
Relational Database 
Design Theory (I)

CS348 Spring 2023
Instructor: Sujaya Maiyya

Sections: 002 and 004 only



Announcements

• Assignment 2 is released
• Due by June 20th 

2



Lectures on Relational Algebra & SQL

Ø Main SQL clauses for querying and data manipulation

Ø Founded on relational algebra

Ø Constraints: Primary Keys, Foreign Keys, Not NULL, General 

Assertions and CHECKs

Ø Triggers

Ø Views

Ø When materialized also a way to achieve performance

Ø Indexes

Ø Fast access to some data

Ø Recursion & programming
3

Achieve Integrity of Database

Ease of Programming

Performance

Enhanced functionality



Lectures on Entity/Relationship (ER) Model

4

ØOften users do not directly design relational tables

ØER Model: An even higher-level data model

ØConvert requirements in plaintext to ER diagrams

ØConvert ER diagrams into relational model

ØConvert relational model into SQL DDL commands



Next 2 Lectures: Relational Database Design Theory

5

Ø Theory of Normal Forms (TNF): Given a set of constraints about the 
real-world facts that an app will store, how can we formally separate 
“good” and ”bad” relational db schemas?

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

… … … … … …

Inst

iID name salary depName

111 Alice 5000 CS

222 Bob 4000 Physics

… … …. …

Dep

depName bldng budget

CS DC 20000

Physics PHY 30000

If each department identified by
depName has as associated (bldng, budget)  

Design 1, intuitively, is a bad design with redundancy.

Design 1 Design 2

ØGoal of TNF: make the above intuition formal.  



Outline For Today

1. Application Constraints and Decompositions 

2. Functional Dependencies 

3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.

4. Dependency Preservation and 3rd Normal Form

6



Outline For Today

1. Application Constraints and Decompositions 

2. Functional Dependencies 

3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.

4. Dependency Preservation and 3rd Normal Form

7

This lecture

Next 
lecture



Application Constraints

8

Ø Consider a simple university DB:

Ø Independent of stored data: there will be external app. constraints. E.g:

Ø Each instructor has 1 name, salary, and department

Ø Each department has 1 building

Ø Each student can have 1 advisor from each department

Ø Instructor i’s set of addresses are independent of the departments of i

Ø High-level idea: A “good” DB makes such constraints explicit

Instructors Departments Courses Students



Application Constraints

9

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

… … … … … …

Ø Instructors: iIDs, names, salaries, departments (w/ unique iIDs)

Ø Departments: names, building, budget (w/ unique names)

Ø Constraint 1: Each instructor has 1 name, salary, and department

Ø Constraint 2: Each department has 1 building and 1 associated budget

Ø Possible Design: 1 large table InstDep with one row for each instructor

✓
X

b/c iID is key

Ø Problem: redundant data replication. (CS, DC, 20000) repeated k times if 
there are k instructors in CS.

b/c depName is not key



Problems of Redundancy

10

Ø Harder to keep db consistent when facts are stored multiple times. E.g:

Ø If CS’s building changed to E4 => need to update 3 rows

Ø Suppose Bob is the only instructor in Physics and retires (a delete):

Ø Deletion of Bob’s tuple: Physics department, which will continue to exist, 

is deleted unless extra work is done

Ø If new department (w/out yet an instructor) is added: new row w/ NULLs 

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

… … … … … …



Redundancy Is Determined By App. Constraints

11

Course

cID term iID capacity

CS348 S23 Sujaya 100

CS341 F22 Lap Chi 80

CS348 S21 Semih 100

CS348 W20 Xi 100

CS350 W19 Salem 130

Ø Courses: cID, term, iID, capacity

Ø Unclear if this is redundant or not. Depends on external app constraint:

Ø If courses have 1 associated capacity (independent of term): Redundant

Ø Otherwise, repetition may be necessary and reflects similarity across entities



Redundancy Is Determined By App. Constraints

12

Ø Courses: cID, term, iID, capacity

Ø Unclear if this is redundant or not. Depends on external app constraint:

Ø If courses have 1 associated capacity (independent of term): Redundant

Ø Otherwise, repetition may be necessary and reflects similarity across entities

Ø Takeaway: Constraints are external to the db/app and need to be inputs in a 

db design theory.

Course

cID term iID capacity

CS348 S23 Sujaya 100

CS341 F22 Lap Chi 80

CS348 S21 Semih 100

CS348 W20 Xi 100

CS350 W19 Salem 130

CS348 W23 David 200



Solution To Redundancy: Decompositions

13

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

Inst

iID name salary depName

111 Alice 5000 CS

222 Bob 4000 Physics

333 Carl 5200 CS

444 Diana 5500 CS

Dep

depName bldng budget

CS DC 20000

Physics PHY 30000



Requirement for Decompositions (1)

14

Ø R1 (Lossless): If R is decomposed into R1 and R2, then:

R = R1 ⋈ R2

Ø Lossless-ness achieved by decomposing on an appropriate key

RESULT

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

Inst

iID name salary depName

111 Alice 5000 CS

222 Bob 4000 Physics

333 Carl 5200 CS

444 Diana 5500 CS

Dep

depName bldng budget

CS DC 20000

Physics PHY 30000
⋈

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

=



Example Lossy Decomposition

15

InstDep

ID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

ID

111

222

333

444

name

Alice

Bob

Carl

Diana

salary

5000

4000

5200

5500

depName

CS

Physics

bldng

DC

PHY

budget

20000

30000

RESULT

ID name salary depName bldng budget

111 Alice 5000 CS DC 20000

111 Bob 5200 CS PHY 30000

… … … … … …

⋈ ⋈ ⋈ ⋈ ⋈

X Can’t tell what’s fact and what’s 
not.



Requirement for Decompositions (2)

Ø R2 (Locality of Constraints): If the app had a constraint C, we would 

prefer to check C in a single relation 

Ø Will discuss more in 3rd Normal Form (next lecture)

16

High level question we answer in this topic:

 How to decompose a database to be lossless & 
(preferably) retain locality of constraints?



Outline For Today
1. Application Constraints and Decompositions 

2. Functional Dependencies 

3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.

4. Dependency Preservation and 3rd Normal Form

17



Functional dependencies
• A functional dependency (FD) is a constraint 

between two sets of attributes in a relation

• FD has the form 𝑋 → 𝑌, where 𝑋 and 𝑌 are sets of 
attributes in a relation 𝑅
• 𝑋 → 𝑌 means that whenever two tuples in 𝑅 agree 

on all the attributes in 𝑋, they must also agree on 
all attributes in 𝑌

• If X	is a superkey of R , then X → R (all the attributes)

𝑿 𝒀 𝒁
𝑎 𝑏 𝑐
𝑎 ? ?

… … …

𝑿 𝒀 𝒁
𝑎 𝑏 𝑐
𝑎 𝑏 ?

… … …Must be 𝑏 Could be anything

18



Functional dependencies: Formal 
definition

Formally: Let t[A] be a tuple t’s projection on attributes A

• Dfn: Let X, Y be sets of attributes. An fd X → Y holds in a 

relation R if given t1 and t2 ∈ R s.t. :

If t1[X] = t2[X], then t1[Y] = t2[Y] holds.

If X à Y, we say X determines Y

19



Example FDs

Ø Constraint 1: Each iID has 1 name and salary

Ø iID → name, salary

Ø Constraint 2: Each depName has 1 building & 1 associated budget 

Ø depName → bldng, budget

Ø Key constraints: Each iID, depName is unique in InstDep

Ø iID, depName → name, salary, bldgn, budget

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

… … … … … …

Ø Captures generalized uniqueness constraints (beyond keys):

20



Some FD Vocabulary

Ø Suppose ℱ:	(i) iID → name, salary; (ii) depName → bldng, budget

Ø E.g: The above instance is a legal instance

Ø E.g: iID → name, salary holds on the above instance.

Ø Won’t need this vocabulary much in lecture. 

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

111 Alice 5000 Biology BIO 50000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

Ø We take FDs as given, i.e., cannot be inferred from a relation instance.

Ø FDs limit legal instances of a relation R(A1, …, Am)

Ø Given a set ℱ	of fds on R, on all legal instances of R, each F ∈ ℱ hold.



Implied FDs: Armstrong’s Axioms

Ø A set of fds can imply other fds via 3 intuitive rules: Armstrong’s Axioms

1. Reflexivity: If Y⊆ X, then X → Y (trivially)

Ø iID, name → iID 

Ø English: Each iID and name value determine a unique iID value

2. Augmentation: if X → Y, then XZ → YZ (trivially)

Ø If iID → salary then iID, name → salary, name

Ø English: if each iID determines a unique salary value, then each (iID, 

name) value pair determines a unique (salary, name) value

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

… … … … … … 22



Implied FDs: Armstrong’s Axioms

3. Transitivity: if X → Y and Y → Z, then X → Z

Ø Suppose each instructor can be in a single department and each dep 

has a single budget

Ø FD1: iID → depName FD2: depName → budget, then 

iID → budget

Ø English: If each iID value determines a unique depName value, which in 

turn determines a unique budget value, then each iID value determines a 

unique budget value.
InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

… … … … … … 23



Other Rules Implied by Armstrong’s Axioms

1. Decomposition: If X → YZ, then X → Y and X → Z

Proof: 

i.  X → YZ

ii. YZ → Y (by reflexivity);   YZ → Z (by reflexivity)

iii. X → Y (by transitivity);  X → Z (by transitivity)

2. Union: If X → Y and X → Z then X → YZ (Prove as exercise)

3. Pseudo-transitivity: If X → Y and YZ → T then XZ→ T (Prove as exercise)

Using these rules, you can prove or disprove a (derived) FD given a 
set of (base) FDs

24



Closure of FD sets: ℱ!

• How do we know what additional FDs hold in a 
schema? 

• A set of FDs ℱ logically implies a FD 𝑋 → 𝑌 if 𝑋 → 𝑌
holds in all instances of 𝑅 that satisfy ℱ

• The closure of a FD set ℱ (denoted ℱ!): 
• The set of all FDs that are logically implied by ℱ
• Informally, ℱ!includes all of the FDs in ℱ, i.e., ℱ ⊆ 𝐹!, 

plus any dependencies they imply.

25

ℱ ℱ!

25



ℱ!:	Closure of ℱ	(example)
Dfn: Let ℱ be a set of fds. The closure ℱ! of ℱ is the set of all fds implied by ℱ. 

Ø Ex: ℱ: iID→name, depName; depName→bldng

Ø ℱ!: ℱ ∪ iID→iID; iID,email→name,email  (trivial ones) … ∪ 

 iID→bldng  (transitivity) etc..

InstDep

iID name email depName bldng

111 Alice alice@gmail CS DC

111 Alice alice@hotmai
l

CS DC

222 Bob bob@gmail Physics PHY

222 Bob bob@hotmail Physics PHY

333 Carl carl@gmail CS DC

… … … … … 26



Exercise Showing an FD is in ℱ!

Ø Consider an Inst_Proj relation of instructors and their research projects
InstProj

iID name projID projName projDep hours funds

Ø Given: (i) iID → name; (ii) projID → projName, projDep;

    (iii) iID, projID → hours; (iv) projDep, hours → funds;

Ø Prove iID, projID → funds

1. iID, projID → hours (by fd iii)

2. projID → projName, projDep (by fd ii)

3. iID, projID → hours, projName, projDep (by reflexivity, union & 

decomposition of 1 & 2)

4. iID, projID → funds (by transitivity of 3, and fd iv) (+ decomposition) 

27



How To Compute ℱ" from ℱ

28



Attribute closure

• The closure of attributes 𝑍 in a relation 𝑅	(denoted 
𝑍!) with respect to a set of FDs, ℱ, is the set of all 
attributes 𝐴", 𝐴#, …  functionally determined by 𝑍 
(that is, Z → 𝐴"𝐴#…)

• Algorithm for computing the closure 
Compute𝑍!(𝑍, ℱ):
• Start with closure = 𝑍
• If 𝑋 → 𝑌 is in ℱ and 𝑋 is already in the closure, then also 

add 𝑌 to the closure
• Repeat until no new attributes can be added

29

29



Example for computing attribute 
closure

FD 𝑍!

initial 𝐵, 𝐹

30

ℱ includes:
A, B → F  
A → C
B → E, D
D, F → G

Given relation R(ABCDEFG)
Compute𝑍!({𝐵, 𝐹}, ℱ):

𝐵, 𝐹 → 𝐸,𝐷, 𝐺

B → E, D B, F, E, D

D, F → G 𝐵, 𝐹, 𝐸, 𝐷, 𝐺

30



Using attribute closure

Given a relation 𝑅 and set of FD’s ℱ
• Does another FD 𝑋 → 𝑌 follow from ℱ?
• Compute 𝑋! with respect to ℱ
• If 𝑌 ⊆ 𝑋!, then 𝑋 → 𝑌 follows from ℱ

• Is 𝐾 a key of 𝑅?
• Compute 𝐾! with respect to ℱ
• If 𝐾! contains all the attributes of 𝑅, 𝐾 is a super key
• Still need to verify that 𝐾 is minimal (how?)

• Hint: check the attribute closure of its proper subset.
• i.e., Check that for no set X formed by removing attributes from 
𝐾	is 𝐾!the set of all attributes

31

31



Design Theory 

• Detect anomalies: Functional dependencies
• Closure of FDs (rules, e.g. Armstrong’s axioms)
• Attribute closure

• Repair anomalies: Schema decomposition 
• (next lecture)

32


