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Sections: 002 and 004 only



Announcements (Thu, May 25th)

• Milestone 0 - Project groups to be formed by tonight!
• Form a team on Learn 
• Report.pdf and link to GitHub repo 
• Not graded, but very important!

• Assignment #1 due by next Tue May 30th, 11:59pm
• Submit via Crowdmark
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(Basic SQL) WITH clause

• The WITH clause provides a way of defining a 
temporary relation whose definition is available 
only to the query in which the with clause occurs

• Supported by many but not all DBMSs
• Can be written using subqueries
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WITH max_pop(popVal) AS (SELECT 
max(pop) FROM user)
SELECT uid, name FROM user, max_pop
WHERE user.pop = max_pop.popVal

WITH max_pop AS (SELECT max(pop) AS 
popVal FROM user)
SELECT uid, name FROM user, max_pop
WHERE user.pop = max_pop.popVal



SQL

• Basic SQL (queries, modifications, and constraints)

• Intermediate SQL
• Triggers 
• Views
• Indexes

• Advanced SQL
• Programming 
• Recursive queries
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Lectures 5-6



Still remember “referential integrity”? 

Example: Member.uid references User.uid
• Delete or update a User row whose uid is 

referenced by some Member row
• Multiple Options (in SQL)
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uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… ….

User Member

Option 1: Reject Option 2: Cascade 
(ripple changes to all 
referring rows)

CREATE TABLE Member
(uid INT NOT NULL 
REFERENCES User(uid)
ON DELETE CASCADE,
…..);



Can we generalize it?
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Event

Condition

Action

Delete/update  a 
User row 

Whether its uid is 
referenced by some 

Member row

If yes: reject/ delete 
cascade/null

Referential constraints Data Monitoring

Some user’s 
popularity is updated

Whether the user is a 
member of  “Pop group” 
and pop drops below 0.5

If yes: kick that user out 
of Pop group!



Triggers

• A trigger is an event-condition-action (ECA) rule
• When event occurs, test condition; if condition is 

satisfied, execute action
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CREATE TRIGGER PickyPopGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW

WHEN (newUser.pop < 0.5)
AND (newUser.uid IN (SELECT uid

FROM Member
WHERE gid = ‘popgroup')) 

DELETE FROM Member
WHERE uid = newUser.uid AND gid = ‘popgroup';

Event 

Condition

Action

Transition variable



Trigger option 1 – possible events

• Possible events include:
• INSERT ON table; DELETE ON table; UPDATE [OF column] 

ON table
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CREATE TRIGGER PickyPopGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW

WHEN (newUser.pop < 0.5)
AND (newUser.uid IN (SELECT uid

FROM Member
WHERE gid = ‘popgroup')) 

DELETE FROM Member
WHERE uid = newUser.uid AND gid = ‘popgroup';

Event 

Condition

Action



Trigger option 2 – timing

• Timing—action can be executed:
• AFTER or BEFORE the triggering event
• INSTEAD OF the triggering event on views (more later)
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CREATE TRIGGER NoFountainOfYouth
BEFORE UPDATE OF age ON User
REFERENCING OLD ROW AS o, NEW ROW AS n
FOR EACH ROW

WHEN (n.age < o.age)
SET n.age = o.age;

Event 

Condition

Action



Trigger option 3 – granularity

• Granularity—trigger can be activated:
• FOR EACH ROW modified
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CREATE TRIGGER PickyPopGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW

WHEN (newUser.pop < 0.5)
AND (newUser.uid IN (SELECT uid

FROM Member
WHERE gid = ‘popgroup')) 

DELETE FROM Member
WHERE uid = newUser.uid AND gid = ‘popgroup';

Event 

Condition

Action



Trigger option 3 – granularity

• Granularity—trigger can be activated:
• FOR EACH ROW modified
• FOR EACH STATEMENT that performs modification
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CREATE TRIGGER PickyPopGroup2
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT

DELETE FROM Member
WHERE gid = ‘popgroup’
AND uid IN (SELECT uid

FROM newUsers
WHERE pop < 0.5);

Event 

Condition 
& Action

Transition table: 
contains all the 
affected rows



Trigger option 3 – granularity

• Granularity—trigger can be activated:
• FOR EACH ROW modified
• FOR EACH STATEMENT that performs modification
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CREATE TRIGGER PickyPopGroup2
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT

DELETE FROM Member
WHERE gid = ‘popgroup’
AND uid IN (SELECT uid

FROM newUsers
WHERE pop < 0.5);

Transition table: 
contains all the 
affected rows

Can only be used 
with AFTER

triggers



Transition variables/tables
• OLD ROW: the modified row before the triggering event
• NEW ROW: the modified row after the triggering event
• OLD TABLE: a read-only table containing all old rows 

modified by the triggering event
• NEW TABLE: a table containing all modified rows after the 

triggering event

AFTER Trigger                                          BEFORE Trigger
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Event Row Statement

Delete old r; old t old t

Insert new r; new t new t

Update old/new r; old/new t old/new t

Event Row Statement

Update old/new r -

Insert new r -

Delete old r -



Statement- vs. row-level triggers

• Simple row-level triggers are easier to implement
• Statement-level triggers: require significant amount of 

state to be maintained in OLD TABLE and NEW TABLE

• However, in some cases a row-level trigger may be 
less efficient
• E.g., 4B rows and a trigger may affect 15% of the rows. 

Recording an action for 4 Billion rows, one at a time, is not 
feasible due to resource constraints.

• Certain triggers are only possible at statement level
• E.g., ??
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Certain triggers are only possible at 
statement level
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CREATE TRIGGER MaintainAvgPop
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers

OLD TBALE AS oldUsers
FOR EACH STATEMENT

WHEN (0.5 > (SELECT AVG(pop) from User)
BEGIN

DELETE FROM User WHERE uid IN (SELECT uid
FROM newUsers)
INSERT INTO User (SELECT * FROM oldUsers)

END

Event 

Condition

Transition 
tables

Action



System issues

• Recursive firing of triggers
• Action of one trigger causes another trigger to fire
• Can get into an infinite loop

• Interaction with constraints (tricky to get right!)
• When to check if a triggering event violates constraints?

• After a BEFORE trigger
• Before an AFTER trigger
• (based on db2, other DBMS may differ)

• Best to avoid when alternatives exist 
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SQL features covered so far

• Basic SQL 

• Intermediate SQL
• Triggers 
• Views
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Views

• A view is like a “virtual” table
• Defined by a query, which describes how to compute 

the view contents on the fly
• Stored as a query by DBMS instead of query contents 
• Can be used in queries just like a regular table
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CREATE VIEW PopGroup AS
SELECT * FROM User
WHERE uid IN (SELECT uid

FROM Member
WHERE gid = ‘popgroup');

DROP VIEW popGroup;

Base 
tables

SELECT AVG(pop) FROM PopGroup;

SELECT AVG(pop)
FROM (SELECT * FROM User

WHERE uid IN
(SELECT uid FROM Member
WHERE gid = ‘popgroup'))
AS popGroup;

SELECT MIN(pop) FROM PopGroup;
SELECT … FROM PopGroup;



Why use views?

• To hide complexity from users

• To hide data from users

• Logical data independence

• To provide a uniform interface
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Modifying views

• Does it even make sense, since views are virtual?

• It does make sense if we want users to really see 
views as tables

• Goal: modify the base tables such that the 
modification would appear to have been 
accomplished on the view

20



A simple case
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CREATE VIEW UserPop AS
SELECT uid, pop FROM User;

DELETE FROM UserPop WHERE uid = 123;

DELETE FROM User WHERE uid = 123;

translates to:



An impossible case

• No matter what we do on User, the inserted row 
will not be in PopularUser

22

CREATE VIEW PopularUser AS
SELECT uid, pop FROM User
WHERE pop >= 0.8;

INSERT INTO PopularUser VALUES(987, 0.3);



A case with too many possibilities

• Set everybody’s pop to 0.5?
• Adjust everybody’s pop by the same amount?
• Just lower one user’s pop?
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CREATE VIEW AveragePop(pop) AS
SELECT AVG(pop) FROM User;

UPDATE AveragePop SET pop = 0.5;

Renamed 
column



SQL92 updateable views

• More or less just single-table selection queries
• No join
• No aggregation or group by
• No subqueries
• Attributes not listed in SELECT must be nullable

• Arguably somewhat restrictive
• Still might get it wrong in some cases
• See the slide titled “An impossible case”
• Adding WITH CHECK OPTION to the end of the view 

definition will make DBMS reject such modifications
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INSTEAD OF triggers for views

• What does this trigger do?
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CREATE TRIGGER AdjustAveragePop
INSTEAD OF UPDATE ON AveragePop
REFERENCING OLD ROW AS o,

NEW ROW AS n
FOR EACH ROW

UPDATE User
SET pop = pop + (n.pop-o.pop);

CREATE VIEW AveragePop(pop) AS
SELECT AVG(pop) FROM User;

UPDATE AveragePop SET pop = 0.5;



INSTEAD OF triggers for views

• What does this trigger do?
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CREATE TRIGGER AdjustAveragePop
INSTEAD OF UPDATE ON AveragePop
REFERENCING OLD ROW AS o,

NEW ROW AS n
FOR EACH ROW

UPDATE User
SET pop = pop + (n.pop-o.pop);

CREATE VIEW AveragePop(pop) AS
SELECT AVG(pop) FROM User;

UPDATE AveragePop SET pop = 0.5;

… pop …

0.4

0.4

0.5

0.3

User
0.4

0.5

+0.1

+0.1

+0.1

+0.1



Materialized views

• Some systems allow view relations to be stored in db
• If the actual relations used in the view definition change, 

the view is kept up-to-date

• Such views are called materialized views

• Used to enhance performance: avoid recomputing 
view each time

• View maintenance: updating the materialized view 
upon base table changes
• Immediately or lazily, up to the DBMS
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SQL features covered so far

• Basic SQL 

• Intermediate SQL
• Triggers 
• Views
• Indexes
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Motivating examples of using indexes

• Can we go “directly” to rows with name='Bart’ instead 
of scanning the entire table?  
à index on User.name

• Can we find relevant Member rows “directly”?
à index on Member.gid

• For each relevant Member row, can we “directly” look 
up User rows with matching uid
à index on User.uid
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SELECT * FROM User WHERE name = 'Bart';

SELECT * FROM User, Member
WHERE User.uid = Member.uid AND Member.gid = ‘popgroup';



Indexes
• An index is an auxiliary persistent data structure that 

helps with efficient searches
• Search tree (e.g., B+-tree), lookup table (e.g., hash table), etc.
FMore on indexes later in this course!

• CREATE [UNIQUE] INDEX 𝑖𝑛𝑑𝑒𝑥𝑛𝑎𝑚𝑒 ON 
𝑡𝑎𝑏𝑙𝑒𝑛𝑎𝑚𝑒(𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒!,…,𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒");
• With UNIQUE, the DBMS will also enforce that 
𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒!, … , 𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒" is a key of 𝑡𝑎𝑏𝑙𝑒𝑛𝑎𝑚𝑒

• DROP INDEX 𝑖𝑛𝑑𝑒𝑥𝑛𝑎𝑚𝑒;

• Typically, the DBMS will automatically create indexes 
for PRIMARY KEY and UNIQUE constraint declarations
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Indexes
• An index on 𝑅. 𝐴 can speed up accesses of the form
• 𝑅. 𝐴 = 𝑣𝑎𝑙𝑢𝑒
• 𝑅. 𝐴 > 𝑣𝑎𝑙𝑢𝑒 (sometimes; depending on the index type)

• An index on 𝑅. 𝐴!, … , 𝑅. 𝐴" can speed up
• 𝑅. 𝐴! = 𝑣𝑎𝑙𝑢𝑒! ∧ ⋯∧ 𝑅. 𝐴" = 𝑣𝑎𝑙𝑢𝑒"
• 𝑅. 𝐴!, … , 𝑅. 𝐴" > 𝑣𝑎𝑙𝑢𝑒!, … , 𝑣𝑎𝑙𝑢𝑒" (again depends)

Questions (lecture 12):
FOrdering of index columns is important—is an index on 
𝑅. 𝐴, 𝑅. 𝐵 equivalent to one on 𝑅. 𝐵, 𝑅. 𝐴 ?

FHow about an index on 𝑅. 𝐴 plus another on 𝑅. 𝐵?
FMore indexes = better performance? 
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SQL features covered so far

Basic & Intermediate SQL 
• Query
• Modification
• Constraints
• Triggers
• Views
• Indexes

FNext: Programming & recursion 
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