
Query Processing
Sort/Hash-based (Optional)

CS348 Spring 2023

Outline

• Scan
• Selection, duplicate-preserving projection, nested-loop join

• Index
• Selection, index nested-loop join, zig-zag join

• Sort
• External merge sort, sort-merge join, union (set), difference,

intersection, duplicate elimination, grouping and
aggregation

• Hash (Optional)
2

Operators that benefit from sorting

• Union (set), difference, intersection
• More or less like SMJ

• Duplication elimination
• External merge sort

• Eliminate duplicates in sort and merge

• Grouping and aggregation
• External merge sort, by group-by columns

• Trick: produce “partial” aggregate values in each run, and
combine them during merge
• This trick doesn’t always work though

• Examples: SUM(DISTINCT …), MEDIAN(…)

3

Outline
• Scan
• Selection, duplicate-preserving projection, nested-loop join

• Index
• Selection, index nested-loop join, zig-zag join

• Sort
• External merge sort, sort-merge join, union (set), difference,

intersection, duplicate elimination, grouping and
aggregation

• Hash (Optional)
• Hash join, union (set), difference, intersection, duplicate

elimination, grouping and aggregation
4

Hashing-based algorithms

5http://global.rakuten.com/en/store/citygas/item/041233/

Hash join

𝑅 ⋈!.#$%.& 𝑆
• Main idea
• Partition 𝑅 and 𝑆 by hashing their join attributes, and

then consider corresponding partitions of 𝑅 and 𝑆
• If 𝑟. 𝐴 and 𝑠. 𝐵 get hashed to different partitions, they

don’t join

6

Nested-loop join
considers all slots

1

2

1 2 3 4 5𝑅

𝑆
3

4

5

Hash join considers only
those along the diagonal!

Partitioning phase

• Partition 𝑅 and 𝑆 according to the same hash
function on their join attributes

7

𝑀 − 1 partitions of 𝑅

DiskMemory

𝑅

Same for 𝑆

… …
Each partition has a size of

B(R)/(M-1)

Probing phase

• Read in each partition of 𝑅, stream in the
corresponding partition of 𝑆, join
• Typically build a hash table for the partition of 𝑅

• Not the same hash function used for partition, of course!

8

Disk Memory

𝑅
partitions

𝑆
partitions

…
…

…load

stream For each 𝑆 tuple,
probe and join

Performance of (two-pass) hash join

• If hash join completes in two phases:
• I/O’s: 3 ⋅ 𝐵 𝑅 + 𝐵 𝑆

• 1st phase: read B(R) + B(S) into memory to partition and write
partitioned B(R) +B(S) to disk

• 2nd phase: read B(R) + B(S) into memory to merge and join

• Memory requirement:
• In the probing phase, we should have enough memory to fit

one partition of R: 𝑀 − 1 > ! "
#$%

• 𝑀 > 𝐵 𝑅 + 1
• We can always pick 𝑅 to be the smaller relation, so:

𝑀 > min 𝐵 𝑅 , 𝐵 𝑆 + 1

9

Generalizing for larger inputs

• What if a partition is too large for memory?
• Read it back in and partition it again!
• Re-partition 𝑂 log"𝐵 𝑅 times

10

Hash join versus SMJ

(Assuming two-pass)
• I/O’s: same
• Memory requirement: hash join is lower

• min 𝐵 𝑅 , 𝐵 𝑆 + 1 < 𝐵 𝑅 + 𝐵 𝑆

• Hash join wins when two relations have very different sizes

• Other factors
• Hash join performance depends on the quality of the hash

• Might not get evenly sized buckets
• SMJ can be adapted for inequality join predicates
• SMJ wins if 𝑅 and/or 𝑆 are already sorted
• SMJ wins if the result needs to be in sorted order

11

What about nested-loop join?

• May be best if many tuples join
• Example: non-equality joins that are not very selective

• Necessary for black-box predicates
• Example: WHERE user_defined_pred(𝑅. 𝐴, 𝑆. 𝐵)

12

Other hash-based algorithms

• Union (set), difference, intersection
• More or less like hash join

• Duplicate elimination
• Check for duplicates within each partition/bucket

• Grouping and aggregation
• Apply the hash functions to the group-by columns

13

Summary of techniques
• Scan

• Selection, duplicate-preserving projection, nested-loop join

• Index
• Selection, index nested-loop join, zig-zag join

• Sort (Optional)
• External merge sort, sort-merge join, union (set), difference,

intersection, duplicate elimination, grouping and aggregation

• Hash (Optional)
• Hash join, union (set), difference, intersection, duplicate

elimination, grouping and aggregation

14

Another view of techniques
• Selection

• Scan without index (linear search): O(𝐵 𝑅)
• Scan with index – selection condition must be on search-key of index

• B+ index: O(log(𝐵 𝑅)
• Hash index: O(1)

• Projection
• Without duplicate elimination: O(𝐵 𝑅)
• With duplicate elimination

• Sorting-based: 𝑂 𝐵 𝑅 ⋅ log!𝐵 𝑅
• Hash-based: O(𝐵 𝑅 + 𝑡)where t is the result of the hashing phase

• Join
• Block-based nested loop join (scan table): O(𝐵 𝑅 ⋅ ! "

#
)

• Index nested loop join O(𝐵 𝑅 + 𝑅 ⋅ index	lookup)
• Sort-merge join 𝑂 𝐵 𝑅 ⋅ log#𝐵 𝑅 + 𝐵 𝑆 ⋅ log#𝐵 𝑆
• Hash join 𝑂 𝐵 𝑅 ⋅ log#𝐵 𝑅 + 𝐵 𝑆 ⋅ log#𝐵 𝑆

15

