Relational Database Design Theory (II)

CS348 Spring 2023
Instructor: Sujaya Maiyya
Sections: 002 \& 004 only

Outline For Today

1. Application Constraints and Decompositions
2. Functional Dependencies
3. Boyce-Codd Normal Form (BCNF) \& BCNF Decomposition Alg.
4. Dependency Preservation and $3^{\text {rd }}$ Normal Form

This
lecture

A Parts/Suppliers database example

- Each type of part has a name and an identifying number and may be supplied by zero or more suppliers.
- Each supplier has an identifying number, a name, and a contact location for ordering parts.
- Each supplier may offer the part at a different price.

Single table?

Supplied_Items

Sno	Sname	City	Pno	Pname	Price
S1	Magna	Ajax	P1	Bolt	0.50
S1	Magna	Ajax	P2	Nut	0.25
S1	Magna	Ajax	P3	Screw	0.30
S2	Budd	Hull	P3	Screw	0.40

Decomposed tables?

- An instance

Suppliers

Sno	Sname	City
S1	Magna	Ajax
S2	Budd	Hull
Parts		
Pno	Pname	
P1	Bolt	
P2	Nut	
P3	Screw	

Supplies

Sno	Pno	Price
S1	P1	0.50
S1	P2	0.25
S1	P3	0.30
S2	P3	0.40

Schema decomposition

- Let R be a relation schema (= set of attributes).
- The collection $\left\{R_{1}, \ldots, R_{n}\right\}$ of relations is a decomposition of R if $R=R_{1} \cup \cdots \cup R_{n}$
Sunnlied Items

R	Sno	Sname	City	Pno	Pname
Price					
S1	Magna	Ajax	P1	Bolt	0.50
S1	Magna	Ajax	P2	Nut	0.25
S1	Magna	Ajax	P3	Screw	0.30
S2	Budd	Hull	P3	Screw	0.40

Suppliers			
R1	Sno	Sname	City
	SI	Magna	Ajax
	S2	Budd	Hull
Parts			
R2	Pno	Pname	
	P1	Bolt	
	P2	Nut	
	P3	Screw	

Supplies		
R3 Sno Pno Price S1 P1 0.50 S1 P2 0.25 S1 P3 0.30 S2 P3 0.40		

-What is a good decomposition?

Is this a good decomposition?

- Example 1

Marks			
Student	Assignment	Group	Mark
Ann	A1	G1	80
Ann	A2	G3	60
Bob	A1	G2	60

But computing the natural join of SGM and AM, we get extra data (spurious tuples).

We would therefore lose information if we were to replace Marks by SGM and AM

			Natural Join		
Student	Assignment	Group	Mark		
Ann	A1	G1	80		
Ann	A2	G3	60		
Ann	A1	G3	60		
Bob	A2	G2	60		
Bob	A1	G2	60		

"Good" Schema Decomposition

- Lossless-join decompositions
- We should be able to construct the instance of the original table from the instances of the tables in the decomposition

A decomposition $\left\{R_{1}, R_{2}\right\}$ of R is lossless iff the common attributes of R_{1} and R_{2} form a superkey for either schema,

$$
R_{1} \cap R_{2} \rightarrow R_{1} \text { or } R_{1} \cap R_{2} \rightarrow R_{2}
$$

*If X is a superkey of R, then $X \rightarrow R$ (all the attributes) [last lecture]

Is this a lossless join decomposition?

- Example 1
- $R=\{$ Student, Assignment, Group, Mark $\}$

Student	Assignment	Group	Mark
Ann	A1	G1	80
Ann	A2	G3	60
Bob	A1	G2	60

\mathcal{F} includes:
Student, Assignment \rightarrow Group, Mark

- $R_{1}=\{$ Student, Group, Mark $\}, R_{2}=\{$ Assignment, Mark $\}$

| R1 | Student | Group | Mark | R2 | Assignment | Mark |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Ann | G1 | 80 | | A1 | 80 |
| Ann | G3 | 60 | | A2 | 60 | |
| Bob | G2 | 60 | | A1 | 60 | |

$R_{1} \cap R_{2}=\{$ Mark $\}$ is not a superkey of either R_{1} or R_{2}
\rightarrow This decomposition is lossy

Which one is a better decomposition?

- Example 2: a table for a company database
- $R=\{$ Proj, Dept, Div $\}$
\mathcal{F} includes:

$$
\text { FD1: Proj } \rightarrow \text { Dept } \quad \text { FD2: Dept } \rightarrow \text { Div } \quad \text { FD3: Proj } \rightarrow \text { Div }
$$

- Consider 2 decompositions

$$
D_{1}=\left\{\begin{array}{c}
R_{1}\{\text { Proj, Dept }\}, \\
R_{2}\{\text { Dept }, \text { Div }\}
\end{array}\right\} \quad D_{2}=\left\{\begin{array}{c}
R_{1}\{\text { Proj, Dept }\}, \\
R_{2}\{\text { Proj, Div }\}
\end{array}\right\}
$$

- Both are lossless. (Why?) $R_{1} \cap R_{2} \rightarrow R_{1}$ or R_{2}
- However, testing FDs is easier on one of them. (Which?)

Testing FDs

- Example 2: a table for a company database
- $R=\{$ Proj,Dept,Div $\}$
\mathcal{F} includes:

$$
\text { FD1: Proj } \rightarrow \text { Dept } \quad \text { FD2: Dept } \rightarrow \text { Div } \quad \text { FD3: Proj } \rightarrow \text { Div }
$$

- Consider 2 decompositions

$$
D_{1}=\left\{\begin{array}{c}
R_{1}\{\text { Proj, Dept }\}, \\
R_{2}\{\text { Dept, Div }\}
\end{array}\right\} \quad D_{2}=\left\{\begin{array}{c}
R_{1}\{\text { Proj }, \text { Dept }\}, \\
R_{2}\{\text { Proj }, \text { Div }\}
\end{array}\right\}
$$

- FD1 (in R1)
- FD2 (in R2)
- FD3 (join R1 and R2?)
- \rightarrow No need, if FD1 and FD2 hold, then FD3 hold

Testing FDs

- Example 2: a table for a company database
- $R=\{$ Proj, Dept, Div $\}$
\mathcal{F} includes:

$$
\text { FD1: Proj } \rightarrow \text { Dept } \quad \text { FD2: Dept } \rightarrow \text { Div } \quad \text { FD3: Proj } \rightarrow \text { Div }
$$

- Consider 2 decompositions

$$
D_{1}=\left\{\begin{array}{c}
R_{1}\{\text { Proj, Dept }\} \\
R_{2}\{\text { Dept }, \text { Div }\}
\end{array}\right\}
$$

$$
D_{2}=\left\{\begin{array}{c}
R_{1}\{\text { Proj, Dept }\}, \\
R_{2}\{\text { Proj }, \text { Div }\}
\end{array}\right\}
$$

- FD1 (in R1)
- FD2 (in R2)
- FD3 (join R1 and R2?)
- \rightarrow No need, if FD1 and FD2 hold, then FD3 hold
- FD1 (in R1)
interrelational
- FD3 (in R2)
- FD2 (join R1 and R2?)
\rightarrow Yes. FD1 and FD3 are not sufficient to guarantee FD2

Testing FDs

- Example 2: a table for a company database
- $R=\{$ Proj, Dept, Div $\}$
\mathcal{F} includes:

$$
\text { FD1: Proj } \rightarrow \text { Dept } \quad \text { FD2: Dept } \rightarrow \text { Div } \quad \text { FD3: Proj } \rightarrow \text { Div }
$$

- Consider 2 decompositions

$$
D_{1}=\left\{\begin{array}{c}
R_{1}\{\text { Proj, Dept }\}, \\
R_{2}\{\text { Dept }, \text { Div }\}
\end{array}\right\} \quad D_{2}=\left\{\begin{array}{c}
R_{1}\{\text { Proj }, \text { Dept }\}, \\
R_{2}\{\text { Proj }, \text { Div }\}
\end{array}\right\}
$$

- FD1 (in R1)
- FD2 (in R2)
- FD3 (join R1 and R2?)
- \rightarrow No need, if FD1 and FD2 hold, then FD3 hold

FD1 (in R1) FD3 (in R2)

- FD2 (join R1 and R2?)
\rightarrow Yes. FD1 and FD3 are not sufficient to guarantee FD2

"Good" Schema Decomposition

- Lossless-join decompositions
- Dependency-preserving decompositions

Given a schema R and a set of FDs \mathcal{F}, decomposition of R is dependency preserving if there is an equivalent set of FDs \mathcal{F}^{\prime},
none of which is interrelational in the decomposition.

- Next, how to obtain such decompositions?
- BCNF \rightarrow guaranteed to be a lossless join decomposition!

Boyce-Codd Normal Form (BCNF)

- A relation R is in BCNF iff whenever $(X \rightarrow Y) \in \mathcal{F}^{+}$ and $X Y \subseteq R$, then either
- $(X \rightarrow Y$) is trivial (i.e., $Y \subseteq X$), or
- X is a super key of R (i.e., $X \rightarrow R$)
- That is, all non-trivial FDs follow from "key \rightarrow other attributes"
- Example: $R=\{$ Sno,Sname,City,Pno,Pname,Price $\}$
\mathcal{F} includes:

```
    FD1:Sno }->\mathrm{ Sname,City FD2: Pno }->\mathrm{ Pname FD3:Sno,Pno }->\mathrm{ Price
```

- The schema is not in BCNF because, for example, Sno determines Sname, City, is non-trivial but is not a superkey of R

BCNF decomposition algorithm

- Find a BCNF violation
- That is, a non-trivial FD $X \rightarrow Y$ in \mathcal{F}^{+}of R where X is not a super key of R
- Example: $R=\{$ Sno,Sname,City,Pno,Pname,Price $\}$
\mathcal{F} includes:
FD1:Sno \rightarrow Sname, City FD2: Pno \rightarrow Pname FD3:Sno, Pno \rightarrow Price
- Decompose R into R_{1} and R_{2}, where
- R_{1} has attributes $X \cup Y$;
- R_{2} has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y

$$
R=\{\text { Sno,Sname,City,Pno,Pname,Price }\}
$$

BCNF violation: Sno \rightarrow Sname, City

- Repeat (till all are in BCNF)

BCNF decomposition example

- $R=$ \{Sno,Sname,City,Pno,Pname,Price $\}$

```
    \(\mathcal{F}\) includes:
        FD1:Sno \(\rightarrow\) Sname, City FD2: Pno \(\rightarrow\) Pname FD3:Sno,Pno \(\rightarrow\) Price
```

 \{Sno,Sname,City,Pno,Pname,Price\}

BCNF violation: Pno \rightarrow Pname

BCNF helps remove redundancy

Sno	Sname	City	Pno	Pname	Price
S1	Magna	K-W	P1	A	$\$ 25$
S1	Magna	K-W	P2	B	$\$ 34$
S1	Magna	K-W	P3	A	$\$ 20$
S2	Box	London	\ldots	\ldots	\ldots

Sno	Pno	Pname	Price	Sno	Sname	City
S1	P1	A	\$25	S1	Magna	K-W
S1	P2	B	\$34	S2	Box	London
S1	P3	A	\$20

Another example

\mathcal{F} includes:
uid \rightarrow uname, twittered twitterid \rightarrow uid uid, gid \rightarrow fromDate

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

Another example

\mathcal{F} includes:
uid \rightarrow uname, twitterid twitterid \rightarrow uid uid, gid \rightarrow fromDate

UserJoinsGroup (uid, uname, twitterid, gid, fromDate) BCNF violation: uid \rightarrow uname, twitterid

User (uid, uname, twitterid) uid \rightarrow uname, twitterid twitterid \rightarrow uid
\{uid\}+=\{uid, uname, twitterid\}

Member (uid, gid, fromDate) uid, gid \rightarrow fromDate

BCNF
\{uid,gid\}+=\{uid,gid ,fromeDate\}

Alt. solution

\mathcal{F} includes:
uid \rightarrow uname, twitterid twitterid \rightarrow uid uid, gid \rightarrow fromDate
UserJoinsGroup (uid, uname, twitterid, gid, fromDate)
BCNF violation: twitterid \rightarrow uid

Userld (twitterid, uid) twitterid \rightarrow uid
UserJoinsGroup (twitterid, uname, gid, fromDate)

UserName (twitterid, uname) Member (twitterid, gid, fromDate)

"Good" Schema Decomposition

- Lossless-join decompositions
- Dependency-preserving decompositions
- BCNF \rightarrow guaranteed to be a lossless join decomposition!
- Depend on the on the sequence of FDs for decomposition
- Not necessarily dependency preserving

Example: consider $\mathrm{R}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\} \quad \mathcal{F}$ includes: $\mathrm{FD} 1: A B \rightarrow C \quad$ FD2: $\mathrm{C} \rightarrow B$

$A B \rightarrow C$ is interrelational and cannot be tested directly

"Good" Schema Decomposition

- Lossless-join decompositions
- Dependency-preserving decompositions
- BCNF \rightarrow guaranteed to be a lossless join decomposition!
- Depend on the on the sequence of FDs for decomposition
- Not necessarily dependency preserving
- 3NF \rightarrow both lossless join and dependency preserving

Third normal form (3NF)

- A relation R is in 3NF iff whenever $(X \rightarrow Y) \in \mathcal{F}^{+}$and $X Y \subseteq R$, then either
- $(X \rightarrow Y)$ is trivial (i.e., $Y \subseteq X$), or
- X is a super key of R (i.e., $X \rightarrow R$) or
- Each attribute in $\mathrm{Y}-X$ is contained in a candidate key of R
- Example: consider $\mathrm{R}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\} \quad \mathcal{F}$ includes: $\mathrm{FD} 1: A B \rightarrow C \quad$ FD2: $C \rightarrow B$
- Satisfies 3NF, but not BCNF
- 3NF is looser than BCNF \rightarrow Allows more redundancy

How to find a 3NF relation schemas?

- Lossless-join, dependency-preserving decomposition into 3 NF relation schemas always exists.
- Step 1: Finding the minimal cover of the FD set \mathcal{F}

Given a set of $\mathrm{FDs} \mathcal{F}$, we say \mathcal{F}^{\prime} is equivalent to \mathcal{F} if their closures are the same: $\mathcal{F}^{+}=\mathcal{F}^{\prime+}$.

- Step 2: Decompose based on the minimal cover (i.e., \mathcal{F}^{\prime} is minimal).

Minimal cover

- A set of FDs \mathcal{F} is minimal if

1. every right-hand side of a FD in \mathcal{F} is a single attribute

- Example: $R=\{$ Sno,Sname,City,Pno,Pname,Price, PType $\}$

```
F: FD1: Sno }->\mathrm{ Sname, City
    FD2: Pno }->\mathrm{ Pname
    FD3:Sno, Pno }->\mathrm{ Price
    FD4: Sno, Pname }->\mathrm{ Price
    FD5: Pno, Pname }->\mathrm{ Ptype
```


Minimal cover

- A set of FDs \mathcal{F} is minimal if

1. every right-hand side of a FD in \mathcal{F} is a single attribute
2. there does not exist $X \rightarrow A$, and Z a proper subset of X, such that the set $(\mathcal{F}-\{X \rightarrow A\}) \cup\{Z \rightarrow A\}$ is equivalent to F, English: no extraneous (redundant) attributes in the left-hand side of an FD in F

- Example: $R=\{$ Sno,Sname,City,Pno,Pname,Price, PType\}

```
F: FD1:Sno }->\mathrm{ Sname,City
    FD2: Pno -> Pname
    FD3:Sno,Pno }->\mathrm{ Price
    FD4: Sno,Pname }->\mathrm{ Price
    FD5: Pno, Pname }->\mathrm{ Ptype
```


Fail condition 2: replace by
 FD5': Pno \rightarrow Ptype $\left(\mathcal{F}-\{\right.$ FD 5$\}+\left\{\right.$ FD $\left.^{\prime}\right\}$ \} is equiv. to \mathcal{F}

compute $X^{+}(\{$Pno $\},\{$FD1,FD2,FD3, FD4,FD5\})
$=\{\ldots$, Ptype, ... $\}$
[visit Lecture 9 for how to compute closure]

Minimal cover

- A set of $\mathrm{FDs} \mathcal{F}$ is minimal if

1. Every right-hand side of a FD in \mathcal{F} is a single attribute
2. There does not exist $X \rightarrow A$ and Z a proper subset of X, such tr No redundant $(\mathcal{F}-\{X \rightarrow A\}) \cup\{Z \rightarrow A\}$ is equivalent to F, FD in \mathcal{F} English: no extraneous (redundant) attributes in the left-hand side ofarD in F
3. There does not exist $X \rightarrow A$ in \mathcal{F}, such that $\mathcal{F}-\{X \rightarrow A\}$ equivalent to \mathcal{F}

Example: $R=$ \{Sno,Sname,City,Pno,Pname,Price, PType $\}$

$$
\begin{gathered}
\mathcal{F}: \text { FD1: Sno } \rightarrow \text { Sname, City } \\
\text { FD2: Pno } \rightarrow \text { Pname } \\
\text { FD3: Sno, Pno } \rightarrow \text { Price } \\
\text { FD4: Sno, Pname } \rightarrow \text { Price } \\
\text { FD5: Pno, Pname } \rightarrow \text { Ptype }
\end{gathered}
$$

Fail condition 3: FD2+FD4 can give FD3 $(\mathcal{F}-\{$ FD 3$\})$ is equiv. to \mathcal{F}
compute $X^{+}(\{$Sno, Pno\}, \{FD1,FD2,FD4,FD5\}) $=\{\ldots$, Price, $\ldots\}$

Finding minimal cover

- A minimal cover for \mathcal{F} can be computed in 3 steps.

1. Replace $X \rightarrow Y Z$ with the pair $X \rightarrow Y$ and $X \rightarrow Z$
2. Remove A from the left-hand side of $X \rightarrow B$ in \mathcal{F} if $B \in$ compute $X^{+}(X-\{A\}, \mathcal{F})$
3. Remove $X \rightarrow A$ from \mathcal{F} if $A \in$ compute $X^{+}(X, \mathcal{F}-\{X \rightarrow A\})$

- Note that each step must be repeated until it no longer succeeds in updating \mathcal{F}.
- Example: $R=\{$ Sno,Sname,City,Pno,Pname,Price, PType $\}$

$$
\begin{gathered}
\mathcal{F}: \text { FD1: Sno } \rightarrow \text { Sname, City } \\
\text { FD2: Pno } \rightarrow \text { Pname } \\
\text { FD3: Sno, Pno } \rightarrow \text { Price } \\
\text { FD4: Sno, Pname } \rightarrow \text { Price } \\
\text { FD5: Pno, Pname } \rightarrow \text { Ptype }
\end{gathered}
$$

Sno \rightarrow Sname,
Sno \rightarrow City
Remove FD3

Computing 3 NF decomposition

Efficient algorithm for computing a 3 NF decomposition of R with FDs \mathcal{F} :

1. Initialize the decomposition with empty set
2. Find a minimal cover for \mathcal{F}, let it be \mathcal{F}^{*}
3. For every $(\mathrm{X} \rightarrow \mathrm{Y}) \in \mathcal{F}^{*}$, add a relation $\{\mathrm{XY}\}$ to the decomposition
4. If no relation contains a candidate key for R, then compute a candidate key K for R , and add relation $\{K\}$ to the decomposition.

Example for 3NF decomposition

- $R=$ \{Sno,Sname,City,Pno,Pname,Price $\}$

$$
\begin{gathered}
\mathcal{F}: \text { FD1: Sno } \rightarrow \text { Sname, City } \\
\text { FD2: Pno } \rightarrow \text { Pname } \\
\text { FD3: Sno, Pno } \rightarrow \text { Price } \\
\text { FD4: Sno, Pname } \rightarrow \text { Price }
\end{gathered}
$$

- Minimal cover \mathcal{F}^{*}

Exercise

```
F*: FD1a: Sno }->\mathrm{ Sname
    FD1b: Sno }->\mathrm{ City
    FD2: Pno -> Pname
    FD4:Sno, Pname }->\mathrm{ Price
```

- Add relation for candidate key
- Optimization for this example: combine relations R1a and R1b

Summary

- Functional dependencies: provide clues towards elimination of (some) redundancies in a schema.
- Closure of FDs (rules, e.g. Armstrong's axioms)
- Compute attribute closure
- Schema decomposition
- Lossless join decompositions
- Dependency preserving decompositions
- Normal forms based on FDs
- BCNF \rightarrow lossless join decompositions
- $3^{\text {rd }} \mathrm{NF} \rightarrow$ lossless join and dependency-preserving decompositions with more redundancy

