
Physical Data
Organization

CS348 Spring 2023
Instructor: Sujaya Maiyya
Sections: oo2 & 004 only

Announcements

• Assignment 2
• Due today!

• Milestone 1
• Due Thursday, June 22nd

• Midterm Exam
• Monday, June 26th, 7-8:50 PM
• Covers lectures 1-10 (except lecture 6)

2

Where are we?

• Relational model (lecture 2)
• SQL (lectures 3-6)
• Database design (lectures 7-10)

• Storage management & indexing (lectures 11-12)
• Query processing & optimizations (lectures 13-14)
• Transaction management (lectures 15-17)

3

Conceptual/Logical
level

This lecture

Physical Data Organization

• It’s all about disks!
• That’s why we always draw databases as
• And why one of the most important metric in database

processing is the number of disk I/O’s performed

• Storing data on a disk
• Record layout
• Block layout
• Column stores

4

Storage hierarchy

5

Registers

Cache

Memory

Disk

Tapes

Speed Cost

Storage hierarchy

6

Registers

Cache

Memory

Disk

Tapes

Non-volatile
Secondary storage

Tertiary storage

How far away is data?

7

Location Cycles
Registers 1
On-chip cache 2
On-board cache 10
Memory 100
Disk 106

Tape 109

Location Time
This room 1-2 min.
Waterloo campus 10 min.
Toronto 1.5 hr.
Pluto 2 yr.
Andromeda 2000 yr.

F I/O dominates—design your algorithms to reduce I/O!

(Source: AlphaSort paper, 1995)
The gap has been widening!

Latency Numbers
Every Programmer Should Know

8

A typical hard drive

9http://upload.wikimedia.org/wikipedia/commons/f/f8/Laptop-hard-drive-exposed.jpg

A typical hard drive

10

Spindle rotation

Platter

Platter

Spindle

Platter

Tracks

Arm movement

Disk arm

Disk head
Cylinders

“Moving parts” are slow

Top view

11

Track
Track
Track

Sectors

“Zoning”: more sectors/data on outer tracks

A block is a
logical unit
of transfer

consisting of
one sector

Disk access time
Disk access time: time from when a read or write request

is issued to when data transfer begins

Sum of:
• Seek time: time for disk heads to move to the correct cylinder
• Rotational delay: time for the desired block to rotate under

the disk head

• Transfer time: time to read/write data in the block (=
time for disk to rotate over the block)

• Total data access time = seek time + rotational delay +
transfer time

12

Random disk access
à Successive requests are for blocks that are

randomly located on disk

Delay = Seek time + rotational delay + transfer time

• Average seek time
• Seek the right cylinder for each access
• “Typical” value: 5 ms

• Average rotational delay
• Rotate for the right block for each access
• “Typical” value: 4.2 ms (7200 RPM)

13

Sequential disk access
à Successive requests are for successive block numbers,

which are on the same track, or on adjacent tracks

Delay = Seek time + rotational delay + transfer time

• Seek time
• 1 time delay: seek the right cylinder once

• Rotational delay
• 1 time delay: rotate to the right block once

• Easily an order of magnitude faster than random disk
access!

14

What about SSD (solid-state drives)?

15http://www.techgoondu.com/wp-content/uploads/2012/12/SSD-6-25-121.jpg

No mechanical parts (flash-based)

What about SSD (solid-state drives)?

• 1-2 orders of magnitude faster random access than
hard drives (under 0.1ms vs. several ms)

• Little difference between random vs. sequential
read performance

• Random writes still hurt
• In-place update would require erasing the whole

“erasure block” and rewriting it!

16

Important consequences

• It’s all about reducing I/O’s!

• Cache blocks from stable storage in memory
• DBMS maintains a memory buffer pool of blocks
• Reads/writes operate on these memory blocks
• Dirty (updated) memory blocks are “flushed” back to

stable storage

• Sequential I/O is much faster than random I/O

17

Performance tricks

• Disk layout strategy: keep related things close

• Prefetching

• Parallel I/O: multiple disk heads

• Track buffer: read/write one entire track at a time

18

Where are we?

• Storage hierarchy: I/O cost

• Disk: Sequential versus random accesses

• Record layout

19

Record layout

Record = row in a table

• Variable-format records
• Rare in DBMS—table schema dictates the format
• Relevant for semi-structured data such as XML

• Focus on fixed-format records
• With fixed-length fields only, or
• With possible variable-length fields

20

Fixed-length fields
• All field lengths and offsets are constant

• Computed from schema, stored in the system catalog

• Example: CREATE TABLE User(uid INT, name CHAR(20), age INT, pop
FLOAT);

• If block size != 36, one row maybe split across multiple blocks or
move to next block & leave the remaining space empty

• What about NULL?
• Add a bitmap at the beginning of the record

21

142

0 4
Bart (padded with space)

24
10 0.9

28 36

Variable-length records
• Example: CREATE TABLE User(uid INT,

 name VARCHAR(20), age INT, pop FLOAT,
 comment VARCHAR(100));
• Put all variable-length fields at the end
• Approach 1: use field delimiters (‘\0’ okay?)

• Approach 2: use an offset array

• Scheme update is messy if it changes the length of a
field

22

142

0 4
Bart\010 0.9

8 16
Weird kid!\0

142

0 4
Bart10 0.9

8 16
Weird kid!

18 22 32

22 32

BLOB fields

• Example: CREATE TABLE User(uid INT,
 name CHAR(20), age INT,
 pop FLOAT, picture BLOB(32000));

• User records get “de-clustered”
• Bad because most queries do not involve picture

• Decomposition (automatically and internally done
by DBMS without affecting the user)
• (uid, name, age, pop)
• (uid, picture)

23

Where are we?

• Storage hierarchy: I/O cost

• Disk: Sequential versus random accesses

• Record layout: fixed length v.s. variable length

• Block layout

24

Block layout

How do you organize records in a block?
• NSM (N-ary Storage Model)
• Most commercial DBMS

• PAX (Partition Attributes Across)
• Ailamaki et al., VLDB 2001

25

NSM

• Store records from the beginning of each block
• Use a directory at the end of each block
• To locate records and manage free space
• Necessary for variable-length records

26

142 Bart 10 0.9 123 Milhouse 10 0.2

456. Ralph 8. 0.3

857 Lisa 8. 0.7

Why store data and directory
at two different ends?

So both can grow easily!

Options

• Reorganize after every update/delete to avoid
fragmentation (gaps between records)
• Need to rewrite half of the block on average

• A special case: What if records are fixed-length?
• Option 1: reorganize after delete

• Only need to move one record
• Need a pointer to the beginning of free space

• Option 2: do not reorganize after update
• Need a bitmap indicating which slots are in use

27

Cache behavior of NSM

• Query: SELECT uid FROM User WHERE pop > 0.8;

• Assumptions: no index, and cache line size < record size
• Lots of cache misses

28

142 Bart 10 0.9 123 Milhouse 10 0.2

456. Ralph 8. 0.3

857 Lisa 8. 0.7
142 Bart 10

0.9 123 Milhouse

10 0.2 857 Lisa

8 0.7

456 Ralph 8

Cache
0.3

PAX
• Most queries only access a few columns
• Cluster values of the same columns in each block
• Better sequential reads for queries that read a single

column

29

142 123 857 456

1111

Bart Milhouse Lisa Ralph

10 10 8 8

2.3 3.1 4.3 2.3

4 (number of records)

1111

Reorganize after every update
(for variable-length records only)
and delete to keep fields together

(IS NOT NULL bitmap)

Beyond block layout: column stores

• Store tables by columns instead of rows
• Better cache performance
• Fewer I/O’s for queries involving many rows but few

columns
• Aggressive compression to further reduce I/O’s

• More disruptive changes to the DBMS architecture
are required than PAX
• Not only storage, but also query execution and

optimization

30

Column vs. row oriented db

31

uid name pop age

1 Bart .6 12

2 Lisa .9 10

3 Abe .3 65

1 Bart .6 12

2 Lisa .9 10

3 Abe .3 65

Row oriented

1 2 3

Bart Lisa Abe

.6 .9 .3

12 10 65

Column oriented

User:

Summary

• Storage hierarchy: I/O cost

• Disk: Sequential versus random accesses

• Record layout: fixed length v.s. variable length

• Block layout: NSM v.s. PAX

• Column stores: NSM transposed, beyond blocks

32

