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Abstract. Consider the problem of learning a kernel for use in SVM
classification. We bound the estimation error of a large margin classifier
when the kernel, relative to which this margin is defined, is chosen from a
family of kernels based on the training sample. For a kernel family with

pseudodimension dg, we present a bound of /O(dy + 1/~2)/n on the
estimation error for SVMs with margin . This is the first bound in which
the relation between the margin term and the family-of-kernels term is
additive rather then multiplicative. The pseudodimension of families
of linear combinations of base kernels is the number of base kernels.
Unlike in previous (multiplicative) bounds, there is no non-negativity
requirement on the coefficients of the linear combinations. We also give
simple bounds on the pseudodimension for families of Gaussian kernels.

1 Introduction

In support vector machines (SVMs), as well as other similar methods, prior
knowledge is represented through a kernel function specifying the inner products
between an implicit representation of input points in some Hilbert space. A
large margin linear classifier is then sought in this implicit Hilbert space. Using
a “good” kernel function, appropriate for the problem, is crucial for successful
learning: The kernel function essentially specifies the permitted hypothesis class,
or at least which hypotheses are preferred.

In the standard SVM framework, one commits to a fixed kernel function
apriori, and then searches for a large margin classifier with respect to this kernel.
If it turns out that this fixed kernel in inappropriate for the data, it might be
impossible to find a good large margin classifier. Instead, one can search for a
data-appropriate kernel function, from some class of allowed kernels, permitting
large margin classification. That is, search for both a kernel and a large margin
classifier with respect to the kernel. In this paper we develop bounds for the
sample complexity cost of allowing such kernel adaptation.

1.1 Learning the Kernel

As in standard hypothesis learning, the process of learning a kernel is guided
by some family of potential kernels. A popular type of kernel family consists of



kernels that are a linear, or convex, combinations of several base kernels [1-3]3:

k k
Kiinear (K1, . .., Ki) < {KA =Y MK | EKx=0and Y A= 1} (1)
i=1

=1

k k
Keonvex (K1, -+ -, Ki) & {KA =Y XK [ A >0and Y\ = 1} (2)

i=1 =1

Such kernel families are useful for integrating several sources of information,
each encoded in a different kernel, and are especially popular in bioninformatics
applications [4-6, and others].

Another common approach is learning (or “tuning”) parameters of a pa-
rameterized kernel, such as the covariance matrix of a Gaussian kernel, based
on training data [7—10, and others]. This amounts to learning a kernel from a
parametric family, such as the family of Gaussian kernels:

’Céaussian d:ef {KA : (33‘1,.732) = ei(zlihm)/A(mlimw | A S RZXE ) A = 0} (3)

Infinite-dimensional kernel families have also been considered, either through
hyperkernels [11] or as convex combinations of a continuum of base kernels (e.g.
convex combinations of Gaussian kernels) [12,13]. In this paper we focus on
finite-dimensional kernel families, such as those defined by equations (1)—(3).

Learning the kernel matrix allows for greater flexibility in matching the target
function, but this of course comes at the cost of higher estimation error, i.e.
a looser bound on the expected error of the learned classifier in terms of its
empirical error. Bounding this estimation gap is essential for building theoretical
support for kernel learning, and this is the focus of this paper.

1.2 Learning Bounds with Learned Kernels—Previous Work

For standard SVM learning, with a fixed kernel, one can show that, with high
probability, the estimation error (gap between the expected error and empirical

error) of a learned classifier with margin v is bounded by 1/O(1/42)/n where

n is the sample size and the (7)() notation hides logarithmic factors in its argu-
ment, the sample size and the allowed failure probability. That is, the number
of samples needed for learning is (7)(1 /72).

Lanckriet et al. [1] showed that when a kernel is chosen from a convex combi-
nation of k£ base kernels, the estimation error of the learned classifier is bounded

by 1/ O(k/~4?2)/n where v is the margin of the learned classifier under the learned
kernel. Note the multiplicative interaction between the margin complexity term

1/4% and the number of base kernels k. Recently, Micchelli et al. [14] derived
bounds for the family of Gaussian kernels of equation (3). The dependence of

3 Lanckriet et al. [1] impose a bound on the trace of the Gram matrix of Ky—this is
equivalent to bounding Y A; when the base kernels are normalized.



these bounds on the margin and the complexity of the kernel family is also

multiplicative —the estimation error is bounded by 1/O(Cy/+2)/n, where Cy is
a constant that depends on the input dimensionality /.

The multiplicative interaction between the margin and the complexity mea-
sure of the kernel class is disappointing. It suggests that learning even a few
kernel parameters (e.g. the coefficients \) leads to a multiplicative increase in
the required sample size. It is important to understand whether such a multi-
plicative increase in the number of training samples is in fact necessary.

Bousquet and Herrmann [2, Theorem 2] and Lanckriet et al. [1] also discuss
bounds for families of convex and linear combinations of kernels that appear to
be independent of the number of base kernels. However, we show in the Appendix
that these bounds are meaningless: The bound on the expected error is never less
than one. We are not aware of any previous work describing meaningful explicit
bounds for the family of linear combinations of kernels given in equation (1).

1.3 New, Additive, Learning Bounds

In this paper, we bound the estimation error, when the kernel is chosen from

a kernel family KC, by \/O(dg + 1/92)/n, where dy is the pseudodimension of

the family K (Theorem 2; the pseudodimension is defined in Definition 5). This
establishes that the bound on the required sample size, O (d¢ +1/ 72) grows only
additively with the dimensionality of the allowed kernel family (up to logarith-
mic factors). This is a much more reasonable price to pay for not committing to
a single kernel apriori.

The pseudodimension of most kernel families matches our intuitive notion of
the dimensionality of the family, and in particular:

— The pseudodimension of a family of linear, or convex, combinations of k£ base
kernels (equations 1,2) is at most & (Lemma 7).

— The pseudodimension of the family K&, .., of Gaussian kernels (equation
3) for inputs z € R, is at most £(¢ + 1)/2 (Lemma 9). If only diagonal
covariances are allowed, the pseudodimension is ¢ (Lemma 10). If the co-
variances (and therefore A) are constrained to be of rank at most k, the
pseudodimension is at most k¢log,(22k¢) (Lemma 11).

1.4 Plan of Attack

For a fixed kernel, it is well known that, with probability at least 1 — ¢, the
estimation error of all margin-y classifiers is at most \/O(1/42 —logé)/n [15].
To obtain a bound that holds for all margin-y classifiers with respect to any
kernel K in some finite kernel family C, consider a union bound over the ||
events “the estimation error is large for some margin-vy classifier with respect to
K” for each K € K. Using the above bound with § scaled by the cardinality |X],
the union bound ensures us that with probability at least 1 — §, the estimation




error will be bounded by 1/O(log |K| + 1/42 — log §) /n for all margin-y classifiers
with respect to any kernel in the family.

In order to extend this type of result also to infinite-cardinality families, we
employ the standard notion of e-nets: Roughly speaking, even though a continu-
ous family I might be infinite, many kernels in it will be very similar and it will
not matter which one we use. Instead of taking a union bound over all kernels in
IC, we only take a union bound over “essentially different” kernels. In Section 4
we use standard results to show that the number of “essentially different” ker-
nels in a family grows exponentially only with the dimensionality of the family,
yielding an additive term (almost) proportional to the dimensionality.

As is standard in obtaining such bounds, our notion of “essentially different”
refers to a specific sample and so symmetrization arguments are required in
order to make the above conceptual arguments concrete. To do so cleanly and
cheaply, we use an e-net of kernels to construct an e-net of classifiers with respect
to the kernels, noting that the size of the e-net increases only multiplicatively
relative to the size of an e-net for any one kernel (Section 3). An important
component of this construction is the observation that kernels that are close as
real-valued functions also yield similar classes of classifiers (Lemma 2). Using
our constructed e-net, we can apply standard results bounding the estimation
error in terms of the log-size of e-nets, without needing to invoke symmetrization
arguments directly.

For the sake of simplicity and conciseness of presentation, the results in this
paper are stated for binary classification using a homogeneous large-margin clas-
sifier, i.e. not allowing a bias term, and refer to zero-one error. The results can
be easily extended to other loss functions and to allow a bias term.

2 Preliminaries

Notation: We use |v] to denote the norm of a vector in an abstract Hilbert space.
For a vector v € R™, ||v|| is the Euclidean norm of v. For a matrix A € R™*"
| All, = max, =1 [[Av] is the Ly operator norm of A, |A[ = max;; |Ay| is the
loo norm of A and A = 0 indicates that A is positive semi-definite (p.s.d.) and
symmetric. We use boldface x for samples (multisets, though we refer to them
simply as sets) of points, where |x| is the number of points in a sample.

2.1 Support Vector Machines

Let (z1,y1),--.,(Zn,yn) be a training set of n pairs of input points z; € X
and target labels y; € {£1}. Let ¢ : X — H be a mapping of input points
into a Hilbert space H with inner product (-,-). A vector w € H can be used
as a predictor for points in X, predicting the label sign({w, ¢(x))) for input z.
Consider learning by seeking a unit-norm predictor w achieving low empirical
hinge loss k7 (w) = Ly max(y — yi(w, ¢(x;)),0), relative to a margin v > 0.

The Representer Theorem [16, Theorem 4.2] guarantees that the predictor w
minimizing A7 (w) can be written as w =Y., a;@(z;). For such w, predictions



(w,d(x)) = 32, ai(d(:), ¢(x)) and the norm |w|* = 3, aia; ($(x:), $(x;)) de-
pend only on inner products between mappings of input points. The Hilbert
space H and mapping ¢ can therefore be represented implicitly by a kernel func-
tion K: X xX — R specifying these inner products: K (27, a*) = (¢(2), p(a*)).

Definition 1. A function K : X x X — R is a kernel function if for some
Hilbert space H and mapping ¢ : X — H, K (27, 2*) = (¢(20), p(a*)) for all 27, a*.

For a set x = {x1,...,2,} C X of points, it will be useful to consider their Gram
matrix Kyx € R™*", K\[i,j] = K(x;,z;). A function K : X x X — R is a kernel
function iff for any finite x C X, the Gram matrix K is p.s.d [16].

When specifying the mapping ¢ implicitly through a kernel function, it is
useful to think about a predictor as a function f : X — R instead of considering
w explicitly. Given a kernel K, learning can then be phrased as choosing a
predictor from the class

def

Fr = {z = (w,¢(2)) [ |w] <1, K(a7,2%) = ($(=), p(a*))} (4)

minimizing

n
5 def 1
h(f) = - Zmax(’Y —yif(2:),0). (5)
i=1
For a set of points x = {z1,...,2,}, let f(x) € R™ be the vector whose entries
are f(x;). The following restricted variant of the Representer Theorem charac-
terizes the possible prediction vectors f(x) by suggesting the matrix square root
of the Gram matrix (K2 = 0 such that Ky = KY?K}?) as a possible “feature
mapping” for points in x:
Lemma 1. For any kernel function K and set x = {x1,...,z,} of n points:
{fx) [ f € Fr} ={K*w [ w € R", ||| <1},

Proof. For any f € Fx we can write f(z) = (w, ¢(x)) with |w] < 1 (equation
4). Consider the projection wy =, a;¢(x;) of w onto span(P(x1),. .., d(x,)).
We have f(z;) = (w, ¢(z;)) = (wy, d(z;)) = K(zj,z;) and 1 > Jw]? >
Jwy ||2 = > 2o K(x;,z;). In matrix form: f( ) = Kxa and o/ Kya < 1.
Setting @ = KY?a we have f(x) = Kxa = KY2KY?a = KY*® while ||@]*> =
o K}?KY?a = aKxa < 1. This establishes that the left-hand side is a subset of
the right-hand side.

For any w € R™ with ||@| <1 we would like to define w = ), a;¢(x;) with
a = K %W and get (w, d(x:)) = 325 aj(d(xy), d(z:)) = Kxa = KK 7?0
K?w. However, Ky might be singular. Instead, consider the singular value de—
composition Ky = USU’, with U'U = I, where zero singular values have been
removed, i.e. S is an all-positive diagonal matrix and U might be rectangular.
Set o = US™?U’w and consider w = ), a;¢(z;). We can now calculate:

(w, p(x;)) ZO‘J z;)) = Kxa

= USU’ - US VU = US"?U'd = KX (6)



while |w|® = « Ka = @/'US~V2U'-USU"-US™ Ui = &'UU'w < |@||> <1 O

To remove confusion we note some differences between the presentation here
and other common, and equivalent, presentations of SVMs. Instead of fixing
the margin v and minimizing the empirical hinge loss, it is common to try to
maximize v while minimizing the loss. The most common combined objective,
in our notation, is to minimize ’y% +C- %iﬂ(w) for some trade-off parameter C'.
This is usually done with a change of variable to @ = w/~, which results in an
equivalent problem where the margin is fixed to one, and the norm of w varies.
Expressed in terms of @ the objective is |@]* + C - h!(@). Varying the trade-off
parameter C' is equivalent to varying the margin and minimizing the loss. The
variant of the Representer Theorem given in Lemma 1 applies to any predictor
in Fg, but only describes the behavior of the predictor on the set x. This will
be sufficient for our purposes.

2.2 Learning Bounds and Covering Numbers

We derive generalization error bounds in the standard agnostic learning set-
ting. That is, we assume data is generated by some unknown joint distribution
P(X,Y) over input points in X and labels in +1. The training set consists of
n ii.d. samples (z;,y;) from this joint distribution. We would like to bound the
difference est”(f) = err(f) —ert’(f) (the estimation error) between the expected
error rate

= <
err(f) = Pr (Y f(X) <0), (7)
and the empirical margin error rate

_ Hiwid @) <

n

&w(f)

(®)

The main challenge of deriving such bounds is bounding the estimation error
uniformly over all predictors in a class. The technique we employ in this paper
to obtain such uniform bounds is bounding the covering numbers of classes.

Definition 2. A subsetfi C A is an e-net of A under the metric d if for any
a € A there exists a € A with d(a,a) < e. The covering number N;(4,¢) is
the size of the smallest e-net of A.

We will study coverings of classes of predictors under the sample-based [
metric, which depends on a sample x = {x1,...,2,}:

dx.(f1, f2) Z@Zaﬁ\fl(xi)—h(%ﬂ 9)

Definition 3. The uniform [, covering number N, (F,¢) of a predictor
class F is given by considering all possible samples x of size n:

Nu(F,€) = sup Ngx (Fe)

[x|=n



The uniform [, covering number can be used to bound the estimation error
uniformly. For a predictor class F and fixed v > 0, with probability at least 1 —4
over the choice of a training set of size n [17, Theorem 10.1]:

\/81 + log Nop (F,7v/2) —log §

n

sup est” (f) <
fer

(10)

The uniform covering number of the class Fx (unit-norm predictors corre-
sponding to a kernel function K; recall eq. (4)), with K (z,z) < B for all z, can
be bounded by applying Theorems 14.21 and 12.8 of Anthony and Bartlett [17]:

AnB ISTB logy (53%)
) (11)

No(Foe) <2 ( 5
€

yielding sup jc 7, est?(f) = \/O(B/~2%)/n and implying that @(B/fyz) training

examples are enough to guarantee that the estimation error diminishes.

2.3 Learning the Kernel

Instead of committing to a fixed kernel, we consider a family £ C {K: XxX —R}
of allowed kernels and the corresponding predictor class:

Fx = UrkexFK (12)

The learning problem is now one of minimizing iﬂ( f) for f € Fx. We are
interested in bounding the estimation error uniformly for the class Fx and will
do so by bounding the covering numbers of the class. The bounds will depend on
the “dimensionality” of I, which we will define later, the margin -, and a bound
B such that K(z,z) < B for all K € K and all z. We will say that such a kernel
family is bounded by B. Note that v/B is the radius of a ball (around the origin)
containing ¢(z) in the implied Hilbert space, and scaling ¢ scales both VB and
~ linearly. Our bounds will therefore depend on the relative margin ~/ VB.

3 Covering Numbers with Multiple Kernels

In this section, we will show how to use bounds on covering numbers of a family
of kernels to obtain bounds on the covering number of the class Fx of predictors
that are low-norm linear predictors under some kernel K € K. We will show how
to combine an e-net of K with e-nets for the classes Fx to obtain an e-net for the
class Fi. In the next section, we will see how to bound the covering numbers of
a kernel family I and will then be able to apply the main result of this section
to get a bound on the covering number of Fi.

In order to state the main result of this section, we will need to consider cov-
ering numbers of kernel families. We will use the following sample-based metric

between kernels. For a sample x = {z1,...,z,}:
DX (K, K) ' mix | K (s, 2) = K(zi,;)| = B — (13)
L,]= [e’e}




Definition 4. The uniform [, kernel covering number NP (K, ¢) of a ker-
nel class K is given by considering all possible samples x of size n:

Nf(lc7€) = sup ND;‘Q(IC7€)

|x|=n

Theorem 1. For a family KC of kernels bounded by B and any € < 1:

No(Frese) < 2- NP (K, 29 - (1632 108 (5575)

In order to prove Theorem 1, we will first show how all the predictors of one
kernel can be approximated by predictors of a nearby kernel. Roughly speaking,
we do so by showing that the possible “feature mapping” K2 of Lemma 1 does
not change too much:

Lemma 2. Let K, K be two kernel functions. Then for any predictor f € Fx
there exists a predictor f € Fi with 5 (f, f) <4/nDX% (K, K).

Proof. Let w € R™, ||w|| = 1 such that f(x) = K/*>w, as guaranteed by Lemma 1.
Consider the predlctor fe Fi such that f( ) KY?w, guaranteed by the
reverse direction of Lemma 1:

@5 (f. ) = max | £ (2:) = F(an)| < | £60) = Fx) (14)
- HK;% - f(;g?wH < HK;/? - 2|l < HKX — K1 (19)

<./|n ‘Kx — K| = \/nDE(K,K) (16)

See, e.g., Theorem X.1.1 of Bhatia [18] for the third inequality in (15). O

Proof of Theorem 1: Set ex = % and €; = ¢/2. Let K be an ec-net of K. For
each K € IC let ]—" be an e-net of F;. We will show that

Fre Y Ui e Fi (17)

is an e-net of F. For any f € Fx we have f € Fk for some K € K. The kernel
K is covered by some K € K with DX * (K, K) < ¢. Let fe Fi be a predlctor

with d% (f, f) < \/nDX (K, K) < \/né; guaranteed by Lemma 2, and f € Fi
such that dg‘o(f, f) < €. Then f € f}; is a predictor with:

B (f, ) S B (f, ) + B (F, ) < Ve + e =€ (18)
This establishes that .f’-";c is indeed an e-net. Its size is bounded by

‘f;c‘ < Z ‘fK’ < ’IC’ max’fK‘ < NPk ) maxN (Fk,€/2).  (19)
KeKk

Substituting in (11) yields the desired bound. O



4 Learning Bounds in terms of the Pseudodimension

We saw that if we could bound the covering numbers of a kernel family KC, we
could use Theorem 1 to obtain a bound on the covering numbers of the class Fi
of predictors that are low-norm linear predictors under some kernel K € K. We
could then use (10) to establish a learning bound. In this section, we will see how
to bound the covering numbers of a kernel family by its pseudodimension, and
use this to state learning bounds in terms of this measure. To do so, we will use
well-known results bounding covering numbers in terms of the pseudodimension,
paying a bit of attention to the subtleties of the differences between Definition 4
of uniform kernel covering numbers, and the standard Definition 3 of uniform
covering numbers.

To define the pseudodimension of a kernel family we will treat kernels as
functions from pairs of points to the reals:

Definition 5. Let K = {K : X x X — R} be a kernel family. The class K
pseudo-shatters a set of n pairs of points (25,a%),...,(a5,a%) if there exist
thresholds t1,...,t, € R such that for any by, ..., b, € {£1} there exists K € K
with sign(K (x7,2%) — t;) = b;. The pseudodimension dyK) is the largest n

such that there exists a set of n pairs of points that are pseudo-shattered by K.

The uniform [, covering numbers of a class G of real-valued functions taking
values in [—B, B] can be bounded in terms of its pseudodimension. Let dy be
the pseudodimension of G; then for any n > dg and € > 0 [17, Theorem 12.2]:

(20)

A@«zos;CmB)%

€d¢

We should be careful here, since the covering numbers N,, (K, €) are in relation
to the metrics:

a5 (K, ) = nla| K (a5, 28) — K (a7, 28)| (21)

defined for a sample X* C X x X of pairs of points (27,2%). The supremum
in Definition 3 of N, (K, ¢€) should then be taken over all samples of n pairs of
points. Compare with (13) where the kernels are evaluated over the n? pairs of
points (x;,x;) arising from a sample of n points.

However, for any sample of n points x = {x1,...,2,} C X, we can al-
ways consider the n? point pairs x> = {(x;,z;)]i,j = 1..n} and observe that
D% (K,K) = ¢ (K,K) and so Npx (K, €) = ng;j (K,¢€). Although such sets
of point pairs do not account for all sets of n? point pairs in the supremum of
Definition 3, we can still conclude that for any IC,n,e > 0:

NnD(’Cve) San(’Cve) (22)

Combining (22) and (20):



Lemma 3. For any kernel family K bounded by B with pseudodimension dg:

en2B\ %
Ed¢ )

NP (K,e) < (

Using Lemma 3 and relying on (10) and Theorem 1 we have:

Theorem 2. For any kernel family IC, bounded by B and with pseudodimension
dg, and any fived v > 0, with probability at least 1—0 over the choice of a training
set of size n:

72

sup est”

() < \/82 +dy log 71235353 + 256752 log gf/% log 12828 _ og §
feFKk

n

Theorem 2 is stated for a fixed margin but it can also be stated uniformly over
all margins, at the price of an additional |[log~y| term (e.g. [15]). Also, instead
of bounding K(z,z) for all z, it is enough to bound it only on average, i.e.
require E[K (X, X)] < B. This corresponds to bounding the trace of the Gram
matrix as was done by Lanckriet et al.. In any case, we can set B = 1 without
loss of generality and scale the kernel and margin appropriately. The learning
setting investigated here differs slightly from that of Lanckriet et al., who studied
transduction, but learning bounds can easily be translated between the two
settings.

5 The Pseudodimension of Common Kernel Families

In this section, we analyze the pseudodimension of several kernel families in
common use. Most pseudodimension bounds we present follow easily from well-
known properties of the pseudodimension of function families, which we review at
the beginning of the section. The analyses in this section serve also as examples
of how the pseudodimension of other kernel families can be bounded.

5.1 Preliminaries

We review some basic properties of the pseudodimension of a class of functions:
Fact 4 If G' C G then dy(G') < dy(G).

Fact 5 ([17, Theorem 11.3]) Let G be a class of real-valued functions and
o :R— R a monotone function. Then dy, ({c0g| g€ G}) <dy(G).

Fact 6 ([17, Theorem 11.4]) The pseudodimension of a k-dimensional vector
space of real-valued functions is k.

We will also use a classic result of Warren that is useful, among other things,
for bounding the pseudodimension of classes involving low-rank matrices. We say
that the real-valued functions (g1, ¢ga,. .., gm) realize a sign vector b € {£1}™ iff
there exists an input x for which b; = sign g;(x) for all <. The number of sign
vectors realizable by m polynomials of degree at most d over R™, where m > n,
is at most (4edm/n)" [19].



5.2 Combination of Base Kernels

Since families of linear or convex combinations of k base kernels are subsets of
k-dimensional vector spaces of functions, we can easily bound their pseudodi-
mension by k. Note that the pseudodimension depends only on the number of
base kernels, but does not depend on the particular choice of base kernels.

Lemma 7. For any finite set of kernels S = {K1,... K},
dd)(’cconvea:(s)) S d(b(lclinear(s)) S k

Proof. We have Kconvex € Kiinear € span S where span S = {>°, \i K;|A\; € R} is

a vector space of dimensionality < k. The bounds follow from Facts 4 and 6. O

5.3 Gaussian Kernels with a Learned Covariance Matrix

Before considering the family Kgaussian 0f Gaussian kernels, let us consider a
single-parameter family that generalizes tuning a single scale parameter (i.e. vari-
ance) of a Gaussian kernel. For a function d : X x X — R*, consider the class

def

Kocato(d) {3 s (w1,2) = 700002 | e R (23)

The family of spherical Gaussian kernels is obtained with d(z1, z2) = ||#1 — 22|°.

Lemma 8. For any function d, dy(Kscate(d)) < 1.

Proof. The set {—Xd | A € RT} of functions over X x X is a subset of a one-
dimensional vector space and so has pseudodimension at most one. Composing
them with the monotone exponentiation function and using Fact 5 yields the
desired bound. a

In order to analyze the pseudodimension of more general families of Gaussian
kernels, we will use the same technique of analyzing the functions in the exponent
and then composing them with the exponentiation function. Recall that class

K& ussian Of Gaussian kernels over R defined in (3).

Lemma 9. d¢(K:£Gauss7lan) < é(é + 1)/2

Proof. Consider the functions at the exponent: {(x1,22) — —(x1 — 22)A(z1 —
) | A € R*C A = 0} C span{(zy1,72) — (z1—x2)[i] - (z1—22)[j] | i <
j < £} where v[i] denotes the i*" coordinate of a vector in Rf. This is a vector
space of dimensionality ¢(¢ + 1) and the result follows by composition with the
exponentiation function. a

We next analyze the pseudodimension of the family of Gaussian kernels with
a diagonal covariance matrix, i.e. when we apply an arbitrary scaling to input
coordinates:

Gaussian

’C(éfdiag) _ {K; . ($17$2) N (;/—(5\’(901—902))2 I = Rf} (24)



Lemma 10. d¢(lC(€_dwg) )</t

Gaussian

Proof. We use the same arguments. The exponents are spanned by the ¢ func-
tions (21, x2) — ((x1—a2)[i])>. O

As a final example, we analyze the pseudodimension of the family of Gaussian
kernels with a low-rank covariance matrix, corresponding to a low-rank A in our
notation:

Khussian = { (21,2) 1> 7o) A0 | A € R A 0, rank A < &
This family corresponds to learning a dimensionality reducing linear transfor-
mation of the inputs that is applied before calculating the Gaussian kernel.

Lemma 11. d¢(Kz,k ) < kllog,(8ekl)

Gaussian

Proof. Any A = 0 of rank at most k can be written as A = U'U with U € R*¥*¢,
Consider the set G = {(©,2*) — —(F—A)U'UF—2*) | U € R¥>**} of
functions at the exponent. Assume G pseudo-shatters a set of m point pairs
S ={(a7,2%)...,(2%,,2%)}. By the definition of pseudo-shattering, we get that
there exist t1,...,t, € R so that for every b € {£1}™ there exist U, € RF**
with b, = sign(—(a—a%)U'U(a]—a%) —t;) for all ¢ < m. Viewing each
pi(U) et — (2 —a%)U'U (2 — %) — t; as a quadratic polynomial in the k¢ en-
tries of U, where 7 —2% and ¢; determine the coefficients of p;, we get a set
of m quadratic polynomials over k¢ variables which realize all 2™ sign vectors.
Applying Warren’s bound [19] discussed above we get 2™ < (8em/k()** which
implies m < kllog,(8ekt). This is a bound on the number of points that can be
pseudo-shattered by G, and hence on the pseudodimension of G, and by com-
position with exponentiation we get the desired bound. a

6 Conclusion and Discussion

Learning with a family of allowed kernel matrices has been a topic of significant
interest and the focus of considerable body of research in recent years, and several
attempts have been made to establish learning bounds for this setting. In this
paper we establish the first generalization error bounds for kernel-learning SVMs
where the margin complexity term and the dimensionality of the kernel family
interact additively rather then multiplicatively (up to log factors). The additive
interaction yields stronger bounds. We believe that the implied additive bounds
on the sample complexity represent its correct behavior (up to log factors),
although this remains to be proved.

The results we present significantly improve on previous results for convex
combinations of base kernels, for which the only previously known bound had a
multiplicative interaction [1], and for Gaussian kernels with a learned covariance
matrix, for which only a bound with a multiplicative interaction and an un-
specified dependence on the input dimensionality was previously shown [14]. We



also provide the first explicit non-trivial bound for linear combinations of base
kernels—a bound that depends only on the (relative) margin and the number
of base kernels. The techniques we introduce for obtaining bounds based on the
pseudodimension of the class of kernels should readily apply to straightforward
derivation of bounds for many other classes.

We note that previous attempts at establishing bounds for this setting [1, 2,
14] relied on bounding the Rademacher complexity [15] of the class Fx. How-
ever, generalization error bounds derived solely from the Rademacher complexity
R[Fi] of the class Fx must have a multiplicative dependence on v/B/7: The
Rademacher complexity R[Fi]| scales linearly with the scale VB of functions in
Fi, and to obtain an estimation error bound it is multiplied by the Lipschitz
constant 1/ [15]. This might be avoidable by clipping predictors in Fic to the

range [—7,7]:

» v if f(z) >~
TR S S | F € Fe}y frem(@) = fl2) ify > fz) > —y (25)
-y if =y > f(x)

When using the Rademacher complexity R[Fi] to obtain generalization error
bounds in terms of the margin error, the class is implicitly clipped and only the
Rademacher complexity of F}- is actually relevant. This Rademacher complexity
RI[FY] is bounded by R[Fk]. In our case, it seems that this last bound is loose.
It is possible though, that covering numbers of K can be used to bound R[F}]

by O(’y log NP (K, 4B /n?) + \/E)/\/ﬁ, yielding a generalization error bound
with an additive interaction, and perhaps avoiding the log factors of the margin
complexity term O(B/?) of Theorem 2.
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A Analysis of Previous Bounds

We show that some of the previously suggested bounds for SVM kernel learning
can never lead to meaningful bounds on the expected error.

Lanckriet et al. [1, Theorem 24] show that for any class  and margin ~,
with probability at least 1 — §, every f € Fx satisfies:

err(f) < @'(f) + J= <4+ 21og(1/9) + ﬁff’) (26)

Where C(K) = E,[maxex 0’ Kxo], with o chosen uniformly from {£1}?" and x
being a set of n training and n test points. The bound is for a transductive setting
and the Gram matrix of both training and test data is considered. We continue
denoting the empirical margin error, on the n training points, by ert’(f), but
now err(f) is the test error on the specific n test points.

The expectation C(K) is not easy to compute in general, and Lanckriet
et al. provide specific bounds for families of linear, and convex, combinations
of base kernels.

A.1 Bound for linear combinations of base kernels

For the family K = Kjinear of linear combinations of base kernels (equation (1)),
Lanckriet et al. note that C(K) < ¢ - n, where ¢ = maxgex tr Kx is an upper



bound on the trace of the possible Gram matrices. Substituting this explicit
bound on C(K) in (26) results in:

err(f) < E(f) + (44 V210e(1/0) + /%) (27)

However, the following lemma shows that if a kernel allows classifying much of
the training points within a large margin, then the trace of its Gram matrix
cannot be too small:

Lemma 12. For all f € Fg: tr Ky > 7%(1 — err(f))n

Proof. Let f(z) = (w,¢(x)), ||w| = 1. Then for any ¢ for which y;f(z;)
yi{w, d(z;)) > ~ we must have /K(z:,,z:) = [|¢(z;)] > . Hence tr Kx
Zi|yif(zz‘)2’y K(zy,2:) > [{ilyif(z:) > 7} "72 =(1- e/r\rv(f))n ) 72~

Using Lemma 12 we get that the right-hand side of (27) is at least:

&(f) + LB L JRAE W S i (f) 4 (/1 aw(f) > 1 (28)

gV

A.2 Bound for convex combinations of base kernels

For the family £ = Kconvex 0Of convex combinations of base kernels (equation

(2)), Lanckriet et al. bound C(K) < ¢ - min (m,nmaxKi Ur((ffK)z")Hﬁ), where m is

the number of base kernels, ¢ = maxgex tr(Kx) as before, and the maximum is
over the base kernels K;. The first minimization argument yields a non-trivial
generalization bound that is multiplicative in the number of base kernels, and is
discussed in Section 1.2. The second argument yields the following bound, which
was also obtained by Bousquet and Herrmann [2]:

err(f) < &(f) + = (4 +/2log(1/8) + \/§) (29)

where b = maxg, ||(K;),l, / tr (K;),. This implies [[Kx|, < b-tr Kx < b-c for
all base kernels and so (by convexity) also for all K € K. However, similar to
the bound on the trace of Gram matrices in Lemma 12, we can also bound the
Ly operator norm required for classification of most points with a margin:

Lemma 13. For all f € Fx: || Kx|, > ¥*(1 — err'(f))n

Proof. From Lemma 1 we have f(x) = K/?w for some w such that ||w| < 1,
and so || Kxl||, = HK>1</2||§ > ||KY2w||* = || £(x)]|*. To bound the right-hand side,
consider that for (1—eért”(f))n of the points in x we have | f(z;)| = |y f(z:)| > 7,
and so || f(x)[* = 32, f(x:)? > (1= &(f))n - 72 u

Lemma 13 implies bc > v%(1 —ért”(f))n and a calculation similar to (28) reveals
that the right-hand side of (29) is always greater than one.



