
Relational Database Design: 
E/R-Relational Translation

CS348 Spring 2023
Sections: 002 & 004 only



E/R Model

• E/R Concepts 
• E/R Schema Design 
• Next: Translating E/R to relational schema 

2

Rooms In Buildings
name

year

Rnumber

capacity

In

Seats
Snumber

L/R?

• Building (name, year)
• Room (building_name, room_number, 

capacity)
• Seat (building_name, room_number, 

seat_number, left_or_right)



Translating entity sets

• An entity set translates directly to a table
• Attributes → columns
• Key attributes → key columns

3

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

User (uid, name) Group (gid, name)



Translating weak entity sets

• Remember the “borrowed” key attributes
• Watch out for attribute name conflicts

4

Rooms In Buildings
name

year

Rnumber

capacity

In

Seats
Snumber

L/R?
Building (name, year)

Room (building_name, room_number, capacity)
Seat (building_name, room_number, seat_number, left_or_right)



Translating relationship sets

• A relationship set translates to a table
• Keys of connected entity sets → columns
• Attributes of the relationship set (if any) → columns
• Multiplicity of the relationship set determines the key of 

the table

5

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

Member (uid, gid, fromDate)
• If we can deduce the general cardinality constraint (0,1) for a component 

entity set E, then take the primary key attributes for E
• Otherwise, choose primary key attributes of each component entity



Translating relationship sets

• A relationship set translates to a table
• Keys of connected entity sets → columns
• Attributes of the relationship set (if any) → columns
• Multiplicity of the relationship set determines the key of 

the table

6

Users Groups
gid

name
IsOwnerOf

uid

name

fromDate

Owner (uid, gid, fromDate)
• If we can deduce the general cardinality constraint (0,1) for a component 

entity set E, then take the primary key attributes for E
• Otherwise, choose primary key attributes of each component entity

(0,1)



More examples

7

Users IsParentOf

parent

child

Parent (parent_uid, child_uid)



Translating double diamonds?

• No need to translate because the relationship is 
implicit in the weak entity set’s translation

8

Rooms In Buildings
name

year

number

capacity

In

Seats
number

L/R?

Relationship
RoomInBuilding

(room_building_name, room_number,)

is subsumed by entity
Room (building_name, room_number, capacity)



Translating subclasses & ISA: approach 1

• Entity-in-all-superclasses approach (“E/R style”)
• An entity is represented in the table for each subclass to 

which it belongs
• A table includes only the attributes directly attached to 

the corresponding entity set, plus the inherited key

9

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Group (gid, name)
User (uid, name)
Member (uid, gid, from_date)

〈142, Bart〉
〈456, Ralph〉

∈

〈456, J〉 ∈ PaidUser (uid, avatar)



Translating subclasses & ISA: approach 2

• Entity-in-most-specific-class approach
• An entity is only represented in one table (the most 

specific entity set to which the entity belongs)
• A table includes the attributes attached to the 

corresponding entity set, plus all inherited attributes

10

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Group (gid, name)
User (uid, name)
Member (uid, gid, from_date)
PaidUser (uid, name, avatar)

〈142, Bart〉

〈456, Ralph, J〉

∈

∈



Translating subclasses & ISA: approach 3

• All-entities-in-one-table approach (“NULL style”)
• One relation for the root entity set, with all attributes found in 

the network of subclasses 
• (plus a “type” attribute when needed)

• Use a special NULL value in columns that are not relevant for a 
particular entity

11

Users Groups
gid

name
IsMemberOf

uid

name

fromDate

avatar PaidUsers

ISA

Group (gid, name)
User (uid, name)
Member (uid, gid, from_date)

〈142, Bart , NULL〉
〈456, Ralph, J〉

∈
Group (gid, name)
User (uid, name, avatar)
Member (uid, gid, from_date)



Comparison of three approaches

• Entity-in-all-superclasses
• User (uid, name), PaidUser (uid, avatar)
• Pro: 
• Con:

• Entity-in-most-specific-class
• User (uid, name), PaidUser (uid, name, avatar)
• Pro:
• Con:

• All-entities-in-one-table
• User (uid, [type, ]name, avatar)
• Pro:
• Con:

12

All users are found in one table
Attributes of paid users are scattered in different tables

All attributes of paid users are found in one table
Users are scattered in different tables

Everything is in one table
Lots of NULL’s; complicated if class hierarchy is complex



Translating composite and multi-valued 
attributes 

13

Address

Street

City

Province
Hobbies

Employee

Composite:
Employee(eId,…,Street, City, Province,..)

Multi-valued:
EmployeeHobbies(eID, hobby)

Foreign key: eId references Employee
Employee join EmployeeHobbies to get all info

eID



A complete example

14

Design a database consistent with the following:
• A station has a unique name and an address, and is either an 

express station or a local station
• A train has a unique number and an engineer, and is either an 

express train or a local train
• A local train can stop at any station
• An express train only stops at express stations
• A train can stop at a station for any number of times during a day
• Train schedules are the same everyday

Remember Case study 2 exercise?



A complete example

15

Trains Stations
name

address

number

engineer

time

ExpressTrains

LocalTrains LocalStations

ExpressStations

ISA

LocalTrainStops

ISA

time

ExpressTrainStops



A complete example

16

Trains Stations
name

address

number

engineer

time

ExpressTrains

LocalTrains LocalStations

ExpressStations

ISA

LocalTrainStops

ISA

time

ExpressTrainStops

Train (number, engineer)
LocalTrain (number)
ExpressTrain (number)

Station (name, address)
LocalStation (name)
ExpressStation (name)

LocalTrainStop (local_train_number, time)

ExpressTrainStop (express_train_number, time)
LocalTrainStopsAtStation (local_train_number, time, station_name)

ExpressTrainStopsAtStation (express_train_number, time,
express_station_name)

merge

merge



Simplifications and refinements
Train (number, engineer), LocalTrain (number), ExpressTrain (number)
Station (name, address), LocalStation (name), ExpressStation (name)
LocalTrainStop (local_train_number, station_name, time)
ExpressTrainStop (express_train_number, express_station_name, time)

• Eliminate LocalTrain table
• Redundant: can be computed as 

𝜋$%&'() 𝑇𝑟𝑎𝑖𝑛 − 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑇𝑟𝑎𝑖𝑛
• Slightly harder to check that local_train_number is 

indeed a local train number

• Eliminate LocalStation table
• It can be computed as 𝜋!"#$ 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 − 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑆𝑡𝑎𝑡𝑖𝑜𝑛

17



An alternative design
Train (number, engineer, type)

Station (name, address, type)

TrainStop (train_number, station_name, time)

• Encode the type of train/station as a column rather 
than creating subclasses
• What about the following constraints?
• Type must be either “local” or “express”
• Express trains only stop at express stations
FThey can be expressed/declared explicitly as database 

constraints in SQL 
FArguably a better design because it is simpler!

18



Design principles

• Avoid redundancy

• Capture essential constraints, but don’t introduce 
unnecessary restrictions

• Use your common sense
• Warning: mechanical translation procedures given in this 

lecture are no substitute for your own judgment

19http://ungenius.files.wordpress.com/2010/03/thehomer.jpg

POOR DESIGN!



• Representing aggregation 
• Tabular representation of aggregation of R =

tabular representation for relationship set R 
• To represent relationship set involving aggregation of R, treat the 

aggregation like an entity set whose primary key is the primary key 
of the table for R 

More examples

20

EnrolledIn(StudentNum,CouseNum)

Student (StudentNum)
Course(CourseNum)
Account(UserID)

CourseAccount(UserId, StudentNum, CourseNum, ExpirationDate)

One-to-one relationships à We can simply take 
UserId or (StudentNum, CourseNum) as the key 



More examples (Exercise)

• ER Diagram

21

Relational Schema

?



More examples

• ER Diagram

22

Relational Diagram



More examples 

• ER Diagram

23

Relational DDL Commands
CREATE TABLE Course
(CourseNum INTEGER PRIMARY KEY,
CourseName CHAR(50));

CREATE TABLE Professor
(ProfNum INTEGER PRIMARY KEY,
ProfName CHAR(50));

CREATE TABLE Student
(StudentNum INTEGER PRIMARY KEY,
StudentName CHAR(50),
GPA FLOAT);

CREATE TABLE Section
(CourseNum INTEGER  NOT NULL REFERENCES Course(CourseNum),
SectionNum INTEGER  NOT NULL, 
Term INTEGER  NOT NULL,
PRIMARY KEY(CourseNum, SectionNum, Term), 
ProfNum INTEGER NOT NULL REFERENCES Professor(ProfNum));

CREATE TABLE Off-SiteSection
(CourseNum INTEGER  NOT NULL,
SectionNum INTEGER NOT NULL, 
Term INTEGER NOT NULL,
FOREIGN KEY(CouseNum,SectionNum,Term) REFERENCES  

Section(CouseNum,SectionNum,Term),
Location CHAR(50));

CREATE TABLE EnrolledIn
(CourseNum INTEGER  NOT NULL,
SectionNum INTEGER NOT NULL, 
Term INTEGER NOT NULL,
StudentNum INTEGER NOT NULL REFERENCES Student(StudentNum),
FOREIGN KEY(CouseNum,SectionNum,Term) REFERENCES  

Section(CouseNum,SectionNum,Term),
Primary Key(CouseNum,SectionNum,Term,StudentNum),
Mark INTEGER);



Database Design

• Entity-Relationship (E/R) model

• Translating E/R to relational schema 

• Next lecture (ONLINE): Relational design principles 

24


