
Material and some slide content from: 
- Emerson Murphy-Hill 
- Software Architecture: Foundations, Theory, and Practice 
- Essential Software Architecture

Architectural Styles
Reid Holmes



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Lunar lander example
[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Language-based
‣ Influenced by the languages that implement them


‣ Lower-level, very flexible


‣ Often combined with other styles for scalability

Examples: 
Main & subroutine 
Object-oriented

WE WON’T COVER THESE 
IN ANY GREAT DETAIL



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Main program & subroutine
‣ Decomposition of functional elements.


‣ Components: 

‣ Main program and subroutines.


‣ Connections: 

‣ Function / procedure calls.


‣ Data elements: 

‣ Values passed in / out of subroutines. 


‣ Topology: 

‣ Directed graph between subroutines and main program.

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Main program & subroutine
‣ Additional constraints:

‣ None.


‣ Qualities:

‣ Modularity, as long as interfaces are maintained.


‣ Typical uses:

‣ Small programs.


‣ Cautions:

‣ Poor scalability. Data structures are ill-defined. 


‣ Relations to languages and environments:

‣ BASIC, Pascal, or C.

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Object-oriented
‣ Encapsulation of state and actions.


‣ Components: 

‣ Objects or ADTs.


‣ Connections: 

‣ Method calls.


‣ Data elements: 

‣ Method arguments.


‣ Topology: 

‣ Varies. Data shared through calls and inheritance.

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Additional constraints:

‣ Commonly used with shared memory (pointers). Object preserves identity of 

representation.


‣ Qualities:

‣ Data integrity. Abstraction. Change implementations without affecting 

clients. Can break problems into interacting parts.


‣ Typical uses:

‣ With complex, dynamic data. Correlation to real-world entities.


‣ Cautions:

‣ Distributed applications hard. Often inefficient for sci. computing. Potential 

for high coupling via constructors. Understanding can be difficult.


‣ Relations to languages and environments:

‣ C++, Java.

Style: Object-oriented
[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Dataflow
‣ A data flow system is one in which:


‣ The availability of data controls computation


‣ The structure of the design is determined by the 
orderly motion of data between components


‣ The pattern of data flow is explicit


‣ Variations:


‣ Push vs. pull


‣ Degree of concurrency


‣ Topology

[CZARNECKI]

Examples: 
Batch-sequential 

Pipe-and-filter



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Separate programs executed in order passed, each 
step proceeding after the the previous finishes.


‣ Components: 

‣ Independent programs.


‣ Connections: 

‣ Sneaker-net.


‣ Data elements: 

‣ Explicit output of complete program from preceding step.


‣ Topology: 

‣ Linear.

[TAILOR ET AL.]

Style: Batch-sequential



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Additional constraints:

‣ One program runs at a time (to completion).


‣ Qualities:

‣ Interruptible execution.


‣ Typical uses:

‣ Transaction processing in financial systems.


‣ Cautions:

‣ Programs cannot easily feed back in to one another.

[TAILOR ET AL.]

Style: Batch-sequential



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Pipe-and-filter



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Streams of data are passed concurrently from one 
program to another.


‣ Components: 

‣ Independent programs (called filters).


‣ Connections: 

‣ Explicitly routed by OS.


‣ Data elements: 

‣ Linear data streams, often text.


‣ Topology: 

‣ Typically pipeline.

[TAILOR ET AL.]

Style: Pipe-and-filter



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Qualities:

‣ Filters are independent and can be composed in novel 

sequences.


‣ Typical uses:

‣ Very common in OS utilities.


‣ Cautions:

‣ Not optimal for interactive programs or for complex data 

structures.

[TAILOR ET AL.]

Style: Pipe-and-filter



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Layered
‣ Layered systems are 

hierarchically organized 
providing services to upper 
layers and acting as clients 
for lower layers


‣ Lower levels provide more 
general functionality to more 
specific upper layers


‣ In strict layered systems, 
layers can only communicate 
with adjacent layers

[CZARNECKI]

Examples: 
Virtual machine 

Client-server



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Client-server
[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Client-server
‣ Clients communicate with server which performs 

actions and returns data. Client initiates communication.


‣ Components: 

‣ Clients and server.


‣ Connections: 

‣ Protocols, RPC.


‣ Data elements: 

‣ Parameters and return values sent / received by connectors.


‣ Topology: 

‣ Two level. Typically many clients.

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Additional constraints:

‣ Clients cannot communicate with each other.


‣ Qualities:

‣ Centralization of computation. Server can handle many clients.


‣ Typical uses:

‣ Applications where: client is simple; data integrity important; 

computation expensive.


‣ Cautions:

‣ Bandwidth and lag concerns.

Style: Client-server
[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Interpreter
‣ Commands interpreted dynamically


‣ Programs parse commands and act accordingly, 
often on some central data store

Examples: 
Interpreter 

Mobile code



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Mobile code



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Code and state move to different hosts to be 
interpreted.


‣ Components: 

‣ Execution dock, compilers / interpreter.


‣ Connections: 

‣ Network protocols.


‣ Data elements: 

‣ Representations of code, program state, data.


‣ Topology: 

‣ Network.

[TAILOR ET AL.]

Style: Mobile code



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Variants:

‣ Code-on-demand, remote evaluation, and mobile agent.


‣ Qualities:

‣ Dynamic adaptability.


‣ Typical uses:

‣ For moving code to computing locations that are closer to the 

large data sets being operated on.


‣ Cautions:

‣ Security. Transmission costs. Network reliability.

[TAILOR ET AL.]

Style: Mobile code



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Interpreter



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Interpreter
‣ Interpret commands on the fly.


‣ Based on a virtual machine produced in SW.


‣ Components are the ‘program’, its data, its state, 
and the interpretation engine.


‣ e.g., Java Virtual Machine. JVM interprets Java 
bytecode).



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Interpreter
‣ Update state by parsing and executing commands.


‣ Components: 

‣ Command interpreter, program state, UI.


‣ Connections: 

‣ Components tightly bound; uses procedure calls and shared 

state.


‣ Data elements: 

‣ Commands.


‣ Topology: 

‣ Tightly coupled three-tier.

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Qualities:

‣ Highly dynamic behaviour. New capabilities can be added 

without changing architecture by introducing new commands.


‣ Typical uses:

‣ End-user programming.


‣ Cautions:

‣ May not be performant. 

Style: Interpreter
[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Shared state
‣ Characterized by:


‣ Central store that represents system state


‣ Components that communicate through shared 
data store


‣ Central store is explicitly designed and structured

Examples: 
Blackboard 
Rule-based



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Blackboard



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Independent programs communicate exclusively 
through shared global data repository.


‣ Components: 

‣ Independent programs (knowledge sources), blackboard.


‣ Connections: 

‣ Varies: memory reference, procedure call, DB query.


‣ Data elements: 

‣ Data stored on blackboard.


‣ Topology: 

‣ Star; knowledge sources surround blackboard.

[TAILOR ET AL.]

Style: Blackboard



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Variants:

‣ Pull: clients check for blackboard updates.


‣ Push: blackboard notifies clients of updates.


‣ Qualities:

‣ Efficient sharing of large amounts of data. Strategies to complex 

problems do not need to be pre-planned.


‣ Typical uses:

‣ Heuristic problem solving.


‣ Cautions:

‣ Not optimal if regulation of data is needed or the data frequently 

changes and must be updated on all clients.

[TAILOR ET AL.]

Style: Blackboard



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Implicit invocation
‣ In contrast to other patterns, the flow of control is 

“reversed”


‣ Commonly integrate tools in shared environments


‣ Components tend to be loosely coupled


‣ Often used in:


‣ UI applications (e.g., MVC)


‣ Enterprise systems 


‣ (e.g., WebSphere)

Examples: 
Publish-subscribe 

Event-based



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Publish-subscribe



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Subscribers register for specific messages or content. 
Publishers maintain registrations and broadcast messages to 
subscribers as required.


‣ Components: 

‣ Publishers, subscribers, proxies.


‣ Connections: 

‣ Typically network protocols.


‣ Data elements: 

‣ Subscriptions, notifications, content.


‣ Topology: 

‣ Subscribers connect to publishers either directly or through 

intermediaries.

[TAILOR ET AL.]

Style: Publish-subscribe



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Variants:

‣ Complex matching of subscribers and publishers can be 

supported via intermediaries.


‣ Qualities:

‣ Highly-efficient one-way notification with low coupling.


‣ Typical uses:

‣ News, GUI programming, network games.


‣ Cautions:

‣ Scalability to large numbers of subscriber may require 

specialized protocols.

[TAILOR ET AL.]

Style: Publish-subscribe



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Event-based



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Independent components asynchronously emit and 
receive events.


‣ Components: 

‣ Event generators / consumers.


‣ Connections: 

‣ Event bus.


‣ Data elements: 

‣ Events.


‣ Topology: 

‣ Components communicate via bus, not directly.

[TAILOR ET AL.]

Style: Event-based



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Variants:

‣ May be push or pull based (with event bus).


‣ Qualities:

‣ Highly scalable. Easy to evolve. Effective for heterogenous 

applications.


‣ Typical uses:

‣ User interfaces. Widely distributed applications (e.g., financial 

markets, sensor networks).


‣ Cautions:

‣ No guarantee event will be processed. Events can overwhelm 

clients.

[TAILOR ET AL.]

Style: Event-based



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Peer to Peer
‣ Network of loosely-coupled peers


‣ Peers act as clients and servers


‣ State and logic are decentralized amongst peers


‣ Resource discovery a fundamental problem



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Peer-to-peer



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Peer-to-peer
‣ State and behaviour are distributed among peers that 

can act as clients or servers.


‣ Components: 

‣ Peers (aka independent components).


‣ Connections: 

‣ Network protocols.


‣ Data elements: 

‣ Network messages.


‣ Topology: 

‣ Network. Can vary arbitrarily and dynamically.

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Qualities:

‣ Decentralized computing. Robust to node failures. Scalable.


‣ Typical uses:

‣ When informations and operations are distributed.


‣ Cautions:

‣ Security. Time criticality.

Style: Peer-to-peer
[TAILOR ET AL.]


