
Material and some slide content from:
- Krzysztof Czarnecki
- Ian Sommerville
- Head First Design Patterns

MVC / MVP
Reid Holmes

[Image from: http://merroun.wordpress.com/2012/03/28/mvvm-mvp-and-mvc-software-patterns-againts-3-layered-architecture/]

http://merroun.wordpress.com/2012/03/28/mvvm-mvp-and-mvc-software-patterns-againts-3-layered-architecture/

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Background
‣ MVC started w/ Smalltalk-80

‣ Java UI frameworks & EJBs reignited interest

‣ Also prevalent in GWT and .NET development

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

MVC Motivation
‣ UI changes more frequently than business logic

‣ e.g., layout changes (esp. in web applications)

‣ The same data is often displayed in different ways

‣ e.g., table view vs chart view

‣ The same business logic can drive both

‣ Designers and developers are different people

‣ Testing UI code is difficult and expensive

‣ Main Goal: Decouple models and views

‣ Increase maintainability/testability of system

‣ Permit new views to be developed

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Model
‣ Contains application data

‣ This is often persisted to a backing store

‣ Does not know how to present itself

‣ Is domain independent

‣ Are often Subjects in the Observer pattern

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

View
‣ Presents the model to the user

‣ Allows the user to manipulate the data

‣ Does not store data

‣ Is configurable to display different data

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Controller
‣ Glues Model and View together

‣ Updates the view when the Model changes

‣ Updates the model when the user manipulates the
view

‣ Houses the application logic

‣ Loose coupling between Model and others

‣ View tightly cohesive with its Controller

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Abstract topology
Controller

View

Model

<<updates state>>

<<changes>>

<<retrieves state>>

<<notifies of state changes>>

1

2

3
4

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Concrete
topology

ViewController

MobileView

Model

BrowserView TabletView MockView

ViewController c = new ViewController();
IView v = c.createView(c);
IModel m = c.loadModel();
m.addListener(v);

[Dependency injection would
remove explicit new in c.createView()]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Interaction mechanism
‣ User interacts with the UI (View)

‣ UI (View) notifies controller of changes

‣ Controller handles notifications, processing them
into actions that can be performed on the model

‣ Controller modifies the model as required

‣ If the model changes, it fires modification events

‣ The view responds to the modification events

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Benefits and tradeoffs
‣ Pro:

‣ Decouple view from model

‣ Support multiple views [collaborative views]

‣ Maintainability [add new views]

‣ Split teams [relieve critical path]

‣ Testability [reduce UI testing]

‣ Con:

‣ Complexity [indirection, events]

‣ Efficiency [frequent updates, large models]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Compound Pattern
‣ MVC (and other similar patterns) rely upon several

more basic design patterns

‣ In MVC:

‣ View (strategy) / Controller (context) leverage the
strategy pattern

‣ View is often uses a composite pattern (for
nested views)

‣ View (observer) / Model (subject) interact through
the observer pattern

‣ Other meta-patterns rely upon similar lower-level
design patterns

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

MVP Motivation
‣ Take MVC a tiny bit further:

‣ Enhance testability

‣ Further separate Designers from Developers

‣ Leveraged by both GWT and .NET

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Model
‣ Contains application data

‣ This is often persisted to a backing store

‣ Does not know how to present itself

‣ Is domain independent

‣ Often fires events to an Event Bus

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

View
‣ Thin UI front-end for controller

‣ Does not store data

‣ Can be interchanged easily

‣ Does not ever see or manipulate Model objects

‣ Only interacts with primitives

‣ e.g., (setUser(String) instead of setUser(User))

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Controller
‣ Glues Model and View together

‣ Updates the view when the Model changes

‣ Updates the model when the user manipulates the
view

‣ Houses the application logic

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

MVP Topology

Presenter

View

Model

<<updates, retrieves state>>

<<notifies>> <<refresh>>

<<notifies of state
changes>>

Event Bus

1

2 3

4

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Concrete MVP Topology

ViewController

MobileView

Model

BrowserView MockView

App Controller

OutlineController

OutlineView MockOutline

<<notifies of state
changes>>

Event Bus

App Controller can
build and tear down
controllers.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Concrete Example
main(String[] args) {

AppController ac = new AppController();
IModel m = ac.setModel(Persist.loadModel());
m.addListener(ac);
ac.showMain();

}

AppController::showMain() {
 ViewController vc = new ViewController(this);

v.showMain();
}
ViewController::ViewController(AppController ac) {

_controller = ac;
_controller.getModel().addListener(vc);
IView v = createView();
v.setPresenter();

}

[Dependency injection should be used
in ViewController.createView()]

public interface IView {
public void setPresenter(Presenter p);
public void showMain();

public interface Presenter {
void onCancel();
void onAction(String action);
public IView createView();

}
}

Views and presenters
are tightly bound:

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Benefits and tradeoffs
‣ Same as MVC with improved:

‣ Decoupling of views from the model

‣ Split teams [relieve critical path]

‣ Testability [reduce UI testing]

‣ A little less complex than MVC [fewer events]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architecture/Design Review Meeting
‣ Don’t think of this as an oral exam

‣ Start with 5 minute presentation (board only)

‣ Followed by 25 minute discussion

‣ Evaluating the product, not the producer

‣ Be prepared!

‣ Goal:

‣ Ensure system meets proposal

‣ Check consistency of design with architecture

‣ Talk about design decisions/justification

‣ Discuss support for future system evolution

