Relational Database Design Theory (II)

CS348 Spring 2023 Instructor: Sujaya Maiyya Sections: **002 & 004 only**

Outline For Today

- 1. Application Constraints and Decompositions
- 2. Functional Dependencies
- 3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg. This
- 4. Dependency Preservation and 3rd Normal Form

lecture

A Parts/Suppliers database example

- Each type of part has a name and an identifying number and may be supplied by zero or more suppliers.
- Each supplier has an identifying number, a name, and a contact location for ordering parts.
- Each supplier may offer the part at a different price.

Single table?

Supplied_Items

<u>Sno</u>	Sname	City	<u>Pno</u>	Pname	Price
S 1	Magna	Ajax	P1	Bolt	0.50
S 1	Magna	Ajax	P2	Nut	0.25
S 1	Magna	Ajax	P3	Screw	0.30
S 2	Budd	Hull	P3	Screw	0.40

Decomposed tables?

• An instance

Suppliers

<u>Sno</u>	Sname	City
S 1	Magna	Ajax
S 2	Budd	Hull

Parts

Pno	Pname
P1	Bolt
P2	Nut
P3	Screw

Supplies

<u>Sno</u>	<u>Pno</u>	Price
S 1	P1	0.50
S 1	P2	0.25
S 1	P3	0.30
S 2	P3	0.40

Schema decomposition

- Let *R* be a relation schema (= set of attributes).
- The collection $\{R_1, \dots, R_n\}$ of relations is a decomposition of R if $R = R_1 \cup \dots \cup R_n$

	Supp	lied Items	ŝ			
R	<u>Sno</u>	Sname	City	<u>Pno</u>	Pname	Price
	S 1	Magna	Ajax	P1	Bolt	0.50
	S 1	Magna	Ajax	P2	Nut	0.25
	S 1	Magna	Ajax	P3	Screw	0.30
	S 2	Budd	Hull	P3	Screw	0.40

Supplies						
R	<u>Sno</u>	<u>Pno</u>	Price			
	S 1	P1	0.50			
	S 1	P2	0.25			
	S 1	P3	0.30			
	S 2	P3	0.40			

• What is a good decomposition?

Is this a good decomposition?

• Example 1

Marks			
<u>Student</u>	<u>Assignment</u>	Group	Mark
Ann	A1	G1	80
Ann	A2	G3	60
Bob	A1	G2	60

V

SGM			AM	AM		
	<u>Student</u>	Group	Mark	<u>Assignment</u>	Mark	
	Ann	G1	80	A1	80	
>	Ann	G3	60	A2	60	
	Bob	G2	60	A1	60	

But computing the natural join of SGM and AM, we get extra data (spurious tuples).

We would therefore lose information if we were to replace Marks by SGM and AM

<u>Student</u>	<u>Assignment</u>	Group	Mark				
Ann	A1	G1	80				
Ann	A2	G3	60				
Ann	A1	G3	60				
Bob	A2	G2	60				
Bob	A1	G2	60				

Natural Join

"Good" Schema Decomposition

- Lossless-join decompositions
 - We should be able to construct the instance of the original table from the instances of the tables in the decomposition

A decomposition $\{R_1, R_2\}$ of R is lossless iff the common attributes of R_1 and R_2 form a superkey for either schema, $R_1 \cap R_2 \rightarrow R_1$ or $R_1 \cap R_2 \rightarrow R_2$

*If X is a superkey of R, then $X \rightarrow R$ (all the attributes) [last lecture]

Is this a lossless join decomposition?

- Example 1
 - R = {Student, Assignment, Group, Mark}

<u>Student</u>	<u>Assignment</u>	Group	Mark
Ann	A1	G1	80
Ann	A2	G3	60
Bob	A1	G2	60

 \mathcal{F} includes: $Student, Assignment \rightarrow Group, Mark$

• $R_1 = \{Student, Group, Mark\}, R_2 = \{Assignment, Mark\}$

Which one is a better decomposition?

- Example 2: a table for a company database
 - $R = \{Proj, Dept, Div\}$

 \mathcal{F} includes:FD1: $Proj \rightarrow Dept$ FD2: $Dept \rightarrow Div$ FD3: $Proj \rightarrow Div$

Consider 2 decompositions

$$D_{1} = \begin{cases} R_{1}\{Proj, Dept\}, \\ R_{2}\{Dept, Div\} \end{cases} \qquad D_{2} = \begin{cases} R_{1}\{Proj, Dept\}, \\ R_{2}\{Proj, Div\} \end{cases}$$

- Both are lossless. (Why?) $R_1 \cap R_2 \rightarrow R_1 \text{ or } R_2$
- However, testing FDs is easier on one of them. (Which?)

Testing FDs

- Example 2: a table for a company database
 - $R = \{Proj, Dept, Div\}$

 \mathcal{F} includes:FD1: $Proj \rightarrow Dept$ FD2: $Dept \rightarrow Div$ FD3: $Proj \rightarrow Div$

Consider 2 decompositions

 $D_{1} = \begin{cases} R_{1}\{Proj, Dept\}, \\ R_{2}\{Dept, Div\} \end{cases}$

$$D_{2} = \begin{cases} R_{1}\{Proj, Dept\}, \\ R_{2}\{Proj, Div\} \end{cases}$$

- FD1 (in R1)
- FD2 (in R2)
- FD3 (join R1 and R2?)
- → No need, if FD1 and FD2 hold, then FD3 hold

Testing FDs

- Example 2: a table for a company database
 - $R = \{Proj, Dept, Div\}$

 \mathcal{F} includes:FD1: $Proj \rightarrow Dept$ FD2: $Dept \rightarrow Div$ FD3: $Proj \rightarrow Div$

Consider 2 decompositions

 $D_1 = \begin{cases} R_1 \{ Proj, Dept \}, \\ R_2 \{ Dept, Div \} \end{cases}$

- FD1 (in R1)
- FD2 (in R2)
- FD3 (join R1 and R2?)
- → No need, if FD1 and FD2 hold, then FD3 hold

$$D_{2} = \begin{cases} R_{1}\{Proj, Dept\}, \\ R_{2}\{Proj, Div\} \end{cases}$$

FD1 (in R1)
FD3 (in R2)

interrelational

FD2 (join R1 and R2?)
 → Yes. FD1 and FD3 are not sufficient to guarantee FD2

Testing FDs

- Example 2: a table for a company database
 - $R = \{Proj, Dept, Div\}$

 \mathcal{F} includes:FD1: $Proj \rightarrow Dept$ FD2: $Dept \rightarrow Div$ FD3: $Proj \rightarrow Div$

Consider 2 decompositions

$$D_{1} = \begin{cases} R_{1}\{Proj, Dept\}, \\ R_{2}\{Dept, Div\} \end{cases} \qquad D_{2} = \begin{cases} R_{1}\{Proj, Dept\}, \\ R_{2}\{Proj, Div\} \end{cases}$$

FD1 (in R1)²
FD2 (in R2)

- FD3 (join R1 and R2?)
- → No need, if FD1 and FD2 hold, then FD3 hold

FD1 (in R1) FD3 (in R2)

interrelational

FD2 (join R1 and R2?)
 → Yes. FD1 and FD3 are not sufficient to guarantee FD2

"Good" Schema Decomposition

- Lossless-join decompositions
- Dependency-preserving decompositions

Given a schema R and a set of FDs \mathcal{F} , decomposition of R is dependency preserving if there is an equivalent set of FDs \mathcal{F}' , none of which is interrelational in the decomposition.

- Next, how to obtain such decompositions?
 - BCNF \rightarrow guaranteed to be a lossless join decomposition!

Boyce-Codd Normal Form (BCNF)

- A relation *R* is in BCNF iff whenever $(X \rightarrow Y) \in \mathcal{F}^+$ and $XY \subseteq R$, then either
 - $(X \rightarrow Y)$ is trivial (i.e., $Y \subseteq X$), or
 - X is a super key of R (i.e., $X \rightarrow R$)

 \mathcal{F} includes:

FD1: Sno \rightarrow Sname, City

- That is, all non-trivial FDs follow from "key \rightarrow other attributes"
- Example: *R* = {Sno,Sname,City,Pno,Pname,Price}

• The schema is not in BCNF because, for example, Sno determines Sname, City, is non-trivial but is not a superkey of *R*

FD2: $Pno \rightarrow Pname$

FD3: Sno, Pno \rightarrow Price

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD $X \to Y$ in \mathcal{F}^+ of R where X is not a super key of R
 - Example: *R* = {Sno,Sname,City,Pno,Pname,Price}

 $\mathcal F$ includes:

FD1: $Sno \rightarrow Sname, City$ FD2: $Pno \rightarrow Pname$ FD3: $Sno, Pno \rightarrow Price$

- Decompose R into R_1 and R_2 , where
 - R_1 has attributes $X \cup Y$;
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y $R = \{Sno, Sname, City, Pno, Pname, Price\}$
- Repeat (till all are in BCNF)

R2{Sno,Pno,Pname,Price} R1{Sno,Sname,City}

BCNF decomposition example

• *R* = {Sno,Sname,City,Pno,Pname,Price}

BCNF helps remove redundancy

Sno	Sname	City	Pno	Pname	Price
S1	Magna	K-W	P1	А	\$25
S1	Magna	K-W	P2	В	\$34
S1	Magna	K-W	P3	А	\$20
S2	Box	London	•••	•••	

BCNF violation: $Sno \rightarrow Sname$, City

Sno	Pno	Pname	Price
S1	P1	А	\$25
S1	P2	В	\$34
S1	Р3	А	\$20
S2			

Sno	Sname	City
S1	Magna	K-W
S2	Box	London
••	•••	•••

Another example

 \mathcal{F} includes: uid \rightarrow uname, twittered twitterid \rightarrow uid uid, gid \rightarrow fromDate

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

Another example

 \mathcal{F} includes: uid \rightarrow uname, twitterid twitterid \rightarrow uid uid, gid \rightarrow fromDate

"Good" Schema Decomposition

- Lossless-join decompositions
- Dependency-preserving decompositions
- BCNF → guaranteed to be a lossless join decomposition!
 - Depend on the on the sequence of FDs for decomposition
 - Not necessarily dependency preserving

Example: consider R={A, B, C} \mathcal{F} includes: FD1: $AB \rightarrow C$ FD2: C $\rightarrow B$

"Good" Schema Decomposition

- Lossless-join decompositions
- Dependency-preserving decompositions
- BCNF → guaranteed to be a lossless join decomposition!
 - Depend on the on the sequence of FDs for decomposition
 - Not necessarily dependency preserving

• 3NF \rightarrow both lossless join and dependency preserving

Third normal form (3NF)

- A relation *R* is in 3NF iff whenever $(X \rightarrow Y) \in \mathcal{F}^+$ and $XY \subseteq R$, then either
 - $(X \rightarrow Y)$ is trivial (i.e., $Y \subseteq X$), or
 - X is a super key of R (i.e., $X \rightarrow R$) or
 - Each attribute in Y X is contained in a candidate key of R
 - Example: consider R={A, B, C} \mathcal{F} includes: FD1: $AB \rightarrow C$ FD2: $C \rightarrow B$
 - Satisfies 3NF, but not BCNF

{B}-{C} = {B} is part of the key {AB}

• 3NF is looser than BCNF \rightarrow Allows more redundancy

How to find a 3NF relation schemas?

- Lossless-join, dependency-preserving decomposition into 3NF relation schemas always exists.
 - Step 1: Finding the minimal cover of the FD set ${\mathcal F}$

$$\mathcal{F} \xrightarrow{\mathcal{F}^+} \Rightarrow \mathcal{F}' \xrightarrow{\mathcal{F}'^+} \Rightarrow \text{schema}$$

Given a set of FDs \mathcal{F} , we say \mathcal{F}' is equivalent to \mathcal{F} if their closures are the same: $\mathcal{F}^+ = \mathcal{F}'^+$.

• Step 2: Decompose based on the minimal cover (i.e., \mathcal{F}' is minimal).

Minimal cover

- A set of FDs ${\mathcal F}$ is minimal if
- 1. every right-hand side of a FD in \mathcal{F} is a single attribute

• Example: *R* = {Sno,Sname,City,Pno,Pname,Price, PType}

 $\begin{array}{l} \mathcal{F}: \mathsf{FD1:} Sno \rightarrow Sname, City \\ \mathsf{FD2:} Pno \rightarrow Pname \\ \mathsf{FD3:} Sno, Pno \rightarrow Price \\ \mathsf{FD4:} Sno, Pname \rightarrow Price \\ \mathsf{FD5:} Pno, Pname \rightarrow \mathsf{Ptype} \end{array}$

Fail condition 1

Minimal cover

- A set of FDs $\mathcal F$ is minimal if
- 1. every right-hand side of a FD in \mathcal{F} is a single attribute
- 2. there does not exist $X \rightarrow A$, and Z a proper subset of X, such that the set $(\mathcal{F} \{X \rightarrow A\}) \cup \{Z \rightarrow A\}$ is equivalent to F, English: no extraneous (redundant) attributes in the left-hand side of an FD in F
- Example: *R* = {Sno,Sname,City,Pno,Pname,Price, PType}

F: FD1: Sno → Sname, City FD2: Pno → Pname FD3: Sno, Pno → Price FD4: Sno, Pname → Price FD5: Pno, Pname → Ptype Fail condition 2: replace by FD5': Pno \rightarrow Ptype $(\mathcal{F} - \{FD5\} + \{FD5'\})$ is equiv. to \mathcal{F}

computeX⁺({Pno}, {FD1,FD2,FD3, FD4,FD5})
= {..., Ptype, ...}
[visit Lecture 9 for how to compute closure]

No redundant

attributes in X

Minimal cover

- A set of FDs $\mathcal F$ is minimal if
- 1. Every right-hand side of a FD in \mathcal{F} is a single attribute
- 2. There does not exist $X \rightarrow A$ and Z a proper subset of X, such the No redundant $(\mathcal{F} \{X \rightarrow A\}) \cup \{Z \rightarrow A\}$ is equivalent to F, FD in \mathcal{F} English: no extraneous (redundant) attributes in the left-hand side of a FD in F
- 3. There does not exist $X \rightarrow A$ in \mathcal{F} , such that $\mathcal{F} \{X \rightarrow A\}$ equivalent to \mathcal{F}

Example: *R* = {Sno, Sname, City, Pno, Pname, Price, PType}

 $\begin{array}{l} \mathcal{F}: \mathsf{FD1:} Sno \rightarrow Sname, City \\ \mathsf{FD2:} Pno \rightarrow Pname \\ \mathsf{FD3:} Sno, Pno \rightarrow Price \\ \mathsf{FD4:} Sno, Pname \rightarrow Price \\ \mathsf{FD5:} Pno, Pname \rightarrow \mathsf{Ptype} \end{array}$

Fail condition 3: FD2+FD4 can give FD3 $(\mathcal{F} - \{FD3\})$ is equiv. to \mathcal{F}

computeX⁺({Sno, Pno}, {FD1,FD2,FD4,FD5}) = {..., Price, ...}

Finding minimal cover

- A minimal cover for $\mathcal F$ can be computed in 3 steps.
 - 1. Replace $X \to YZ$ with the pair $X \to Y$ and $X \to Z$
 - 2. Remove A from the left-hand side of $X \to B$ in \mathcal{F} if $B \in compute X^+(X \{A\}, \mathcal{F})$
 - 3. Remove $X \to A$ from \mathcal{F} if $A \in compute X^+(X, \mathcal{F} \{X \to A\})$
 - Note that each step must be repeated until it no longer succeeds in updating $\mathcal{F}.$
- Example: *R* = {Sno,Sname,City,Pno,Pname,Price, *PType* }

Computing 3NF decomposition

Efficient algorithm for computing a 3NF decomposition of R with FDs \mathcal{F} :

- 1. Initialize the decomposition with empty set
- 2. Find a minimal cover for \mathcal{F} , let it be \mathcal{F}^*
- 3. For every $(X \rightarrow Y) \in \mathcal{F}^*$, add a relation {XY} to the decomposition
- 4. If no relation contains a candidate key for R, then compute a candidate key K for R, and add relation {K} to the decomposition.

Example for 3NF decomposition

- *R* = {Sno,Sname,City,Pno,Pname,Price}
 - $\begin{array}{l} \mathcal{F}: \mathsf{FD1:} Sno \to Sname, City \\ \mathsf{FD2:} Pno \to Pname \\ \mathsf{FD3:} Sno, Pno \to Price \\ \mathsf{FD4:} Sno, Pname \to Price \end{array}$
- Minimal cover \mathcal{F}^*

Exercise

 \mathcal{F}^* : FD1a: $Sno \rightarrow Sname$ FD1b: $Sno \rightarrow City$ FD2: $Pno \rightarrow Pname$ FD4: $Sno, Pname \rightarrow Price$ R1a(Sno, Sname) R1b(Sno, City) R2(Pno, Pname) R4(Sno,Pname,Price)

R5(Sno,Pno)

- Add relation for candidate key
- Optimization for this example: combine relations R1a and R1b

Summary

- Functional dependencies: provide clues towards elimination of (some) redundancies in a schema.
 - Closure of FDs (rules, e.g. Armstrong's axioms)
 - Compute attribute closure
- Schema decomposition
 - Lossless join decompositions
 - Dependency preserving decompositions
 - Normal forms based on FDs
 - BCNF \rightarrow lossless join decompositions
 - 3rd NF → lossless join and dependency-preserving decompositions with more redundancy