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Abstract

The Domain Adaptation problem in machine learning occurs
when the distribution generating the test data differs from the
one that generates the training data. A common approach to
this issue is to train a standard learner for the learning task
with the available training sample (generated by a distribution
that is different from the test distribution). In this work we ad-
dress this approach, investigating whether there exist success-
ful learning methods for which learning of a target task can be
achieved by substituting the standard target-distribution gen-
erated sample by a (possibly larger) sample generated by a
different distribution without worsening the error guarantee
on the learned classifier. We give a positive answer, showing
that this is possible when using a Nearest Neighbor algorithm.
We show this under the assumptions of covariate shift as well
as a bound on the ratio of the probability weights between
the source (training) and target (test) distribution. We further
show that these assumptions are not always sufficient to al-
low such a replacement of the training sample: For proper
learning, where the output classifier has to come from a pre-
defined class, we prove that any learner needs access to data
generated from the target distribution.

Introduction
Much of the theoretical analysis of machine learning focuses
on a model where the training and test data are generated by
the same underlying distribution. While this may sometimes
be a good approximation of reality, in many practical tasks
this assumption cannot be justified. The data-generating dis-
tribution might change over time or there might simply not
be any labeled data available from the relevant target domain
to train a classifier on. The task of learning when the training
and test data-generating distributions differ is referred to as
Domain Adaption (DA) learning.

Domain Adaptation tasks occur in many practical situa-
tions and are frequently addressed in experimental research
(e.g. recently in (Daumé III and Jagarlamudi 2011)). For ex-
ample, in natural language processing one might be able to
access labeled documents of a certain type, say from legal
documents, but needs to build a classifier to label the content
of documents of a different type, say medical documents.

Two general approaches have been employed to deal with
Domain Adaptation: First, using a standard learner for the
learning task on the target distribution and just feed this

learner with labeled data generated by a different, the so-
called source distribution (we call these type of learners con-
servative Domain Adaptation learners); Second, designing
special methods that aim to make use of the knowledge that
the labeled data comes from a possibly different distribution
trying to utilize unlabeled data from the target distribution
to overcome this flaw.

In this work, we are mainly concerned with conserva-
tive DA learners. We are interested in the question, for
which successful learning methods we can replace the la-
beled training data from the target distribution by a (possibly
larger) labeled sample from the source distribution without
forfeiting the learning success? Or, put differently, when can
a large quantity of low quality data (as generated by a dif-
ferent distribution) replace a high quality training sample,
without worsening the error guarantee on the learned clas-
sifier? The main contribution of this paper is showing that
there exist learning methods that enjoy this property.

Obviously, Domain Adaptation is not possible when the
training data generating distribution is not related to the
test distribution. We consider two, rather basic, assumptions
about the relationship between the source and target distribu-
tions. The first one is that the conditional label distributions
are the same for both distribution, which is often assumed
and commonly referred to as the covariate-shift assumption
(see e.g. (Sugiyama and Mueller 2005)). Besides the covari-
ate shift assumption we assume a bound on the ratio of the
probability weights between the two marginal (unlabeled)
distributions for certain collections of subsets of the domain.

A simple (but also unrealistically restrictive) assumption
is to consider such a bound on a point-wise weight ratio be-
tween source and target. We start by showing that under this
condition whenever the error of some standard learner goes
to 0 with increasing sample sizes, we can replace the input
to this standard learner with a sample from a different dis-
tribution by increasing the size of the sample by a factor of
this weight ratio (see Observation 5). However, this fails as
soon as the distribution does not admit a zero-error classi-
fier or the algorithm is only guaranteed to converge to the
approximation error of a certain class.

In the main part of the paper, we extend this result to
the case of non-zero Bayes error. Assuming a bound on the
weight ratio of boxes in Rd (which is weaker than assum-
ing the point-wise ratio bound), we show that the Nearest



Neighbor algorithm has the desired property: We can feed
it with a sample from a source distribution (whose size de-
pends on the usually required size and the box-wise weight
ratio) without worsening the error guarantee.

This result gives rise to the question whether there exist
other algorithms that allow a replacement of the target gen-
erated input sample by one generated by a different distri-
bution. Is a bound on the point-wise weight ratio sufficient
for every algorithm to allow such a replacement? Are there
other algorithms for which a bound on a different collection
of subsets is suitable to have this property?

In the last part of this paper we give a negative answer
to the second question in the setting of proper DA learning,
where the learner is required to output a predictor from some
pre-determined class. Such learners are relevant when ad-
ditional requirements are imposed on the learned predictor,
such as being fast at prediction time. We show that there are
cases where no standard learner can enjoy the same success
when fed with labeled data from a different distribution even
under the assumption of a bound on the point-wise weight
ratio. As an aside, we present a non-conservative learning
paradigm that is guaranteed to succeed in this setting.

Related work The basic formal model of DA we follow in
this work is defined in (Ben-David et al. 2006). It assumes
that the learner has access to a labeled sample generated
by the source distribution, but that the only information it
has about the target distribution is conveyed by an unlabeled
sample of that target distribution. Below, we discuss some
of the assumptions (or parameters of the relatedness between
the source and target tasks) that have been proposed to facili-
tate successful DA. We focus on assumptions that are related
to those employed in this paper.

(Ben-David et al. 2006) examine the Domain Adaptation
problem with respect to a given hypotheses class H . They
propose to measure the relatedness of the two distributions
by two parameters; the so-called dA distance as introduced
by (Kifer, Ben-David, and Gehrke 2004) (which is related
to the weight ratio measures we introduce), and the mini-
mum, over all hypotheses h ∈ H , of the sum of the errors
of the hypothesis over the two tasks. That paper provides an
upper bound, in terms of these parameters, on the error of
the simplest conservative Domain Adaptation algorithm—
the empirical risk minimization (ERM) over the training
data. However, for the analysis provided in (Ben-David et al.
2006), feeding the ERM with examples from the source does
not give the same guarantee as feeding the ERM with exam-
ples from the target. In the latter, the error will converge to
the approximation error of the class H . In the former, the
error will converge to the approximation error plus an addi-
tive error term that comes from the measure of discrepancy
between the distributions. Thus, the error guarantee deterio-
rates.

A follow-up paper, (Mansour, Mohri, and Rostamizadeh
2009), extends the dA distance to real-valued function
classes and provides Rademacher-based bounds for more
general loss functions. For the 0 − 1 loss their bounds are
incomparable with those in (Ben-David et al. 2006). In ad-

dition, they propose a non-conservative learning paradigm—
re-weighting the examples of the source training data so that
the re-weighted (labeled) empirical training distribution is
closer to the (unlabeled) empirical target distribution.

The covariate shift assumption, stating that the condi-
tional (label) distributions of the target and source data are
the same, is a central element of most works on Domain
Adaptation (e.g. (Huang et al. 2007; Sugiyama and Mueller
2005)). These papers utilize the covariate shift assumption
by applying methods such as instance re-weighting. (Cortes,
Mansour, and Mohri 2010) propose a non-conservative Do-
main Adaptation paradigm with provable success rates, as-
suming different relaxations of the point-wise weight ratio
assumption.

Notation and basic definitions Let (X , µ) be some do-
main set where µ : X 2 → R+ is a metric over X . We aim
to learn a function f : X → {0, 1} that assigns labels to
points in X with low error probability with respect to some
target distribution P over X × {0, 1}. For such a target dis-
tribution, P , and h : X → {0, 1}, we define the error of
h with respect to P as ErrP (h) = Pr(x,y)∼P (y 6= h(x)).
We denote the Bayes optimal error for P by opt(P ) :=
minh∈{0,1}X ErrP (h). For a class H of hypotheses on X ,
we denote the approximation error of H with respect to P
by optH(P ) := minh∈H ErrP (h).

In the Domain Adaptation setup, where the training and
test data generating distributions differ, we use the follow-
ing notation: Let PS and PT be two distributions over X ×
{0, 1}. We call PS the source distribution and PT the target
distribution. We denote the marginal distribution of PS over
X by DS and the marginal of PT by DT , and their labeling
rules by lS : X → [0, 1] and lT : X → [0, 1], respectively
(where, for a probability distribution P over X ×{0, 1}, the
associated labeling rule is the conditional probability of la-
bel 1 at any given point: l(x) = Pr(X,Y )∼P (Y = 1|X =
x)).

A Domain Adaptation learner takes as input a labeled
i.i.d. sample S drawn according to PS and an unlabeled i.i.d.
sample T drawn according to DT and aims to generate a
good label predictor h : X → {0, 1} for PT . Formally, a
Domain Adaptation (DA) learner is a function

A :
⋃∞
m=1

⋃∞
n=1(X × {0, 1})m ×Xn → {0, 1}X .

A Domain Adaptation learner A is conservative if it ignores
the unlabeled sample it receives from the target distribution.
Namely, A(U, V ) = A(U,W ) for all U ∈

⋃∞
m=1(X ×

{0, 1})m and V,W ∈
⋃∞
n=1 Xn.

Definition 1 (DA-learnablity). Let X be some domain, W
be a class of pairs (PS , PT ) of distributions over X ×{0, 1}
and A be a DA learner.
• General DA: We say that A (c, ε, δ,m, n)-solves DA for
the class W , if, for all pairs (PS , PT ) ∈ W , when given
access to a labeled sample S of size m, generated i.i.d. by
PS , and an unlabeled sample T of size n, generated i.i.d by
DT , with probability at least 1 − δ (over the choice of the
samples S and T )A outputs a function h with ErrPT

(h) ≤
c · opt(PT ) + ε.



• Proper DA: If H is a class of hypotheses, we say that A
(c, ε, δ,m, n)-solves proper DA for the classW relative to
H , if, for all pairs (PS , PT ) ∈ W , when given access to a
labeled sample S of size m, generated i.i.d. by PS , and an
unlabeled sample T of size n, generated i.i.d by DT , with
probability at least 1 − δ (over the choice of the samples
S and T ), A outputs an element h of H with ErrPT

(h) ≤
c · optH(PT ) + ε.

Note the difference between these two learnability notions:
For proper learning, we require that the output of the learner
is a member of the class H , and the error of the algorithm is
measured relative to the approximation error of H and not
the Bayes error.

Properties that may help Domain Adaptation
Clearly, the success of Domain Adaptation (DA) learning
cannot be achieved for every source-target pair of learn-
ing tasks. A major challenge for DA research is to discover
conditions, or properties of learning tasks, that enable suc-
cessful DA learning. Such properties express either some
relationship between the source and target distributions or
some “niceness” conditions of these distributions that facili-
tate learning. To be relevant to practical learning challenges,
such properties should be conceivable from the point of view
of realistic learning problems. In this chapter we define some
such properties. The remainder of the paper is devoted to in-
vestigating the extent by which these properties indeed ease
DA learning.

Covariate shift
The first property we mention is often assumed in Domain
Adaptation analysis (e.g. (Sugiyama and Mueller 2005)). In
this work, we assume this property throughout.
Definition 2 (Covariate shift). We say that source and target
distribution satisfy the covariate shift property if they have
the same labeling function, i.e. if we have lS(x) = lT (x) for
all x ∈ X .

In the sequel, we denote this common labeling function
of PS and PT by l. The covariate shift assumption makes
sense for many realistic DA tasks. For example, in many nat-
ural language processing (NLP) learning problems, such as
parts of speech tagging, where a learner that trains on doc-
uments from one domain (say, news articles) is applied to
a different domain (say, legal documents). For such tasks,
it is reasonable to assume that the difference between the
two tasks is only in their marginal distributions over English
words rather than in the tagging of each word. While, on
first thought, it may seem like under this assumption DA
becomes easy, a closer look reveals that it is a rather weak
assumption–a DA learner has no clue as to how the com-
mon labeling function may behave outside the scope of the
source-generated labeled sample, as long as there are no re-
strictions on the labeling function.

Probabilistic Lipschitzness
We first recall that a function f : X → R satisfies the
(standard) λ-Lipschitz property (with respect to the under-
lying metric µ), if |f(x) − f(y)| ≤ λµ(x, y) holds for all

x, y ∈ X . This condition can be readily applied to proba-
bilistic labeling rules l : X → [0, 1]. However, if the la-
beling function is deterministic, namely if l(x) ∈ {0, 1}
for all x ∈ X , this requirement forces a 1/λ gap between
differently labeled points, and will thus fail whenever l is
non-constant on some connected subregion of its support. A
natural relaxation is to require that the inequality will hold
only with some high probability. Namely,
Definition 3 (Probabilistic Lipschitzness). Let φ : R →
[0, 1]. We say that f : X → R is φ-Lipschitz w.r.t. a dis-
tribution D over X if, for all λ > 0:

Pr
x∼D

[∃y : |f(x)− f(y)| > λµ(x, y)] ≤ φ(λ)

This definition generalizes the standard definition since,
given any λ > 0, setting φ(a) = 1 for a < λ and φ(a) = 0
for a ≥ λ results in the standard λ–Lipschitzness condition.

It is worthwhile to note that this probabilistic Lipschitz-
ness condition may be viewed as a way of formalizing
the cluster assumption that is commonly made to account
for the success of semi-supervised learning. It implies that
the data can be divided into clusters that are almost label-
homogeneous and are separated by low-density regions. See
(Urner, Ben-David, and Shalev-Shwartz 2011) for such an
application of a similar notion.

Weight ratio assumptions
One basic observation about DA learning is that it may be-
come impossible when the source and target distributions are
supported on disjoint domain regions. To guard against such
scenarios, it is common to assume that there is some non-
zero lower bound to the pointwise density ratio between the
two distributions. However, this is often an unrealistic as-
sumption. Going back to the NLP example, it is likely that
there are some technical legal terms that may occur in legal
documents but will never show up in any Reuters news ar-
ticle. Furthermore, such a pointwise assumption cannot be
verified from finite samples of the domain and target distri-
butions. To overcome these drawbacks, we propose the fol-
lowing relaxation of that assumption.
Definition 4 (Weight ratio). Let B ⊆ 2X be a collection of
subsets of the domain X . For some η > 0 we define the
η-weight ratio of the source distribution and the target dis-
tribution with respect to B as

CB,η(DS , DT ) = inf
b∈B

DT (b)≥η

DS(b)
DT (b)

,

Further, we define the weight ratio of the source distribution
and the target distribution with respect to B as

CB(DS , DT ) = inf
b∈B

DT (b)6=0

DS(b)
DT (b)

,

These measures become relevant for Domain Adaptation
when bounded away from zero.

Note that the pointwise weight ratio mentioned above can
be obtained by setting B = {{x} : x ∈ X}. For every
B ⊆ 2X we have C{{x}:x∈X}(DS , DT ) ≤ CB(DS , DT ),
thus bounding the pointwise weight ratio away from 0 is the
strongest restriction.



A basic DA error bound
Observation 5. Let X be a domain and let PS and
PT be a source and a target distribution over X ×
{0, 1} satisfying the covariate shift assumption, with
C{{x}:x∈X}(DS , DT ) > 0. Then we have ErrPT

(h) ≤
1
C {{x}:x∈X}ErrPS

(h) for all h : X → {0, 1}.

Note that this result implies that any learning algorithm
that can achieve arbitrarily small target error when it can ac-
cess target generated training samples, can also achieve this
based on only source generated samples. However, if there
is a positive lower bound on the error guarantee of the al-
gorithm (e.g., due to a non-zero Bayes error, or to an ap-
proximation error of the algorithm) then Observation 5 be-
comes meaningless as soon as the weight-ratio, C{{x}:x∈X},
is smaller than that error lower bound.

General DA-learning
In this section we consider general DA learning bounds that
are meaningful regardless of the algorithm being able to
predict with arbitrarily small error. We show that for the
Nearest Neighbor algorithm a target generated sample can
be replaced by a source generated sample while maintain-
ing the error guarantee. For this, we employ a Lipschitzness
assumption on the labeling function and a weight-ratio as-
sumption w.r.t. the class of axis-aligned rectangles. Note that
if B is this set of axis aligned rectangles, we can estimate
the η-weight ratio from finite samples (see Theorem 3.4 and
the subsequent discussion of (Kifer, Ben-David, and Gehrke
2004)).

Let NN(PS) be the Nearest Neighbor method w.r.t. the
source labeled training sample. Given a labeled sample S ⊆
X × {0, 1}, NN(PS) outputs a function hNN that assigns to
each point the label of its nearest neighbor in the sample S.
We will analyze the performance of NN(PS) as a function
of the Lipschitzness and the weight ratio.

Let SX denote the sample points of S without labels
(namely, SX := {x ∈ X | ∃y ∈ {0, 1} : (x, y) ∈ S}).
For any x ∈ SX , let lS(x) denote the label of the point x in
the sample S. Given some labeled sample set S and a point
x ∈ X , let NS(x) denote the nearest neighbor to x in S,
NS(x) = argminz∈SXµ(x, z). We define hNN for all points
x ∈ X by hNN(x) = lS(NS(x)).

We will assume that our domain is the unit cube in Rd.
Furthermore, we will assume that the weight ratio for the
class B of axis-aligned rectangles in Rd is bounded away
from zero. We begin with a basic lemma.

Lemma 6. Let C1, C2, . . . , Cr be subsets of some domain
set X and let S be a set of points of size m sampled i.i.d.
according to some distribution P over that domain. Then,
ES∼Pm

[∑
i:Ci∩S=∅ P [Ci]

]
≤ r

me .

Proof. From the linearity of expectation, we get

E
S∼Pm

[
∑

i:Ci∩S=∅

P [Ci]] =
r∑
i=1

P [Ci] E
S∼Pm

[1Ci∩S=∅] .

Next, for each i we have

E
S∼Pm

[1Ci∩S=∅] = Pr
S∼Pm

[Ci ∩ S = ∅]

= (1− P [Ci])m ≤ e−P [Ci]m .

Combining the above two equations and using
maxa ae−ma ≤ 1

me conclude our proof.

We now show that if we assume that the (possibly de-
terministic) labeling function satisfies the probabilistic Lip-
schitzness and we have a lower bound on the weight ratio
w.r.t. the class B above, then the nearest neighbor algorithm
solves the Domain Adaptation problem.
Theorem 7. Let our domain X be the unit cube, [0, 1]d,
and for some C > 0, let W be a class of pairs (PS , PT )
of source and target distributions over X ×{0, 1} satisfying
the covariate shift assumption, with CB(DS , DT ) ≥ C, and
their common labeling function l : X → [0, 1] satisfying the
φ-probabilistic-Lipschitz property with respect to the target
distribution, for some function φ. Then, for all λ,

ES∼Pm
S

[ErrPT
(hNN)] ≤ 2opt(PT )+φ(λ)+4λ

√
d

C
m−

1
d+1 .

Proof. We start by proving that

E
S∼Pm

S

[ErrPT
(hNN )] (1)

≤ 2opt(PT ) + φ(λ) + λ E
S∼Pm

S ,x∼DT

[‖x−NS(x)‖2]

We first note that given two instances x, x′ we have

Pr
y∼l(x),y′∼l(x′)

[y 6= y′] = l(x)(1− l(x′)) + l(x′)(1− l(x))

≤ 2l(x)(1− l(x)) + |l(x′)− l(x)| ,

where the last inequality follows by standard algebraic
manipulations. The error of the NN procedure can be there-
fore written as

ES∼Pm
S

[ErrPT
(hNN)]

= ES∼Pm
S

Ex∼PT
Pr

y∼l(x),y′∼l(NS(x))
[y 6= y′]

≤ ES∼Pm
S

Ex∼PT
[2l(x)(1− l(x)) + |l(NS(x))− l(x)|]

≤ 2opt(PT ) + ES∼Pm
S

Ex∼PT
[|l(NS(x))− l(x)|] .

Using the definition of probabilistic Lipschitzness and the
fact that the range of l is [0, 1], no matter what S is, we have

Ex∼PT
[|l(NS(x))−l(x)|] ≤ φ(λ)+λEx∼PT

[‖NS(x)−x‖2] ,

which yields equation 1. Thus, in order to prove learnability,
we need an upper bound on ES∼Pm

S ,x∼DT
[‖x−NS(x)‖2].

Now, fix some γ > 0 and let C1, . . . , Cr be the cover
of the set [0, 1]d using boxes of side-length γ. We have
DT (Ci) ≤ 1

CB(DS ,DT )DS(Ci) ≤ 1
CDS(Ci) for all boxes

Ci. Thus, Lemma 6 yields

ES∼Dm
S

[∑
i:Ci∩S=∅DT [Ci]

]
≤ ES∼Dm

S

[∑
i:Ci∩S=∅

1
CDS [Ci]

]
≤ 1

C ES∼Dm
S

[∑
i:Ci∩S=∅DS [Ci]

]
≤ r

Cme



For each x, x′ in the same box we have ‖x − x′‖2 ≤√
d γ. Otherwise, ‖x − x′‖2 ≤ 2

√
d. For x ∈ X we let

Cx ∈ {C1, . . . , Cr} denote the box that contains the point
x. Therefore,

E
S∼Pm

S ,x∼DT

[‖x−NS(x)‖2]

≤ E
S∼Pm

S

[ Pr
x∼DT

[Cx ∩ S = ∅] 2
√
d+ Pr

x∼DT

[Cx ∩ S 6= ∅]
√
d γ]

≤
√
d( 2r
meC + γ) .

Since the number of boxes is (2/γ)d we get that

E
S∼Pm

S ,x∼DT

[‖x−NS(x)‖] ≤
√
d
(

2d+1 γ−d

m eC + γ
)
.

Combining this with equation 1, we get

ES∼Pm
S

[ErrPT
(hNN)]

≤ 2opt(PT ) + φ(λ) + λ
√
d
(

2d+1 γ−d

m eC + γ
)

≤ 2opt(PT ) + φ(λ) + λ
√
d 1
C

(
2d+1 γ−d

m e + γ
)

as we have 0 < C ≤ 1. Setting γ = 2m−
1

d+1 and noting
that

2d+1γ−d

me + γ = 2d+1γ−dmd/(d+1)

me + 2m−1/(d+1)

= 2m−1/(d+1)(1/e + 1) ≤ 4m−1/(d+1)

we obtain ES∼Pm
S

[ErrPT
(hNN)] ≤ 2opt(PT ) + φ(λ) +

4λ
√
d 1
Cm

− 1
d+1 .

Note that, if source and target data are the same,
then the same asnalysis leads to an error bound of
ES∼Pm [ErrP (hNN)] ≤ 2opt(P ) + φ(λ) + 4λ

√
dm−

1
d+1 .

Thus, replacing a target labeled sample of sizem by a source
labeled sample of sizeCd+1 ·m leads to the same error guar-
antee. If the labeling function is λ-Lipschitz in the standard
sense of Lipschitzness and the labels are deterministic, then
we have opt(PT ) = 0 and φ(a) = 0 for all a ≥ λ. Applying
Markov’s inequality then yields the following sample size
bound:
Corollary 8. Let our domain X be the unit cube in Rd
and for some C > 0, let W be a class of pairs (PS , PT )
of source and target distributions over X × {0, 1} with
CB(DS , DT ) ≥ C satisfying the covariate shift assumption
and their common labeling function l : X → {0, 1} satis-
fying the λ-Lipschitz property. Then, for all ε > 0, δ > 0

and all m ≥
(

4λ
√
d

C ε δ

)d+1

the nearest neighbor algorithm
applied to a sample of size m, has, with probability at least
1− δ, error of at most ε w.r.t. the target distribution for any
pair (PS , PT ) ∈ W .

Remark 1: For the results of Theorem 7 and 8 we can
actually settle for the η-weight ratio (see Definition 4). For
boxes of very small target-weight, we do not need to re-
quire the source distribution to have any weight at all. More
precisely, since the number of boxes we are using to cover
the space in the proof of Theorem 7 is (2/γ)d, aiming for
some value of ε, we could waive the requirement for boxes

that have target weight less than γdε/2. Thus by assuming
a lower bound on the γdε/2-weight ratio, the potential mis-
classification of these boxes sum up to at most ε and thus we
only produce an additional error of ε.

Remark 2: It is well known that the exponential depen-
dence on the dimension of the space in the bound of The-
orem 7 and Corollary 8 is inevitable. To see this, consider
a domain of points arranged on a grid of side-length 1/λ
for some λ > 0. Every labelling function on these points is
λ-Lipschitz. But as there are λd such points in a grid in the
unit cube, a no-free-lunch argument shows that no algorithm
can be guaranteed to learn a low-error classifier for the class
of all distributions with λ-Lipschitz labelings unless it sees
a sample of size in the order of λd. Note that this classical
learning setting can be viewed as a Domain Adaptation task
where we have a pointwise weight ratio 1 between source
and target. Thus, this lower bound also applies to any Do-
main Adaptation learner for classes that satisfy the Lipschitz
and bounded weight ratio conditions.

Proper DA learning
Recall that a DA algorithm is called proper if its output is a
member of a predetermined hypothesis class. This require-
ment is important in several applications. For example, in
some situations runtime of the learned classifier is an im-
portant factor, and one would prefer a faster classifier even
at the expense of somewhat poorer predictions. If the hy-
pothesis class only contains fast computable functions, then
the properness of the DA algorithm guarantees that the al-
gorithm will output a fast predictor. Another example is a
user being interested in the explanatory aspects of the pre-
dictor, requiring the output hypothesis to belong to a family
of functions that are readily interpretable. Linear classifiers
are an obvious example of such desirable predictors, under
both of these scenarios.

In this section, we show that in the context of proper Do-
main Adaptation, the use of algorithms that utilize target-
generated data, is necessary. We show that there are classes
that can not be properly learned without access to data from
the test distribution:

Theorem 9. Let our domain set be the unit ball in Rd, for
some d. Consider the class H of half-spaces as our target
class. Let x and z be a pair of antipodal points on the unit
sphere and letW be a set that contains two pairs (PS , PT )
and (PS , P ′T ) of distributions with:

1. both pairs satisfy the covariate shift assumption,
2. l(x) = l(z) = 1 and l(0̄) = 0 for their common labeling

function l,
3. DS(x) = DS(z) = DS(0̄) = 1/3,
4. DT (x) = DT (0̄) = 1/2 or D′T (z) = D′T (0̄) = 1/2.

Then, for any number m, any constant c, no proper DA
learning algorithm can (c, ε, δ,m, 0) solve the Domain
Adaptation learning task for W with respect to H , if ε <
1/2 and δ < 1/2. (In other words, every conservative DA
learner fails to solve the Domain Adaptation learning prob-
lem w.r.t.W .)



Proof. Clearly, no halfspace can correctly classify the three
points, x, 0̄ and y. Note that for any halfspace h, we have
ErrPT

(h) + ErrP ′T (h) ≥ 1, which implies ErrPT
(h) ≥ 1/2

or ErrP ′T (h) ≥ 1/2. Thus for every learner, there exists a
target distribution (either PT or P ′T ) such that, with proba-
bility at least 1/2 over the sample, outputs a function of error
at least 1/2. Lastly, note that the approximation error of the
class of halfspaces for the target distributions is 0, thus the
result holds for any constant c.

In the example of the above Theorem it becomes crucial
for the learning algorithm to estimate whether the support of
the target distribution is x and 0̄ or z and 0̄. This information
cannot be obtained without access to a sample of the target
distribution despite of a point-wise weight ratio as large as
1/2. Thus, no amount “low quality” (as source generated)
data can compensate for having a sample from the target
distribution.

We now present a general method for proper DA learning.
The basic idea of our construction is to apply a simple two
step procedure, similar to the one suggested in (Urner, Ben-
David, and Shalev-Shwartz 2011) in the context of semi-
supervised learning. In the first step, we use the labeled ex-
amples from the source distribution to learn an arbitrary pre-
dictor, which should be rather accurate on the target distri-
bution. For example, as we have shown in the previous sec-
tion, this predictor can be the NN rule. In the second step, we
will apply that predictor to the unlabeled examples from the
target distribution and feed this constructed (now labeled)
sample to a standard agnostic learner for the usual super-
vised learning setting. Recall the definition of an agnostic
learner: For ε >, δ > 0, m ∈ N we say that an algorithm
(ε, δ,m) (agnostically) learns a hypothesis class H , if for all
distributions P , when given an i.i.d. sample of size at least
m, it ouputs a classifier of error at most optH(P ) + ε with
probability at least 1 − δ. If the ouput of the algorithm is
always a member of H , we call it a agnostic proper learner
for H .

To prove that this two step procedure works, we first
prove that agnostic learners are robust with respect to small
changes in the input distribution.

Lemma 10. Let P be a distribution over X ×{0, 1}, let f :
X → {0, 1} be a function with ErrP (f) ≤ ε0, let A be an
agnostic learner for some hypothesis classH overX and let
m : (0, 1)2 → N be a function such thatA, for all ε, δ > 0 is
guaranteed to (ε, δ,m(ε, δ))-learnH . Then, with probability
at least (1 − δ) over an i.i.d. sample of size m(ε, δ) from
P ’s marginal labeled by f , A outputs a hypothesis h with
ErrP (h) ≤ optH(P ) + 2ε0 + ε.

Proof. Let P ′ be the distribution that has the same marginal
as P and f as its deterministic labeling rule. Note that for
the optimal hypothesis h∗ in H with respect to P we have
ErrP ′(h∗) ≤ optH(P ) + ε0. This implies, that when we
feed the P ′-generated sample S to the agnostic learner, it
outputs an h ∈ H with ErrP ′(h) ≤ optH(P ) + ε0 + ε
with probability at least (1 − δ) and this yields ErrP (h) ≤
optH(P ) + 2ε0 + ε.

Applying this lemma we readily get:

Theorem 11. Let X be some domain and W be a class
of pairs (PS , PT ) of distributions over X × {0, 1} with
opt(PT ) = 0 such that there is an algorithm A and func-
tions m : (0, 1)2 → N, n : (0, 1)2 → N such that
A (0, ε, δ,m(ε, δ), n(ε, δ))-solves the Domain Adaptation
learning task for W for all ε, δ > 0. Let H be some hy-
potheses class for which there exists an agnostic proper
learner. Then, the H-proper Domain Adaptation problem
w.r.t. the classW can be (1, ε, δ,m(ε/3, δ/2), n(ε/3, δ/2)+
m′(ε/3, δ/2))-solved, where m′ is the sample complexity
function for agnostically learning H .

Proof. Given the parameters ε and δ, let S be a PS-sample
of size at least m(ε/3, δ/2) and T be an unlabeled DT -
sample of size n(ε/3, δ/2) + m′(ε/3, δ/2). Divide the un-
labeled sample into a sample T1 of size n(ε/3, δ/2) and T2

of size m′(ε/3, δ/2). Apply A(S, T1), the predictor result-
ing form applying the learner A to the S and T1, to label all
members of T2, and then feed the now-labeled T2 as input to
the agnostic proper learner for H . The claimed performance
of the output hypothesis now follows from Lemma 10.

The algorithm A used in this theorem could be the Near-
est Neighbor algorithm, NN(PS), if the classW satisfies the
conditions for Theorem 7. Overall, we have shown that with
a non-conservative DA algorithm, that employs unlabeled
examples from the target distribution, we can agnostically
learn a member of the hypotheses class for the target distri-
bution, whereas whithout target-generated data we can not.

Conclusion and Open Questions
When analyzing the generalization error of learning algo-
rithms, it is common to decompose the error into three
terms: (1) the Bayes error, which measures the inherent
non-determinism in the labeling mechanism. (2) the approx-
imation error, which is the minimum generalization error
achievable by a predictor in a reference class of hypotheses.
(3) the estimation error, which is a result of the training error
being only an estimate of the true error.

In this paper we study Domain Adaptation problems, in
which the source and target distributions are different. This
introduces a forth error term: (4) The distribution discrep-
ancy error, which is a result of the training examples and
test examples being sampled from different distributions.

The main question we address is: “Which assumptions on
the discrepancy between the two distributions make it possi-
ble to decrease the distribution discrepancy error by requir-
ing more examples.” This poses an interesting tradeoff be-
tween quality (how much the training examples reflect the
target distribution) and quantity (how many examples we
have). We showed that for Nearest Neighbor, with the co-
variate shift and a bound on weight ratio of boxes assump-
tions, quantity compensates for quality. We also showed that
for proper DA, even infinite number of source examples can-
not compensate for the distribution discrepancy, but unla-
beled examples from the target distribution (which is another
form of low quality examples) can compensate for the distri-
bution discrepancy error. A major open question is whether



there are additional algorithms for which quantity can com-
pensate for quality.
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