SQL: Triggers, Views, Indexes

CS348 Spring 2023

Instructor: Sujaya Maiyya

Sections: 002 and 004 only

Announcements (Thu, May 25th)

• Milestone o - Project groups to be formed by tonight!

- Form a team on Learn
- Report.pdf and link to GitHub repo
- Not graded, but very important!
- Assignment #1 due by next Tue May 30th, 11:59pm
 - Submit via Crowdmark

(Basic SQL) WITH clause

• The WITH clause provides a way of defining a temporary relation whose definition is available only to the query in which the with clause occurs

WITH max_pop(popVal) AS (SELECT max(pop) FROM user) SELECT uid, name FROM user, max_pop WHERE user.pop = max_pop.popVal

WITH max_pop AS (SELECT max(pop) AS popVal FROM user) SELECT uid, name FROM user, max_pop WHERE user.pop = max_pop.popVal

- Supported by many but not all DBMSs
- Can be written using subqueries

SQL

- Basic SQL (queries, modifications, and constraints)
- Intermediate SQL
 - Triggers
 - Views
 - Indexes
- Advanced SQL
 - Programming
 - Recursive queries

Lectures 5-6

Still remember "referential integrity"?

Example: Member.uid references User.uid

- Delete or update a User row whose uid is referenced by some Member row
 - Multiple Options (in SQL)

CREATE TABLE Member (uid INT NOT NULL REFERENCES User(uid) ON DELETE CASCADE,);

Option 2: Cascade (ripple changes to all referring rows)

Can we generalize it?

Referential constraints

Data Monitoring

Triggers

- A trigger is an event-condition-action (ECA) rule
 - When event occurs, test condition; if condition is satisfied, execute action

Trigger option 1 – possible events

- Possible events include:
 - INSERT ON table; DELETE ON table; UPDATE [OF column] ON table

Trigger option 2 – timing

- Timing—action can be executed:
 - AFTER or **BEFORE** the triggering event
 - INSTEAD OF the triggering event on views (more later)

Trigger option 3 – granularity

- Granularity—trigger can be activated:
 - FOR EACH ROW modified

Trigger option 3 – granularity

- Granularity—trigger can be activated:
 - FOR EACH ROW modified
 - FOR EACH STATEMENT that performs modification

Trigger option 3 – granularity

- Granularity—trigger can be activated:
 - FOR EACH ROW modified
 - FOR EACH STATEMENT that performs modification

CREATE TRIGGER PickyPopGroup2 AFTER UPDATE OF pop ON User REFERENCING NEW TABLE AS newUsers FOR EACH STATEMENT DELETE FROM Member WHERE gid = 'popgroup' AND uid IN (SELECT uid FROM newUsers WHERE pop < 0.5);

Transition table: contains all the affected rows

Can only be used with **AFTER** triggers

Transition variables/tables

- OLD ROW: the modified row before the triggering event
- NEW ROW: the modified row after the triggering event
- OLD TABLE: a read-only table containing all old rows modified by the triggering event
- NEW TABLE: a table containing all modified rows after the triggering event

Event	Row	Statement		
Delete	old r; old t	old t		
Insert	new r; new t	new t		
Update	old/new r; old/new t	old/new t		
AFTER Trigger				

Event	Row	Statement
Update	old/new r	-
Insert	new r	-
Delete	old r	-

BEFORE Trigger

Statement- vs. row-level triggers

- Simple row-level triggers are easier to implement
 - Statement-level triggers: require significant amount of state to be maintained in OLD TABLE and NEW TABLE
- However, in some cases a row-level trigger may be less efficient
 - E.g., 4B rows and a trigger may affect 15% of the rows. Recording an action for 4 Billion rows, one at a time, is not feasible due to resource constraints.
- Certain triggers are only possible at statement level
 - E.g., ??

Certain triggers are only possible at statement level

System issues

- Recursive firing of triggers
 - Action of one trigger causes another trigger to fire
 - Can get into an infinite loop
- Interaction with constraints (tricky to get right!)
 - When to check if a triggering event violates constraints?
 - After a BEFORE trigger
 - Before an AFTER trigger
 - (based on db2, other DBMS may differ)
- Best to avoid when alternatives exist

SQL features covered so far

- Basic SQL
- Intermediate SQL
 - Triggers
 - Views

Views

- A view is like a "virtual" table
 - Defined by a query, which describes how to compute the view contents on the fly
 - Stored as a query by DBMS instead of query contents
 - Can be used in queries just like a regular table

SELECT ... FROM PopGroup;

Why use views?

- To hide complexity from users
- To hide data from users
- Logical data independence
- To provide a uniform interface

Modifying views

- Does it even make sense, since views are virtual?
- It does make sense if we want users to really see views as tables
- Goal: modify the base tables such that the modification would appear to have been accomplished on the view

A simple case

CREATE VIEW UserPop AS SELECT uid, pop FROM User;

DELETE FROM UserPop WHERE uid = 123;

translates to:

DELETE FROM User WHERE uid = 123;

An impossible case

CREATE VIEW PopularUser AS SELECT uid, pop FROM User WHERE pop >= 0.8;

INSERT INTO PopularUser VALUES(987, 0.3);

• No matter what we do on User, the inserted row will not be in *PopularUser*

A case with too many possibilities

CREATE VIEW AveragePop(pop) AS SELECT AVG(pop) FROM User;

UPDATE AveragePop SET pop = 0.5;

Renamed

column

- Set everybody's pop to 0.5?
- Adjust everybody's pop by the same amount?
- Just lower one user's pop?

SQL92 updateable views

- More or less just single-table selection queries
 - No join
 - No aggregation or group by
 - No subqueries
 - Attributes not listed in SELECT must be nullable
- Arguably somewhat restrictive
- Still might get it wrong in some cases
 - See the slide titled "An impossible case"
 - Adding WITH CHECK OPTION to the end of the view definition will make DBMS reject such modifications

INSTEAD OF triggers for views

CREATE VIEW AveragePop(pop) AS SELECT AVG(pop) FROM User;

> CREATE TRIGGER AdjustAveragePop INSTEAD OF UPDATE ON AveragePop REFERENCING OLD ROW AS o, NEW ROW AS n FOR EACH ROW UPDATE User SET pop = pop + (n.pop-o.pop);

• What does this trigger do?

UPDATE AveragePop SET pop = 0.5;

INSTEAD OF triggers for views

Materialized views

- Some systems allow view relations to be stored in db
 - If the actual relations used in the view definition change, the view is kept up-to-date
- Such views are called materialized views
- Used to enhance performance: avoid recomputing view each time
- View maintenance: updating the materialized view upon base table changes
 - Immediately or lazily, up to the DBMS

SQL features covered so far

- Basic SQL
- Intermediate SQL
 - Triggers
 - Views
 - Indexes

Motivating examples of using indexes

SELECT * FROM User WHERE name = 'Bart';

- Can we go "directly" to rows with *name*='Bart' instead of scanning the entire table?
 - \rightarrow index on User.name

SELECT * FROM User, Member

WHERE User.uid = Member.uid AND Member.gid = 'popgroup';

• Can we find relevant *Member* rows "directly"?

 \rightarrow index on Member.gid

• For each relevant *Member* row, can we "directly" look up User rows with matching uid

 \rightarrow index on User.uid

Indexes

- An index is an auxiliary persistent data structure that helps with efficient searches
 - Search tree (e.g., B⁺-tree), lookup table (e.g., hash table), etc.
 More on indexes later in this course!
- CREATE [UNIQUE] INDEX indexname ON tablename(columnname₁,...,columnname_n);
 - With UNIQUE, the DBMS will also enforce that {columnname₁, ..., columnname_n} is a key of tablename
- DROP INDEX indexname;
- Typically, the DBMS will automatically create indexes for PRIMARY KEY and UNIQUE constraint declarations

Indexes

- An index on *R*. *A* can speed up accesses of the form
 - R.A = value
 - R.A > value (sometimes; depending on the index type)
- An index on $(R.A_1, ..., R.A_n)$ can speed up
 - $R.A_1 = value_1 \land \dots \land R.A_n = value_n$
 - $(R.A_1, \dots, R.A_n) > (value_1, \dots, value_n)$ (again depends)

Questions (lecture 12):

Ordering of index columns is important—is an index on (R. A, R. B) equivalent to one on (R. B, R. A)?
 How about an index on R. A plus another on R. B?
 More indexes = better performance?

SQL features covered so far

Basic & Intermediate SQL

- Query
- Modification
- Constraints
- Triggers
- Views
- Indexes

Next: Programming & recursion