
Material and some slide content from: 
- Head First Design Patterns Book 
- GoF Design Patterns Book 

Design Patterns
Reid Holmes



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

GoF design patternsDesign Patterns
����������������
��

�
�������� ��
	��	
�� �������
��

�����
��������

����
���������
�

�	����


�
�������

���������

������
� ������

�
����

��!������

����
���


������

������
 �����

���"�����

�
�#�

$���
�
���


���������
�������������

��!!���

$��
���


�������


%�!������������

��!����

����
��


�����

��
�����

&�����


�
��

�
�

�
�
�

�
�



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Pattern vocabulary
‣ Shared vocabulary


‣ communicate qualities


‣ reduce verbosity


‣ focus on design


‣ increase understanding



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Observer example
‣ Weather data example (similar to Eclipse example)


‣ WeatherData


‣ temp, humidity, pressure


‣ calls newData() whenever something changes


‣ bad: update views directly from here


‣ WeatherViews


‣ Current View


‣ Forecast View


‣ Stats View



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Composite
‣ Intent: “Enable a group of objects to be treated as 

single object”


‣ Motivation: Differentiating between interior and 
leaf nodes in tree-structured data data increases 
system complexity. 


‣ Applicability:


‣  If you notice you are treating groups and 
individual of objects the same way


‣  Can also be used when primitives and objects 
need to be treated identically



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Composite
‣ Participants:


‣  Component: base class


‣  Leaf: individual leaf node


‣ Composite: node that maintains a list of children 
nodes



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Composite
‣ Implementation:


‣ 1)  Composite maintains a list of child elements 
and methods to maintain the children.


‣ 2)  Composite object applies overridden 
methods from the component across all child 
methods.


‣ Known uses: 


‣ Related to: Decorators are often used along with 
the Composite pattern to augment objects while 
grouping them.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Facade
‣ Intent: “Provide a unified, higher-level, interface to 

a whole module making it easier to use.”


‣ Motivation: Composing classes into subsystems 
reduces complexity. Using a Facade minimizes the 
communication dependencies between 
subsystems.


‣ Applicability:


‣ When you want a simple interface to a complex 
subsystem.


‣ There are many dependencies between clients 
and a subsystem.


‣ You want to layer your subsystems.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Facade
‣ Participants:


‣ Facade


‣ Subsystem classes


‣ Collaborations:


‣ Clients interact subsystem via Facade.


‣ Consequences: 


‣ Shields clients from subsystem components.

‣ Promotes weak coupling. (strong within subsystem, weak between them)

‣ Doesn’t prevent access to subsystem classes.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Facade
‣ Implementation:


‣ 1) Analyze client / subsystem tangling.


‣ 2) Create interface. Abstract factories can also 
be used to add further decoupling.


‣ Known uses: Varied.


‣ Related to: Abstract Factory can be used with 
Facade to create subsystem objects. Facades are 
frequently Singletons. Abstracts functionality 
similar to Mediator but does not concentrate on 
communication.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Observer
‣ Intent: Define a one-to-many relationship between 

objects so that when an object changes state its 
dependents are updated automatically


‣ Motivation: To maintain consistency between 
multiple different objects without tightly coupling 
them


‣ Applicability:


‣  When you want to compartmentalize 
modifications to two dependent objects


‣ When you want to publish updates but not 
couple classes



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Observer
‣ Structure:


‣ Participants:


‣ Subject: tracks observers and fires updates


‣  Observer: subscribes/unsubscribes to subjects, 
receives updates



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Observer
‣ Collaborations


‣  Subjects call observer’s update method when 
they change


‣ Subjects can forward data (push) or just send 
blank update notifications (pull)


‣ Consequences:


‣ Reduce coupling between subject & observer


‣ Support broadcast communication

‣ Can result in expensive updates



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Observer
‣ Implementation:


1.  Subjects track observers (abstract class helpful)


2.Caching updates


3.  Push vs. pull


‣ Related to:


‣ Employed by MVC & MVP.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

GWT example

Window.addResizeHandler(new ResizeHandler() {
@Override
public void onResize(ResizeEvent event) {

if (event.getWidth() > event.getHeight()) {
setPortrait(false);

} else {
setPortrait(true);

}
}

});



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Command
‣ Intent: “Encapsulate requests enabling clients to 

log / undo them as required.”


‣ Motivation: In situations where you need to be 
able to make requests to objects without knowing 
anything about the request itself or the receiver of 
the request, the command pattern enables you to 
pass requests as objects.


‣ Applicability: 

‣ Parameterize requests.

‣ Specify, queue, and log actions.

‣ Support undo.

‣ Model high-level operations on primitive 

operations.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Command
‣ Structure


‣ Participants:

‣ Command / ConcreteCommand

‣ Client

‣ Invoker

‣ Receiver



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Command
‣ Collaborations:

‣ Client creates ConcreteCommand and specifies 

receiver.

‣ Invoker stores ConcreteCommand object.

‣ Invoker requests execute on Command; stores 

state for undoing prior to execute (if undoable).

‣ Concrete invokes operations on its receiver to 

perform request.

‣ Consequences: 

‣ Decouples the invoker from the object that 

knows how to perform an action.

‣ Commands are first-class objects.

‣ Commands can be assembled into composite.

‣ Adding new commands is easy.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Command
‣ Implementation:


‣ 1) How smart should a command be?


‣ 2) Support undo/redo.


‣ 3) Avoiding error accumulation in the undo 
process.


‣ Related to: Composite commands can be created; 
the Memento pattern can store undo state. 
Commands often use Prototype when they need 
to be stored for undo/redo.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

State
‣ Intent: “Allow an object to alter its behaviour when 

its internal state changes; the object will appear to 
change its class.”


‣ Motivation: Systems often have a limited set of 
discrete states and will behave differently 
depending on its current state. The state pattern 
enables control of state-dependent operations.


‣ Applicability:


‣ Systems where runtime behaviour is dependent 
on the state of the system.


‣ When decisions are based on many flags that 
are in effect checking state before deciding 
which operation to perform.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

State
‣ Participants:


‣ Context: maintain State reference; delegates 
behaviour through composition to State class.


‣ IState: define abstract operations


‣ ConcreteState: implement IState, update 
Context as required.


‣ Consequences: 


‣ Localizes state-specific behaviour.

‣ Makes state-transitions explicit.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

State



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

State
‣ Implementation:


‣ 1) Context maintains a reference to a State.


‣ 2) Concrete states implement state and have a 
reference to the context. On state-transition 
operations, the current state object can update 
the State reference in the context.


‣ Related to: Flyweight objects are often used for 
sharing State objects.  Strategy looks 
structurally similar, although strategies do not 
change their context method, nor are they 
typically used as dynamically as States.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Strategy
‣ Intent: “Define a family of algorithms that can be 

easily interchanged with each other”


‣ Motivation: Support the open/closed principle by 
abstracting algorithms behind an interface; clients 
use the interface while subclasses provide the 
functionality and can be easily interchanged.


‣ Applicability:


‣  When you want to be able to replace a 
behaviour at runtime (strategy reference can be 
dynamically altered).


‣  When you want to have a family of behaviours 
that might not be applicable for the client class.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Strategy



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Strategy
‣ Participants:


‣  Context contains reference to chosen strategy 
and invokes algorithm.


‣  Strategy interface declares algorithm structure.


‣ ConcreteStrategy implements algorithm. 
Context does not use any methods not defined 
in the Strategy interface.


‣ Consequences: 


‣   Context uses the interface, not the concrete 
class.


‣  Concrete classes can be easily exchanged.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Strategy
‣ Implementation:


‣ 1) Create strategy interface and reference in 
client. 


‣ 2)  Interact only through interface.


‣ Related to: Abstract Factory uses inheritance to 
achieve a subset of what Strategy does though 
a composition-based behaviour. Decorators are 
similar but focus on extending the functionality 
of a base class.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Visitor
‣ Intent: “Represent operations to be performed on 

classes of elements.”


‣ Motivation: Consider a large tree of objects that you 
want to perform an analysis on; this could require 
changing many objects. Visitors enable these 


‣ Applicability:

‣ When you have a large object structure you want 

to traverse.

‣ When you have many different operations you 

want to perform but don’t want to pollute the 
objects.


‣ The objects rarely change but the operations may.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Visitor
‣ Structure


‣ Participants:


‣ Visitor / ConcreteVisitor


‣ Element / ConcreteElement


‣ ObjectStructure



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Visitor
‣ Collaborations:


‣ Client creates the ConcreteVisitor that traverses 
the object structure.


‣ The visited object calls its corresponding visitor 
method on the ConcreteVisitor.


‣ Consequences: 

‣ Adding new operations is easy.

‣ Visitor gathers related operations (and separates unrelated ones).

‣ Adding ConcreteElement classes is hard.

‣ Accumulating state.

‣ Negative: Breaking encapsulation. (visitor may need 

access to internal state)



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Visitor
‣ Implementation:


‣ 1) Double dispatch.


‣ 2) Who traverses structure?


‣ Related to: Good at visiting Composite structures.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Decorator
‣ Intent: “Dynamically add additional responsibilities to 

structures.”


‣ Motivation: Sometimes we want to add new 
responsibilities to individual objects, not the whole 
class. Can enclose existing objects with another 
object.


‣ Applicability: 

‣ Add responsibilities dynamically and transparently.

‣ Remove responsibilities dynamically.

‣ When subclassing is impractical.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Decorator
‣ Structure


‣ Participants:

‣ Component / concrete component

‣ Decorator / concrete decorator



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Decorator (code ex)
// the Window interface

interface Window {

    public void draw(); // draws the Window

    public String getDescription(); 

}

 

// implementation of a simple Window

class SimpleWindow implements Window {

    public void draw() {

        // draw window

    }

 

    public String getDescription() {

        return "simple window";

    }

}

// abstract decorator class

abstract class WindowDecorator implements Window {

    protected Window decoratedWindow; 

 

    public WindowDecorator (Window decoratedWindow) {

        this.decoratedWindow = decoratedWindow;

    }

   public void draw() {

        decoratedWindow.draw();

    }

}

// adds vertical scrollbar functionality

class VerticalScrollBarDecorator extends WindowDecorator {

    public VerticalScrollBarDecorator (Window decoratedWindow) {

        super(decoratedWindow);

    }

    public void draw() {

        drawVerticalScrollBar();

        super.draw();

    } 

    private void drawVerticalScrollBar() { .. }

    public String getDescription() {

        return decoratedWindow.getDescription() +" and vert sb";

    }

} 

// adds horizontal scrollbar functionality

class HorizontalScrollBarDecorator extends WindowDecorator {

    public HorizontalScrollBarDecorator (Window decoratedWindow) {

        super(decoratedWindow);

    }

    public void draw() {

        drawHorizontalScrollBar();

        super.draw();

    }

    private void drawHorizontalScrollBar() { .. } 

    public String getDescription() {

        return decoratedWindow.getDescription() + "and horiz sb";

    }

}
public class DecoratedWindowTest {

    public static void main(String[] args) {

        Window decoratedWindow = new HorizontalScrollBarDecorator (

                new VerticalScrollBarDecorator(new SimpleWindow()));

        // print the Window's description

        System.out.println(decoratedWindow.getDescription());}}



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Decorator
‣ Collaborations

‣ Decorators forward requests to component object.


‣ Consequences:

‣ More flexible.

‣ (than static inheritance; arbitrary nesting possible)


‣ Avoids feature-laden classes.

‣ (KISS and add functionality as needed.)


‣ Warn: Decorator & component are not identical.

‣ (equality can be thrown off because decorator != decorated)


‣ Negative: Many of little objects.

‣ (Lots of small, similar-looking classes differentiated by how 

they are connected. hard to understand and debug.)



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Decorator		
‣ Implementation:

‣ 1) Interface conformance. (decorator interface required)

‣ 2) Abstract decorator not needed if only one 

decoration is required.

‣ 2) Keep component classes lightweight. (too 

heavyweight can overwhelm decorators

‣ 3) Changing a skin instead of changing the guts.   

(if component is heavy, consider strategy instead)


‣ Related to: Decorators are a kind of single-node 
Composite. Decorators can change the skin, 
Strategy pattern can change the guts.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Decorator Example
‣ Starbucks example


‣ Beverages: house, dark, decaf, espresso


‣ Toppings: whip, milk, soy, mocha,...


‣ Show Crazy class diagram (state explosion)


‣ -> sucky to update


‣ KEY: classes open for extension but closed for 
modification


‣ KEY: decorators mirror type of their decorating obj


‣ BAD: lots of little objects floating around



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Proxy
‣ Intent: “Provide a placeholder to control access to 

another object.”


‣ Motivation: One reason to control access is cost: 
consider an object that is expensive to populate 
entirely but cheap to partially populate. (e.g., 
remote object, large file from disk, etc.)


‣ Applicability: (When a more versatile reference is needed.)


‣ Remote: Hide the fact that an object is remote. 

‣ Virtual: Create expensive objects on demand.

‣ Protection: Protect access to objects.

‣ Smart reference: Performs additional actions.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Proxy
‣ Structure


‣ Participants:


‣ Proxy


‣ Subject / RealSubject



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Proxy
‣ Collaborations:


‣ Client interacts with proxy.


‣ Proxy forwards req. to RealSubject as required.


‣ Consequences: 


‣ Remote: location hidden.

‣ Virtual: Optimizations can be applied.

‣ Protection: Housekeeping / auth can occur.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Proxy
‣ Implementation:


‣ 1) Create common interface for Proxy/
RealSubject.


‣ 2) Reference Proxy in Client.


‣ 3) Proxy forwards requests as necessary.


‣ Known uses: Image manipulation / RPC.


‣ Related to: Similar to Adapter and Decorator. 
Decorators add responsibilities while proxies serve 
as mediators.


