
SQL:
Triggers, Views, Indexes

CS348 Spring 2023
Instructor: Sujaya Maiyya

Sections: 002 and 004 only

Announcements (Thu, May 25th)

• Milestone 0 - Project groups to be formed by tonight!
• Form a team on Learn
• Report.pdf and link to GitHub repo
• Not graded, but very important!

• Assignment #1 due by next Tue May 30th, 11:59pm
• Submit via Crowdmark

2

(Basic SQL) WITH clause

• The WITH clause provides a way of defining a
temporary relation whose definition is available
only to the query in which the with clause occurs

• Supported by many but not all DBMSs
• Can be written using subqueries

3

WITH max_pop(popVal) AS (SELECT
max(pop) FROM user)
SELECT uid, name FROM user, max_pop
WHERE user.pop = max_pop.popVal

WITH max_pop AS (SELECT max(pop) AS
popVal FROM user)
SELECT uid, name FROM user, max_pop
WHERE user.pop = max_pop.popVal

SQL

• Basic SQL (queries, modifications, and constraints)

• Intermediate SQL
• Triggers
• Views
• Indexes

• Advanced SQL
• Programming
• Recursive queries

4

Lectures 5-6

Still remember “referential integrity”?

Example: Member.uid references User.uid
• Delete or update a User row whose uid is

referenced by some Member row
• Multiple Options (in SQL)

5

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… ….

User Member

Option 1: Reject Option 2: Cascade
(ripple changes to all
referring rows)

CREATE TABLE Member
(uid INT NOT NULL
REFERENCES User(uid)
ON DELETE CASCADE,
…..);

Can we generalize it?

6

Event

Condition

Action

Delete/update a
User row

Whether its uid is
referenced by some

Member row

If yes: reject/ delete
cascade/null

Referential constraints Data Monitoring

Some user’s
popularity is updated

Whether the user is a
member of “Pop group”
and pop drops below 0.5

If yes: kick that user out
of Pop group!

Triggers

• A trigger is an event-condition-action (ECA) rule
• When event occurs, test condition; if condition is

satisfied, execute action

7

CREATE TRIGGER PickyPopGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW

WHEN (newUser.pop < 0.5)
AND (newUser.uid IN (SELECT uid

FROM Member
WHERE gid = ‘popgroup'))

DELETE FROM Member
WHERE uid = newUser.uid AND gid = ‘popgroup';

Event

Condition

Action

Transition variable

Trigger option 1 – possible events

• Possible events include:
• INSERT ON table; DELETE ON table; UPDATE [OF column]

ON table

8

CREATE TRIGGER PickyPopGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW

WHEN (newUser.pop < 0.5)
AND (newUser.uid IN (SELECT uid

FROM Member
WHERE gid = ‘popgroup'))

DELETE FROM Member
WHERE uid = newUser.uid AND gid = ‘popgroup';

Event

Condition

Action

Trigger option 2 – timing

• Timing—action can be executed:
• AFTER or BEFORE the triggering event
• INSTEAD OF the triggering event on views (more later)

9

CREATE TRIGGER NoFountainOfYouth
BEFORE UPDATE OF age ON User
REFERENCING OLD ROW AS o, NEW ROW AS n
FOR EACH ROW

WHEN (n.age < o.age)
SET n.age = o.age;

Event

Condition

Action

Trigger option 3 – granularity

• Granularity—trigger can be activated:
• FOR EACH ROW modified

10

CREATE TRIGGER PickyPopGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW

WHEN (newUser.pop < 0.5)
AND (newUser.uid IN (SELECT uid

FROM Member
WHERE gid = ‘popgroup'))

DELETE FROM Member
WHERE uid = newUser.uid AND gid = ‘popgroup';

Event

Condition

Action

Trigger option 3 – granularity

• Granularity—trigger can be activated:
• FOR EACH ROW modified
• FOR EACH STATEMENT that performs modification

11

CREATE TRIGGER PickyPopGroup2
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT

DELETE FROM Member
WHERE gid = ‘popgroup’
AND uid IN (SELECT uid

FROM newUsers
WHERE pop < 0.5);

Event

Condition
& Action

Transition table:
contains all the
affected rows

Trigger option 3 – granularity

• Granularity—trigger can be activated:
• FOR EACH ROW modified
• FOR EACH STATEMENT that performs modification

12

CREATE TRIGGER PickyPopGroup2
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT

DELETE FROM Member
WHERE gid = ‘popgroup’
AND uid IN (SELECT uid

FROM newUsers
WHERE pop < 0.5);

Transition table:
contains all the
affected rows

Can only be used
with AFTER

triggers

Transition variables/tables
• OLD ROW: the modified row before the triggering event
• NEW ROW: the modified row after the triggering event
• OLD TABLE: a read-only table containing all old rows

modified by the triggering event
• NEW TABLE: a table containing all modified rows after the

triggering event

AFTER Trigger BEFORE Trigger

13

Event Row Statement

Delete old r; old t old t

Insert new r; new t new t

Update old/new r; old/new t old/new t

Event Row Statement

Update old/new r -

Insert new r -

Delete old r -

Statement- vs. row-level triggers

• Simple row-level triggers are easier to implement
• Statement-level triggers: require significant amount of

state to be maintained in OLD TABLE and NEW TABLE

• However, in some cases a row-level trigger may be
less efficient
• E.g., 4B rows and a trigger may affect 15% of the rows.

Recording an action for 4 Billion rows, one at a time, is not
feasible due to resource constraints.

• Certain triggers are only possible at statement level
• E.g., ??

14

Certain triggers are only possible at
statement level

15

CREATE TRIGGER MaintainAvgPop
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers

OLD TBALE AS oldUsers
FOR EACH STATEMENT

WHEN (0.5 > (SELECT AVG(pop) from User)
BEGIN

DELETE FROM User WHERE uid IN (SELECT uid
FROM newUsers)
INSERT INTO User (SELECT * FROM oldUsers)

END

Event

Condition

Transition
tables

Action

System issues

• Recursive firing of triggers
• Action of one trigger causes another trigger to fire
• Can get into an infinite loop

• Interaction with constraints (tricky to get right!)
• When to check if a triggering event violates constraints?

• After a BEFORE trigger
• Before an AFTER trigger
• (based on db2, other DBMS may differ)

• Best to avoid when alternatives exist

16

SQL features covered so far

• Basic SQL

• Intermediate SQL
• Triggers
• Views

17

Views

• A view is like a “virtual” table
• Defined by a query, which describes how to compute

the view contents on the fly
• Stored as a query by DBMS instead of query contents
• Can be used in queries just like a regular table

18

CREATE VIEW PopGroup AS
SELECT * FROM User
WHERE uid IN (SELECT uid

FROM Member
WHERE gid = ‘popgroup');

DROP VIEW popGroup;

Base
tables

SELECT AVG(pop) FROM PopGroup;

SELECT AVG(pop)
FROM (SELECT * FROM User

WHERE uid IN
(SELECT uid FROM Member
WHERE gid = ‘popgroup'))
AS popGroup;

SELECT MIN(pop) FROM PopGroup;
SELECT … FROM PopGroup;

Why use views?

• To hide complexity from users

• To hide data from users

• Logical data independence

• To provide a uniform interface

19

Modifying views

• Does it even make sense, since views are virtual?

• It does make sense if we want users to really see
views as tables

• Goal: modify the base tables such that the
modification would appear to have been
accomplished on the view

20

A simple case

21

CREATE VIEW UserPop AS
SELECT uid, pop FROM User;

DELETE FROM UserPop WHERE uid = 123;

DELETE FROM User WHERE uid = 123;

translates to:

An impossible case

• No matter what we do on User, the inserted row
will not be in PopularUser

22

CREATE VIEW PopularUser AS
SELECT uid, pop FROM User
WHERE pop >= 0.8;

INSERT INTO PopularUser VALUES(987, 0.3);

A case with too many possibilities

• Set everybody’s pop to 0.5?
• Adjust everybody’s pop by the same amount?
• Just lower one user’s pop?

23

CREATE VIEW AveragePop(pop) AS
SELECT AVG(pop) FROM User;

UPDATE AveragePop SET pop = 0.5;

Renamed
column

SQL92 updateable views

• More or less just single-table selection queries
• No join
• No aggregation or group by
• No subqueries
• Attributes not listed in SELECT must be nullable

• Arguably somewhat restrictive
• Still might get it wrong in some cases
• See the slide titled “An impossible case”
• Adding WITH CHECK OPTION to the end of the view

definition will make DBMS reject such modifications

24

INSTEAD OF triggers for views

• What does this trigger do?

25

CREATE TRIGGER AdjustAveragePop
INSTEAD OF UPDATE ON AveragePop
REFERENCING OLD ROW AS o,

NEW ROW AS n
FOR EACH ROW

UPDATE User
SET pop = pop + (n.pop-o.pop);

CREATE VIEW AveragePop(pop) AS
SELECT AVG(pop) FROM User;

UPDATE AveragePop SET pop = 0.5;

INSTEAD OF triggers for views

• What does this trigger do?

26

CREATE TRIGGER AdjustAveragePop
INSTEAD OF UPDATE ON AveragePop
REFERENCING OLD ROW AS o,

NEW ROW AS n
FOR EACH ROW

UPDATE User
SET pop = pop + (n.pop-o.pop);

CREATE VIEW AveragePop(pop) AS
SELECT AVG(pop) FROM User;

UPDATE AveragePop SET pop = 0.5;

… pop …

0.4

0.4

0.5

0.3

User
0.4

0.5

+0.1

+0.1

+0.1

+0.1

Materialized views

• Some systems allow view relations to be stored in db
• If the actual relations used in the view definition change,

the view is kept up-to-date

• Such views are called materialized views

• Used to enhance performance: avoid recomputing
view each time

• View maintenance: updating the materialized view
upon base table changes
• Immediately or lazily, up to the DBMS

27

SQL features covered so far

• Basic SQL

• Intermediate SQL
• Triggers
• Views
• Indexes

28

Motivating examples of using indexes

• Can we go “directly” to rows with name='Bart’ instead
of scanning the entire table?
à index on User.name

• Can we find relevant Member rows “directly”?
à index on Member.gid

• For each relevant Member row, can we “directly” look
up User rows with matching uid
à index on User.uid

29

SELECT * FROM User WHERE name = 'Bart';

SELECT * FROM User, Member
WHERE User.uid = Member.uid AND Member.gid = ‘popgroup';

Indexes
• An index is an auxiliary persistent data structure that

helps with efficient searches
• Search tree (e.g., B+-tree), lookup table (e.g., hash table), etc.
FMore on indexes later in this course!

• CREATE [UNIQUE] INDEX 𝑖𝑛𝑑𝑒𝑥𝑛𝑎𝑚𝑒 ON
𝑡𝑎𝑏𝑙𝑒𝑛𝑎𝑚𝑒(𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒!,…,𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒");
• With UNIQUE, the DBMS will also enforce that
𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒!, … , 𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒" is a key of 𝑡𝑎𝑏𝑙𝑒𝑛𝑎𝑚𝑒

• DROP INDEX 𝑖𝑛𝑑𝑒𝑥𝑛𝑎𝑚𝑒;

• Typically, the DBMS will automatically create indexes
for PRIMARY KEY and UNIQUE constraint declarations

30

Indexes
• An index on 𝑅. 𝐴 can speed up accesses of the form
• 𝑅. 𝐴 = 𝑣𝑎𝑙𝑢𝑒
• 𝑅. 𝐴 > 𝑣𝑎𝑙𝑢𝑒 (sometimes; depending on the index type)

• An index on 𝑅. 𝐴!, … , 𝑅. 𝐴" can speed up
• 𝑅. 𝐴! = 𝑣𝑎𝑙𝑢𝑒! ∧ ⋯∧ 𝑅. 𝐴" = 𝑣𝑎𝑙𝑢𝑒"
• 𝑅. 𝐴!, … , 𝑅. 𝐴" > 𝑣𝑎𝑙𝑢𝑒!, … , 𝑣𝑎𝑙𝑢𝑒" (again depends)

Questions (lecture 12):
FOrdering of index columns is important—is an index on
𝑅. 𝐴, 𝑅. 𝐵 equivalent to one on 𝑅. 𝐵, 𝑅. 𝐴 ?

FHow about an index on 𝑅. 𝐴 plus another on 𝑅. 𝐵?
FMore indexes = better performance?

31

SQL features covered so far

Basic & Intermediate SQL
• Query
• Modification
• Constraints
• Triggers
• Views
• Indexes

FNext: Programming & recursion

32

