
Material and some slide content from:
- Krzysztof Czarnecki
- Ian Sommerville
- Head First Design Patterns

Dependency Injection &
Design Principles Recap
Reid Holmes

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

SOLID (Dependency Inversion)

‣

Program to interfaces not to

implementations.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Dependency Inversion
‣ Common problem: ‘how can we wire these

interfaces together without creating a dependency
on their concrete implementations?’

‣ This often challenges the ‘program to interfaces,
not implementations ’ design principle

‣ Would like to reduce (eliminate) coupling
between concrete classes

‣ Would like to be able to substitute different
implementations without recompiling

‣ e.g., be able to test and deploy the same
binary even though some objects may vary

‣ Solution: separate objects from their assemblers

(also called inversion of control)

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Example Overview

public interface IBillingService {

 /**
 * Attempts to charge the order to the credit card. Both successful and
 * failed transactions will be recorded.
 *
 * @return a receipt of the transaction. If the charge was successful, the
 * receipt will be successful. Otherwise, the receipt will contain a
 * decline note describing why the charge failed.
 */
 Receipt chargeOrder(PizzaOrder order, CreditCard creditCard);
}

Simple Pizza
BillingService API

[Example from: https://code.google.com/p/google-guice/wiki/Motivation]

https://code.google.com/p/google-guice/wiki/Motivation

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Example Overview

public class RealBillingService implements IBillingService {
 public Receipt chargeOrder(PizzaOrder order, CreditCard creditCard) {

 ICreditCardProcessor processor = new PaypalCreditCardProcessor();
 ITransactionLog transactionLog = new DatabaseTransactionLog();

 …
 }
 }
}

Charging orders requires a
CCProcessor and a

TransactionLog

BillingService is dependent on
the concrete implementations
of the processor/log classes
rather than their interfaces

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Example Overview
Can’t test without actually
processing the CC data

Could test with invalid
data, but that would not
test the success case.

public class RealBillingServiceTest extends TestCase {

 private final PizzaOrder order = new PizzaOrder(100);
 private final CreditCard creditCard = new CreditCard("1234", 11, 2010);

 public void testSuccessfulCharge() {
 RealBillingService billingService = new RealBillingService();
 Receipt receipt = billingService.chargeOrder(order, creditCard);

 assertTrue(…);
 }
}

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Factory Fix
public class CreditCardProcessorFactory {

 private static ICreditCardProcessor instance;

 public static void setInstance(ICreditCardProcessor creditCardProcessor) {
 instance = creditCardProcessor;
 }

 public static CreditCardProcessor getInstance() {
 if (instance == null) {
 return new SquareCreditCardProcessor();
 }

 return instance;
 }
} Factories provide one

way to encapsulate
object instantiation

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

public class RealBillingService implements IBillingService {
 public Receipt chargeOrder(PizzaOrder order, CreditCard creditCard) {

 ICreditCardProcessor processor = CreditCardProcessorFactory.getInstance();
 ITransactionLog transactionLog = TransactionLogFactory.getInstance();

 …
 }
}

Factory Fix

Instead of depending on the
concrete classes, BillingService

relies on the factory to
instantiate them.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

public class RealBillingServiceTest extends TestCase {

 private final PizzaOrder order = new PizzaOrder(100);
 private final CreditCard creditCard = new CreditCard("1234", 11, 2010);

 private final MemoryTransactionLog transactionLog = new MemoryTransactionLog();
 private final FakeCCPro creditCardProcessor = new FakeCCPro();

 @Override public void setUp() {
 TransactionLogFactory.setInstance(transactionLog);
 CreditCardProcessorFactory.setInstance(creditCardProcessor);
 }

 @Override public void tearDown() {
 TransactionLogFactory.setInstance(null);
 CreditCardProcessorFactory.setInstance(null);
 }

 public void testSuccessfulCharge() {
 RealBillingService billingService = new RealBillingService();
 Receipt receipt = billingService.chargeOrder(order, creditCard);

 assertTrue(…);
 }
}

Factory Fix This enables mock
implementations to be
returned for testing.

Factories work, but from the
BillingService APIs alone, it is impossible

to see the CC/Log dependencies.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

DI Goal
‣ Eliminate initialization statements. e.g.,

‣ Foo f = new ConcreteFoo();

‣ In dependency injection a third party (an injector)

‣ At a high level dependency injection:

‣ Takes a set of components (classes + interfaces)

‣ Adds a set of configuration metadata

‣ Provides the metadata to an injection framework

‣ Bootstraps object creation with a configured
injector

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

public class RealBillingService implements IBillingService {
 private final ICreditCardProcessor processor;
 private final ITransactionLog transactionLog;

 public RealBillingService(ICreditCardProcessor processor,
 ITransactionLog transactionLog) {
 this.processor = processor;
 this.transactionLog = transactionLog;
 }

 public Receipt chargeOrder(PizzaOrder order, CreditCard creditCard) {
 …
 }
}

Dependency Injection

We can hoist the dependencies into the
API to make them transparent.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

public class RealBillingServiceTest extends TestCase {

 private final PizzaOrder order = new PizzaOrder(100);
 private final CreditCard creditCard = new CreditCard("1234", 11, 2010);

 private final MemoryTransactionLog transactionLog = new MemoryTransactionLog();
 private final FakeCCProcessor creditCardProcessor = new FakeCCProcessor();

 public void testSuccessfulCharge() {
 RealBillingService billingService
 = new RealBillingService(creditCardProcessor, transactionLog);
 Receipt receipt = billingService.chargeOrder(order, creditCard);

 assertTrue(...);
 }
}

Dependency Injection

This also enables unit test mocking, but
as in the initial example, pushes the

object instantiations throughout the code.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

public class BillingModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(ITransactionLog.class).to(DatabaseTransactionLog.class);
 bind(ICreditCardProcessor.class).to(PaypalCreditCardProcessor.class);
 bind(IBillingService.class).to(RealBillingService.class);
 }
}

Guice Injection
Google Guice is a common IoC framework
for alleviating some of the boiler plate code

associated with this pattern.

Here, the types of classes to their concrete
implementations. Guice automatically
instantiates the objects as required.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

public class BillingModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(ITransactionLog.class).to(DatabaseTransactionLog.class);
 bind(ICreditCardProcessor.class).to(PaypalCreditCardProcessor.class);
 bind(IBillingService.class).to(RealBillingService.class);
 }
}

Guice Injection

Testing Module:

Deployment Module:

public class MockBillingModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(ITransactionLog.class).to(MockTransactionLog.class);
 bind(ICreditCardProcessor.class).to(MockCreditCardProcessor.class);
 bind(IBillingService.class).to(RealBillingService.class);
 }
}

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

public class RealBillingService implements IBillingService {
 private final ICreditCardProcessor processor;
 private final ITransactionLog transactionLog;

 @Inject
 public RealBillingService(ICreditCardProcessor processor,
 ITransactionLog transactionLog) {
 this.processor = processor;
 this.transactionLog = transactionLog;
 }

 public Receipt chargeOrder(PizzaOrder order, CreditCard creditCard) {
…

 }
}

Guice Injection

@Inject tells Guice to automatically
instantiate the correct CC/Log objects. The
module will determine what gets injected.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

public static void main(String[] args) {
 Injector injector = Guice.createInjector(new BillingModule());
 IBillingService billingService = injector.getInstance(IBillingService.class);
 ...
 }

Guice Injection
Guice modules need to be

configured with the configuration of
the system they are injecting for.Deployment:

Test:
public class RealBillingServiceTest extends TestCase {

 private final PizzaOrder order = new PizzaOrder(100);
 private final CreditCard creditCard = new CreditCard("1234", 11, 2010);

 @BeforeClass
 public final void guiceSetup() {
 Guice.createInjector(new MockBillingModule()).injectMembers(this);
 }

 public void testSuccessfulCharge() {
 RealBillingService billingService
 = new RealBillingService(creditCardProcessor, transactionLog);
 Receipt receipt = billingService.chargeOrder(order, creditCard);

 assertTrue(...);
 }
}

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

SOLIDreview

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

SOLID (Single Responsibility)

‣ Classes should do one
thing and do it well.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

SOLID (Single Responsibility)
‣ Strategy (small, targeted, algorithms)

‣ Command (invokers should be oblivious to actions)

‣ Visitor (usually accomplish specific tasks)

‣ State XXX (centralize 3rd party complexity)

‣ Proxy (Enable RealSubject to focus on functionality)

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

SOLID (Open/Close)

‣ Classes should be open to

extension and closed

to modification.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

SOLID (Open/Close)

‣ patterns support the
open/close principle?

‣ (These patterns are a subset of those patterns
that help with encapsulating what varies. E.g.,
the ‘extension’ part is often expected to change.)

‣

Which design

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Observer (extend set of observers)

‣ w/o changing subject behaviour

‣ Strategy (extend algorithm suite)

‣ w/o changing context or other algorithms

‣ State (specialize runtime behaviour)

‣ w/o changing context or other behaviours

‣ Command (extend command suite)

‣ w/o changing invoker

‣ Visitor (extend model analysis)

‣ w/o changing data structure, traversal code, other visitors

‣ Decorator (extend object through composition)

‣ w/o changing base classes

‣ Composite (extend component)

‣ w/o changing clients / composites using any component

SOLID (Open/Close)

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

SOLID (Liskov substitution)

‣ patterns break down

‣ if LSP is violated.

‣ (Most design patterns are enabled through a
layer of abstraction, typically provided through
inheritance. When subtypes violate LSP
inconsistencies can occur at runtime.)

‣

Most design

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

SOLID (Interface segregation)

‣ interfaces

‣ they do not use.

‣ (Depending on irrelevant interfaces causes
needless coupling. This causes classes to
change even when interfaces they do not care
about are modified.)

‣ depend on

‣ Clients should not be forced to

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

SOLID (Interface segregation)

‣ The Decorator Pattern enables thin
high-level interfaces that can be
augmented through composition of
concrete Decorators.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

SOLID (Dependency inversion)

‣ abstractions not

‣ (High-level modules should not depend on low-
level modules; instead, they should depend on
abstractions.)

‣ Depend on

‣ implementations.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

SOLID (Dependency inversion)
‣ From this:

‣ To this:

‣ In the original version, reusing
ObjectA requires reusing ObjectB.
In the second, reusing A only
requires an implementation of
InterfaceA.

‣ Instantiating instances of InterfaceA
still ‘leaks’ details about concrete
implementations; this is what
Dependency Injection aims to solve.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

SOLID (Dependency inversion)

‣ Many of the patterns we have
discussed in class look just like this
(from the client’s perspective).

‣ For example, in this strategy
example, Car only depends on
IBrakeBehavior.

