Material and some slide content from:

- lan Sommerville

Dependency Injection &
Design Principles Recap

Reid Holmes




SOLID (Dependency Inversion)

Program to | nterfaCeS not to
Implementations.




(also called inversion of control)

Dependency Inversion

» Common problem: ‘how can we wire these
interfaces together without creating a dependency
on their concrete implementations?’

» This often challenges the ‘program to interfaces,
not implementations ’ design principle

» Would like to reduce (eliminate) coupling
between concrete classes

» Would like to be able to substitute different
implementations without recompiling

» e.g., be able to test and deploy the same
binary even though some objects may vary

~__ O Solution: separate objects from their assemblers w

REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE




Example Overview

Simple Pizza
BillingService AP

public interface IBillingService {

/[ **
* Attempts to charge the order to the credit card. Both successful and

* failed transactions will be recorded.
*
* @return a receipt of the transaction. If the charge was successful, the
* receipt will be successful. Otherwise, the receipt will contain a
* decline note describing why the charge failed.
*/

Receipt chargeOrder (PizzaOrder order, CreditCard creditCard);

}

% [ Example from: hitps://code.google.com/p/goodle-guice/wiki/Motivation ] w
REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE


https://code.google.com/p/google-guice/wiki/Motivation

Example Overview

Charging orders requires a
CCProcessor and a
TransactionLog

public class RealBillingService implements IBillingService {
public Receipt chargeOrder (PizzaOrder order, CreditCard creditCard) {

ICreditCardProcessor processor = new PaypalCreditCardProcessor();
ITransactionlLog transactionlLog = new DatabaseTransactionLog();

} BillingService is dependent on
the concrete implementations
of the processor/log classes
rather than their interfaces

R
t REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



Example Overview

Can’t test without actually
processing the CC data

public class RealBillingServiceTest extends TestCase {

private final PizzaOrder order = new PizzaOrder(100);
private final CreditCard creditCard = new CreditCard("1234", 11, 2010);

public void testSuccessfulCharge() {
RealBillingService billingService = new RealBillingService();
Receipt receipt = billingService.chargeOrder(order, creditCard);

assertTrue(...);

}
} Could test with invalid

data, but that would not
test the success case.

=7x W
h& REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE




Factory Fix

public class CreditCardProcessorFactory {
private static ICreditCardProcessor instance;

public static void setInstance(ICreditCardProcessor creditCardProcessor) {
instance = creditCardProcessor;

}
public static CreditCardProcessor getInstance() {
if (instance == null) {
return new SquareCreditCardProcessor();
}
return instance;
= Factories provide one

way to encapsulate
object instantiation

R
h: REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



Factory Fix

public class RealBillingService implements IBillingService {
public Receipt chargeOrder (PizzaOrder order, CreditCard creditCard) {

ICreditCardProcessor processor
ITransactionLog transactionLog

CreditCardProcessorFactory.getInstance();
TransactionLogFactory.getInstance();

Instead of depending on the
concrete classes, BillingService
relies on the factory to
iInstantiate them.

%
h& REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



This enables mock

I: aC'tO ry I:IX implementations to be

returned for testing.

_

public class RealBillingServiceTest extends TestCase {

private final PizzaOrder order = new PizzaOrder(100);
private final CreditCard creditCard = new CreditCard("1234", 11, 2010);

private final MemoryTransactionLog transactionlLog = new MemoryTransactionLog()
private final FakeCCPro creditCardProcessor = new FakeCCPro();

@Override public void setUp() {
TransactionLogFactory.setInstance(transactionlLog);
CreditCardProcessorFactory.setInstance(creditCardProcessor) ;

}

@Override public void tearDown() {
TransactionLogFactory.setInstance(null);
CreditCardProcessorFactory.setInstance(null);

}

public void testSuccessfulCharge() {
RealBillingService billingService = new RealBillingService();
Receipt receipt = billingService.chargeOrder(order, creditCard);

assertTrue(..);

} Factories work, but from the
BillingService APIs alone, it is impossible
to see the CC/Log dependencies.

R
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



DI GGoal

» Eliminate initialization statements. e.qg.,
» Foo f = new ConcreteFoo();
» In dependency injection a third party (an injector)
» At a high level dependency injection:
» Takes a set of components (classes + interfaces)
» Adds a set of configuration metadata
» Provides the metadata to an injection framework

» Bootstraps object creation with a configured
injector

R
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



Dependency Injection

public class RealBillingService implements IBillingService {
private final ICreditCardProcessor processor;
private final ITransactionlog transactionlog;

public RealBillingService(ICreditCardProcessor processor,
ITransactionlLog transactionlog) ({
this.processor = processor;
this.transactionLog = transactionLog;

}

public Receipt chargeOrder (PizzaOrder order, CreditCard creditCard) {

.
}

We can hoist the dependencies into the
APl to make them transparent.

R
h: REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE




Dependency Injection

public class RealBillingServiceTest extends TestCase {

private final PizzaOrder order = new PizzaOrder(100);
private final CreditCard creditCard = new CreditCard("1234", 11, 2010);

new MemoryTransactionLog();
new FakeCCProcessor();

private final MemoryTransactionLog transactionLog
private final FakeCCProcessor creditCardProcessor

public void testSuccessfulCharge() {
RealBillingService billingService
= new RealBillingService(creditCardProcessor, transactionLog);
Receipt receipt = billingService.chargeOrder(order, creditCard);

assertTrue(...);

This also enables unit test mocking, but
as in the initial example, pushes the
object instantiations throughout the code.

%
h& REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



Guice Injection

Google Guice is a common loC framework
for alleviating some of the boiler plate code
associated with this pattern.

public class BillingModule extends AbstractModule ({
@Override
protected void configure() {
bind (ITransactionlLog.class).to(DatabaseTransactionlLog.class);
bind (ICreditCardProcessor.class) .to(PaypalCreditCardProcessor.class);
bind(IBillingService.class).to(RealBillingService.class);

}
}

Here, the types of classes to their concrete
implementations. Guice automatically
Instantiates the objects as required.

R
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE




Guice Injection

Deployment Module:

public class BillingModule extends AbstractModule ({
@Override
protected void configure() {
bind (ITransactionlLog.class).to(DatabaseTransactionlLog.class);
bind (ICreditCardProcessor.class) .to(PaypalCreditCardProcessor.class);
bind(IBillingService.class).to(RealBillingService.class);

}
}

Testing Module:

public class MockBillingModule extends AbstractModule ({
@Override
protected void configure() {
bind (ITransactionlLog.class).to(MockTransactionlLog.class);
bind (ICreditCardProcessor.class) .to(MockCreditCardProcessor.class);
bind(IBillingService.class).to(RealBillingService.class);

}
}

i W
12 REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE




Guice Injection

public class RealBillingService implements IBillingService {
private final ICreditCardProcessor processor;
private final ITransactionLog transactionLog;

@Inject
public RealBillingService(ICreditCardProcessor processor,
ITransactionlLog transactionlog) ({
this.processor = processor;
this.transactionLog = transactionLog;

}

public Receipt chargeOrder (PizzaOrder order, CreditCard creditCard) {

}
}

@Inject tells Guice to automatically
instantiate the correct CC/Log objects. The
module will determine what gets injected.

i W
t REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



Guice Injection

Guice modules need to be
configured with the configuration of
Deployment: the system they are injecting for.

T —
public static void main(String[] args)™{ e
Injector injector = Guice.createlInjector(new BillingModule());

IBillingService billingService = injector.getlInstance(IBillingService.class);

}

Test:

public class RealBillingServiceTest extends TestCase {

private final PizzaOrder order = new PizzaOrder(100);
private final CreditCard creditCard = new CreditCard("1234", 11, 2010);

@BeforeClass
public final void guiceSetup() {

Guice.createInjector( new MockBillingModule()).injectMembers (this);
}

public void testSuccessfulCharge() {
RealBillingService billingService
= new RealBillingService(creditCardProcessor, transactionlLog);
Receipt receipt = billingService.chargeOrder (order, creditCard);

assertTrue(...);

}

-ﬁns}
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE




OLID

[EVIEW

% REID HOLMES - SE2: SOF WARE DESIGN & ARCHITECTURE



SOLID (single Responsibility)

Classes should do O'1€
thlng and do It We”

———
h REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE




SOLID (single Responsibility)

» Strategy (small, targeted, algorithms)

» Command (invokers should be oblivious to actions)
» Visitor (usually accomplish specific tasks)

» State XXX (centralize 3rd party complexity)

» Proxy (Enable RealSubject to focus on functionality)

%
t REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



SOLID (Open/Close)

Classes should be open to

eXtenSiOn and closed
o modification.

———
m REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE




SOLID (Open/Close)

which d€SIgN
patterns support the

open/close principle?

(These patterns are a subset of those patterns
that help with encapsulating what varies. E.q.,
the ‘extension’ part is often expected to change.)

E W
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE




SOLID (Open/Close)

» Observer (extend set of observers)
» w/0 changing subject behaviour

» Strategy (extend algorithm suite)
» w/0 changing context or other algorithms

» State (specialize runtime behaviour)
» w/0 changing context or other behaviours

» Command (extend command suite)
» w/0 changing invoker

» Visitor (extend model analysis)
» w/o changing data structure, traversal code, other visitors

» Decorator (extend object through composition)
» w/0 changing base classes

» Composite (extend component)
» w/0 changing clients / composites using any component

R
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



SOLID (Liskov substitution)

MostdeSign

patterns break down
if LSP is violated.

(Most design patterns are enabled through a
layer of abstraction, typically provided through
inheritance. When subtypes violate LSP
inconsistencies can occur at runtime.)

E W
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE




SOLID (Interface segregation)
Clients should not be forced to

depend o
INnterfaces

they do not use.

(Depending on irrelevant interfaces causes
needless coupling. This causes classes to
change even when interfaces they do not care
about are modified.)

- W
1 REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE




SOLID (Interface segregation)

«interface»
Interface
+doThis()
AN
CoreFunctionality OptionalWrapper
-wrappee et
+doThis() +doThis() [~ wrappee.doThis () ;
AN
OptionalOne OptionalTwo OptionalThree
+doThis() +doThis() +doThis() [~~~ F

The Decorator Pattern enables thin |} cciona) fuachionar ey
high-level interfaces that can be py e AP
augmented through composition of

concrete Decorators.

———
1 REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



SOLID (Dependency inversion)

Depend on

abstractions not
Implementations.

(High-level modules should not depend on low-
level modules; instead, they should depend on
abstractions.)

i REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE w




SOLID (Dependency inversion)

From this: In the original version, reusing
ackage A ackage B ObjectA requires reusing ObjectB.
In the second, reusing A only

- references | opace 8 requires an implementation of
InterfaceA.

To this:

Package A Package B

Object B

Instantiating instances of InterfaceA S
still ‘leaks’ details about concrete
Implementations; this is what
Dependency Injection aims to solve.

R
* REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



SOLID (Dependency inversion)

Package A Package B

Object B

Many of the patterns we have
References discussed In class look just like this
(from the client’s perspective).

Inherits

Car <<interface>>
IBrakeBehavior

For example, in this strategy
example, Car only depends on
|BrakeBehavior.

brakeBehavior : IBrakeBehavior} - - -

JAN JAN

BrakeWithABS Brake

———
1 REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



