1 = \{w_1[x], w_1[y], c_1\}, T_2 = \{r_2[x], r_2[y], c_2\}$
- Serial histories: no interleaving operations from different txns


Equivalent histories

• H_a is "equivalent" to H_b (a serial execution)

Equivalent histories

• H_c is not "equivalent" to H_b (a serial execution)

Outline For Today

Serializability:

- 1. Execution Histories
- 2. Conflict Equivalence
- 3. Checking For Serializability

Concurrency control:

1. 2 phase locking

Check equivalence

- Two operations conflict if:
 - 1. they belong to **different transactions**,
 - 2. they operate on the same object, and
 - 3. at least one of the operations is a write

2 types of conflicts: (1) Read-Write (or write-read) and (2) Write-Write

- Two histories are (conflict) equivalent if
 - 1. they are over the same set of transactions, and
 - 2. the ordering of each pair of conflicting operations is the same in each history

Example

- Consider
 - $H_a = w_1[x]r_2[x]w_1[y]r_2[y]c_1c_2$
 - $H_b = w_1[x]w_1[y]r_2[x]r_2[y]c_1c_2$

Step 1: check if they are over the same set of transactions

• $T_1 = \{w_1[x], w_1[y]\}, T_2 = \{r_2[x], r_2[y]\}$

Step 2: check if all the conflicting pairs have the same order

Conflicting pairs	H _a	H _b
$w_1[x], r_2[x]$	<	<
$w_1[y], r_2[y]$	<	<

Motivation & Intuition For Conflict Equivalence

- If two histories H_a and H_b are conflict equivalent then, we can make H_a exactly the same as H_b by iteratively swapping two consecutive non-conflicting operations in H_a and/or H_b.
 - $H_a = w_1[x]r_2[x]w_1[y]r_2[y]c_1c_2 \Rightarrow H'_a = w_1[x]w_1[y]r_2[x]r_2[y]c_1c_2$
 - $H_b = w_1[x]w_1[y]r_2[x]r_2[y]c_1c_2$
- Proof Sketch: Move all ops on item x to the beginning by swapping with non-conflicting ops in both $\rm H_a$ and $\rm H_b$
- End with the order imposed by the conflicts on x
- If H_a & H_b are conflict eq. this prefix ops on x will be the same order
- Then repeat for y, z, etc. and we will arrive at the same histories
- Therefore: Every read by each txn has the same value in $H_a \& H_b$
- Therefore: H_a & H_b lead to the same output database state.

More complicated example

Consider

- $H_A: r_1[x]r_3[x]w_4[y]r_2[u]w_4[z]r_1[y]r_3[u]r_2[z]w_2[z]r_3[z]r_1[z]w_3[y]$
- $H_B: r_1[x]w_4[y]r_3[x]r_2[u]r_1[y]r_3[u]r_2[z]w_2[z]w_4[z]r_1[z]r_3[z]w_3[y]$

Step 1: check if they are over the same set of transactions

Step 2: check if all the conflicting pairs have the same order

More complicated example

Consider

- $H_A: r_1[x]r_3[x]w_4[y]r_2[u]w_4[z]r_1[y]r_3[u]r_2[z]w_2[z]r_3[z]r_1[z]w_3[y]$
- $H_B: r_1[x]w_4[y]r_3[x]r_2[u]r_1[y]r_3[u]r_2[z]w_2[z]w_4[z]r_1[z]r_3[z]w_3[y]$

Step 1: check if they are over the same set of transactions $\{r_1[x] \ r_1[y] \ r_1[z] \}, \{r_2[u] \ r_2[z] w_2[z] \}, \{r_3[x] \ r_3[u] \ r_3[z] w_3[y] \}, \{w_4[y] \ w_4[z] \}$

Step 2: check if all the conflicting pairs have the same order

Identify all the conflicting pairs

- $H_A: r_1[x]r_3[x]w_4[y]r_2[u]w_4[z]r_1[y]r_3[u]r_2[z]w_2[z]r_3[z]r_1[z]w_3[y]$
- Conflicting pairs:
 - Related to x or u: no conflicting pairs, as all are reads
 - Related to y: w4[y], r1[y], w3[y]
 - $w_4[y] < r_1[y]$
 - $w_4[y] < w_3[y]$
 - $r_1[y] < w_3[y]$
 - Related to z: w4[z], r2[z], w2[z], r3[z], r1[z]
 - $w_4[z] < r_2[z]$
 - $w_4[z] < w_2[z]$
 - $w_4[z] < r_3[z]$
 - $w_4[z] < r_1[z]$
 - $r_2[z]$, $w_2[z]$ are not, as they are from the same transactions
 - $\overline{w}_2[z] < r_3[z]$
 - $w_2[z] < r_1[z]$

More complicated example

Consider

- $H_A: r_1[x]r_3[x]w_4[y]r_2[u]w_4[z]r_1[y]r_3[u]r_2[z]w_2[z]r_3[z]r_1[z]w_3[y]$
- $H_B: r_1[x]w_4[y]r_3[x]r_2[u]r_1[y]r_3[u]r_2[z]w_2[z]w_4[z]r_1[z]r_3[z]w_3[y]$

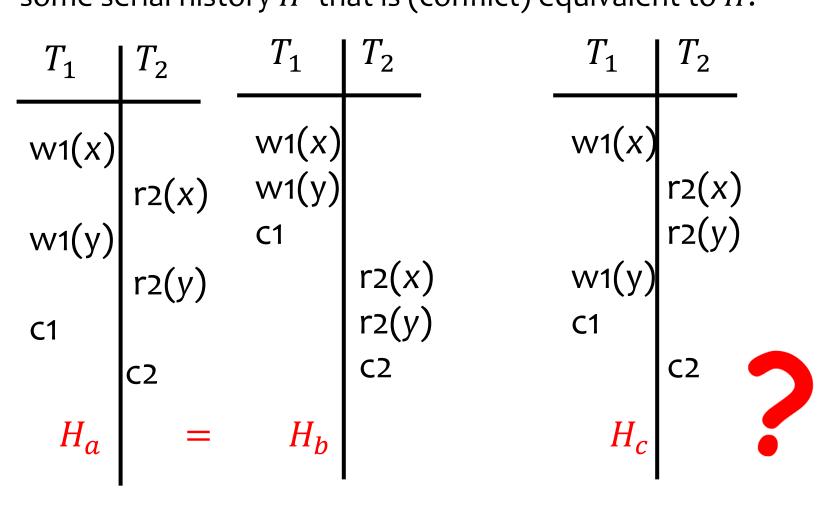
Step 1: check if they are over the same set of transactions $\{r_1[x] \ r_1[y] \ r_1[z] \}, \{r_2[u] \ r_2[z] w_2[z] \}, \{r_3[x] \ r_3[u] \ r_3[z] w_3[y] \}, \{w_4[y] \ w_4[z] \}$

Step 2: check if all the conflicting pairs have the same order

Conflicting pairs	H _A	H_B
$w_4[y], r_1[y]$	<	<
$w_4[y], w_3[y]$	<	<
	<	<
$w_4[z], w_2[z]$	<	>
	<	<

Outline For Today

Serializability:


- 1. Execution Histories
- 2. Conflict Equivalence
- 3. Checking For Serializability

Concurrency control:

1. 2 phase locking

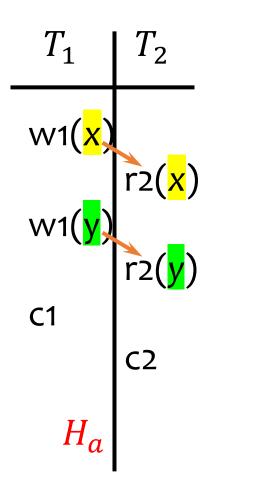
Serializable

• A history *H* is said to be (conflict) **serializable** if there exists some serial history *H*' that is (conflict) equivalent to *H*.

Serializable

- Does *H_c* have an equivalent serial execution?
 - $H_c = w_1[x]r_2[x]r_2[y]w_1[y]c_1c_2$
- Only 2 serial execution to check:
 - H_b : T_1 followed by T_2 : $w_1[x]w_1[y]c_1r_2[x]r_2[y]c_2$
 - $r_2[y]$ reads different value as in H_c
 - H_d : T_2 followed by $T_1: r_2[x]r_2[y]c_2w_1[x]w_1[y]c_1$
 - $r_2[x]$ reads different value as in H_c

Conflicting pairs	H_b	H _c	H_d
$w_1[x], r_2[x]$	<	<	>
$w_1[y], r_2[y]$	<	>	>

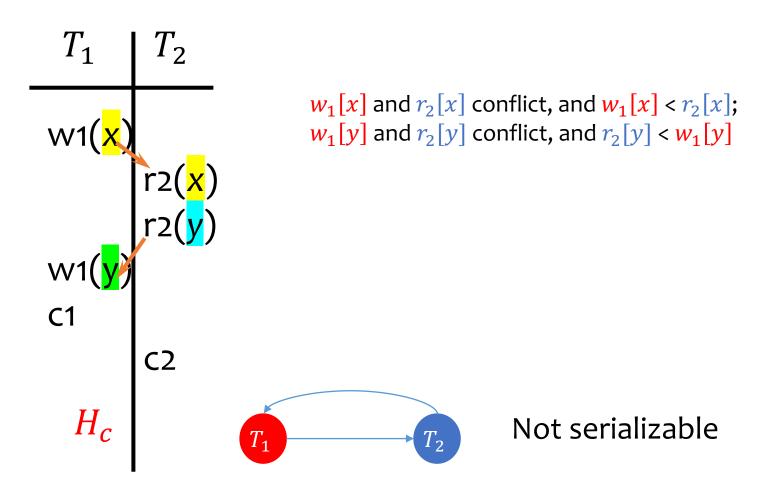

• Do we need to check all the serial executions?

How to test for serializability?

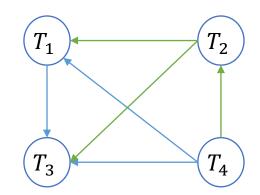
- Serialization graph $SG_H(V, E)$ for history H:
 - $V = \{T | T \text{ is a committed transaction in } H\}$
 - $E = \{T_i \rightarrow T_j \text{ if } o_i \in T_i \text{ and } o_j \in T_j \text{ conflict } and o_i < o_j\}$
- A history is serializable iff its serialization graph is acyclic.

Example

• Example: $H_a = w_1[x]r_2[x]w_1[y]r_2[y]c_1c_2$

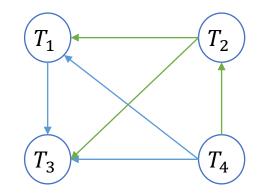

 $w_1[x]$ and $r_2[x]$ conflict, and $w_1[x] < r_2[x]$ $w_1[y]$ and $r_2[y]$ conflict, and $w_1[y] < r_2[y]$

Serialization graph: no cycles \rightarrow serializable


Example

• Example: $H_c = w_1[x]r_2[x]r_2[y]w_1[y]c_1c_2$

More complicated example


- $r_1[x]r_3[x]w_4[y]r_2[u]w_4[z]r_1[y]r_3[u]r_2[z]w_2[z]r_3[z]r_1[z]w_3[y]$
- Conflicting pairs:
 - Related to x or u: no conflicting pairs, as all are reads
 - Related to y: w4[y], r1[y], w3[y]
 - $w_4[y] < r_1[y]$ T4 \rightarrow T1
 - $w_4[y] < w_3[y]$ T4 \rightarrow T3
 - $r_1[y] < w_3[y]$ T1 \rightarrow T3
 - Related to z: w4[z], r2[z], w2[z], r3[z], r1[z]
 - $w_4[z] < r_2[z]$ T4 \rightarrow T2
 - $w_4[z] < w_2[z]$ T4 \rightarrow T2
 - $w_4[z] < r_3[z]$ T4 \rightarrow T3
 - $w_4[z] < r_1[z]$ T4 \rightarrow T1
 - $r_2[z]$, $w_2[z]$ are not, as they are from the same transactions
 - $w_2[z] < r_3[z]$ T₂ \rightarrow T₃
 - $w_2[z] < r_1[z]$ T₂ \rightarrow T₁

More complicated example

• $r_1[x]r_3[x]w_4[y]r_2[u]w_4[z]r_1[y]r_3[u]r_2[z]w_2[z]r_3[z]r_1[z]w_3[y]$

- No cycles in this serialization graph
 - Topological sort: T4 -> T2 -> T1->T3

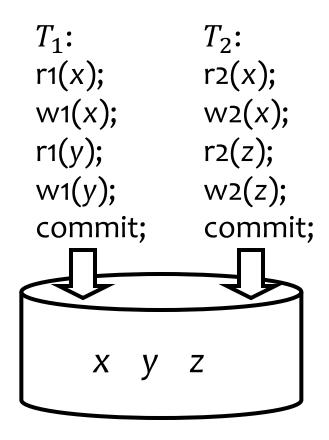
• The history above is (conflict) equivalent to

 $w_4[y]w_4[z]r_2[u]r_2[z]w_2[z]r_1[x]r_1[y]r_1[z]r_3[x]r_3[u]r_3[z]w_3[y]$

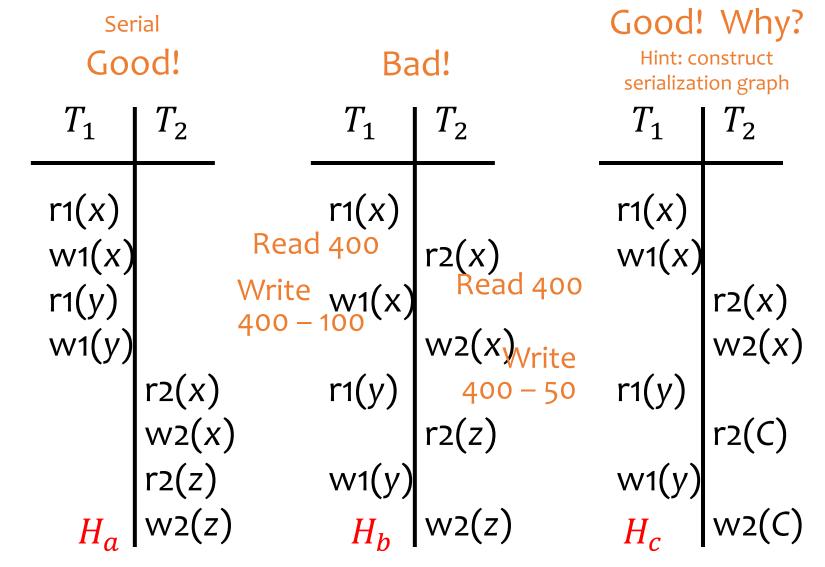
• Note: we ignore the commits at the end for simplicity

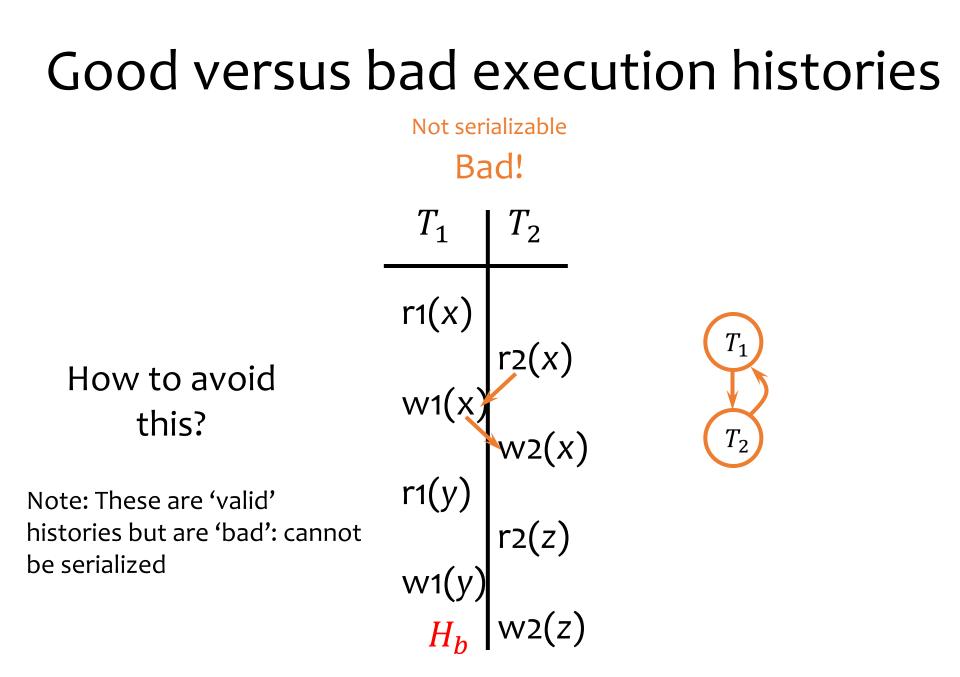
Outline For Today

Serializability:


- 1. Execution Histories
- 2. Conflict Equivalence
- 3. Checking For Serializability

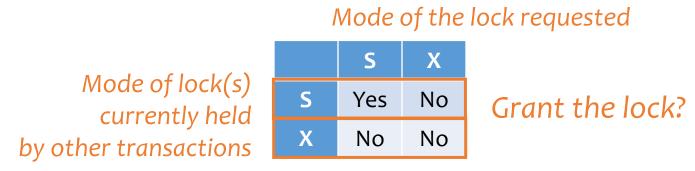
Concurrency control:


1. 2 phase locking

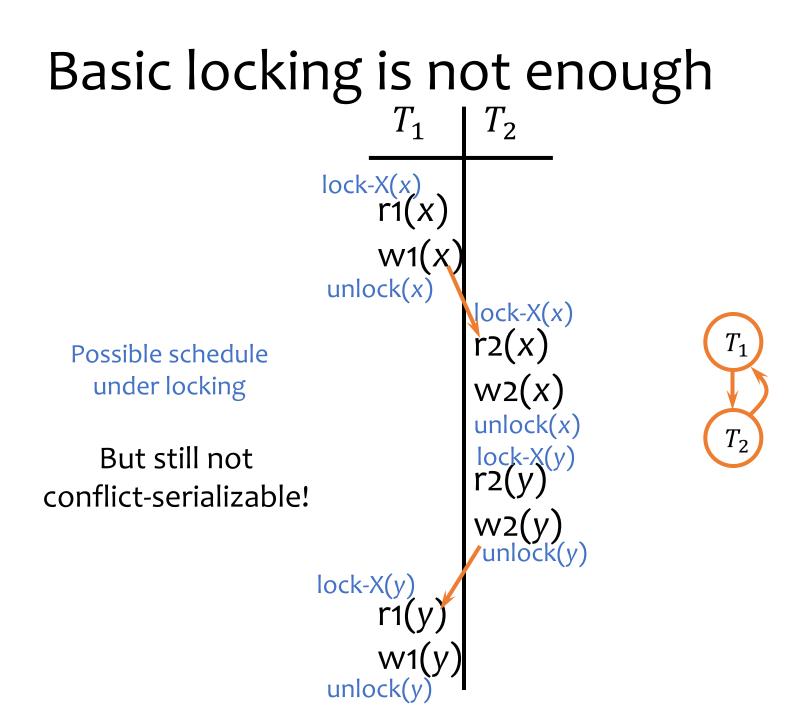

Concurrency control

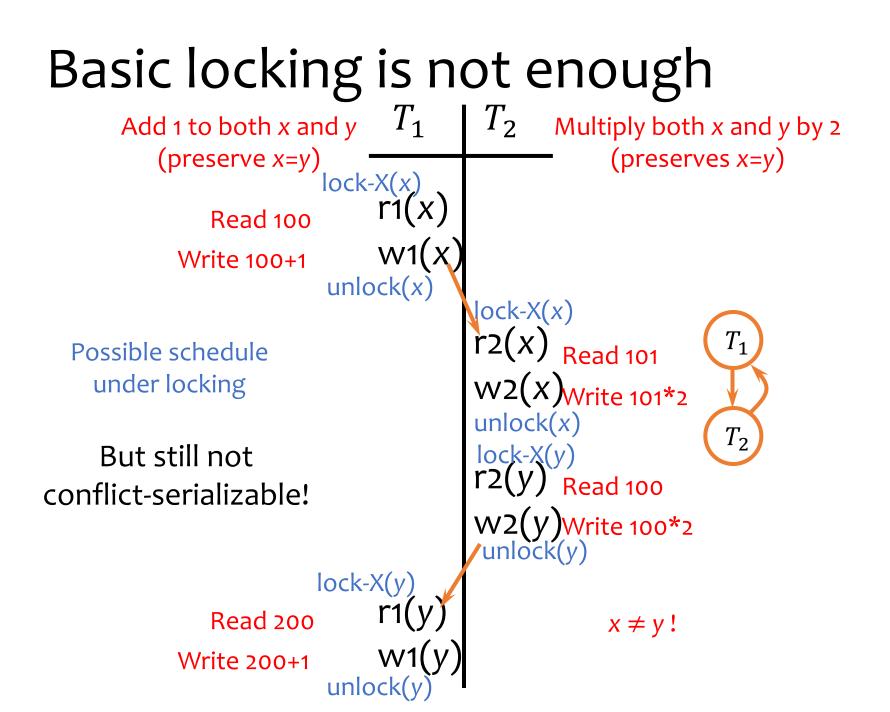
• Goal: ensure the "I" (isolation) in ACID

Good versus bad execution histories

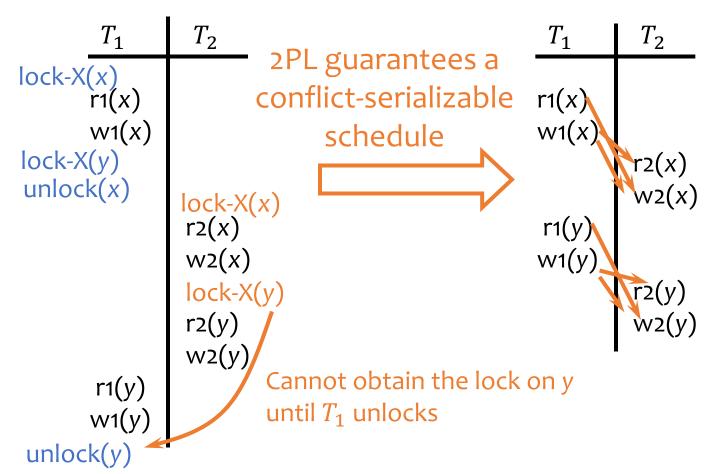

Concurrency control

Possible classification


- Pessimistic assume that conflicts will happen and take preventive action
 - Two-phase locking (2PL)
- Optimistic assume that conflicts are rare and run transactions and fix if there is a problem
 - Timestamp ordering
- We will only review 2PL

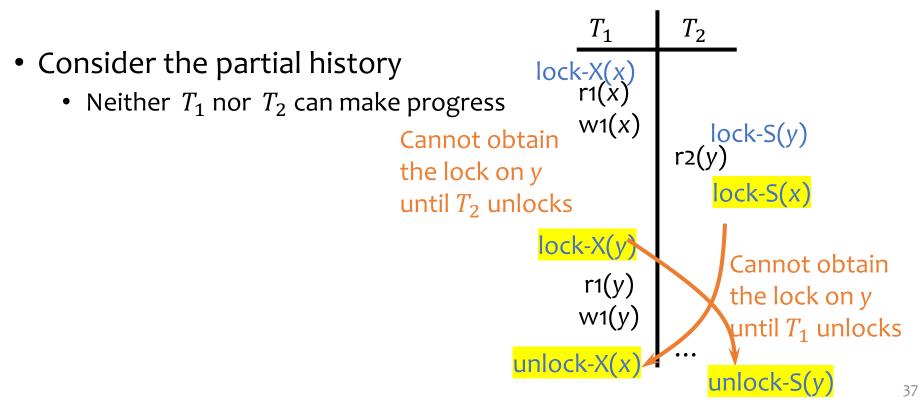

Locking

- Rules
 - If a transaction wants to read an object, it must first request a shared lock (S mode) on that object
 - If a transaction wants to modify an object, it must first request an exclusive lock (X mode) on that object
 - Allow one exclusive lock, or multiple shared locks


Compatibility matrix

Two-phase locking (2PL)

- All lock requests precede all unlock requests
 - Phase 1: obtain locks, phase 2: release locks


Remaining problems of 2PL

<i>T</i> ₁ r1(<i>x</i>)	<i>T</i> ₂	• T_2 has read uncommitted data written by T_1
w1(x)	r2(x) w2(x)	• If T_1 aborts, then T_2 must abort as well
r1(x) w1(x) r1(y) w1(y) Abort!	r2(y) w2(y)	 Cascading aborts possible if other transactions have read data written by T₂

- Even worse, what if T_2 commits before T_1 ?
 - Schedule is not recoverable if the system crashes right after T_2 commits

Deadlocks

- A transaction is deadlocked if it is blocked and will remain blocked until there is an intervention.
- Locking-based concurrency control algorithms may cause deadlocks requiring abort of one of the transactions

Strict 2PL

- Only release X-locks at commit/abort time
 - A writer will block all other readers until the writer commits or aborts
- Used in many commercial DBMS
 - Avoids cascading aborts
 - But deadlocks are still possible!
- Conservative 2PL: acquire all locks at the beginning of a txn
 - Avoids deadlocks but often not practical

Summary

Serializability:

- 1. Execution Histories
- 2. Conflict Equivalence
- 3. Checking For Serializability

Concurrency control:

1. 2 phase locking