Material and some slide content from:

- Emerson Murphy-Hill

- Software Architecture: Foundations, Theory, and Practice
- Essential Software Architecture

Architectural Styles

[TAILOR ET AL.]

| unar lander example

. Fuel Engine Attitude
Altimeter level Control joystick
Switch
Logic:
loop
Flight Control Computer read all sensor values

compute control outputs
send controls to all actuators
end loop

Main Dgscent Cockpit
Engine

Attitude Control | Controller Displays

R
t REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

» Lower-level, very flexible

WE WON’T COVER THESE
IN ANY GREAT DETAIL

| anguage-based

» Influenced by the languages that implement them

» Often combined with other styles for scalability

Examples:

Main & subroutine

Object-oriented

%
h& REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Main program & subroutine

» Decomposition of functional elements.

» Components:

» Main program and subroutines.

» Connections:

» Function / procedure calls.

» Data elements:
» Values passed in / out of subroutines.
» Topology:

» Directed graph between subroutines and main program.

= W
h: REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Main program & subroutine

» Additional constraints:

» None.
» Qualities:
» Modularity, as long as interfaces are maintained.

» Typical uses:

» Small programs.

» Cautions:

» Poor scalabllity. Data structures are ill-defined.

» Relations to languages and environments:

» BASIC, Pascal, or C.

R
h& REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Object-oriented

» Encapsulation of state and actions.

» Components:

» Objects or ADTs.

» Connections:

» Method calls.

» Data elements:
» Method arguments.
» Topology:

» Varies. Data shared through calls and inheritance.

E W
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Object-oriented

» Additional constraints:

» Commonly used with shared memory (pointers). Object preserves identity of
representation.

» Qualities:

» Data integrity. Abstraction. Change implementations without affecting
clients. Can break problems into interacting parts.

» Typical uses:
» With complex, dynamic data. Correlation to real-world entities.

» Cautions:

» Distributed applications hard. Often inefficient for sci. computing. Potential
for high coupling via constructors. Understanding can be difficult.

» Relations to languages and environments:

» C++, Java.
=7x W
h& REID HOLMES - SE2: SO WARE DESICN & ARCHTECTURE

Dataflow So-0> %

» A data flow system is one in which: C}O\/(O);O

» The availability of data controls computation

» The structure of the design is determined by the
orderly motion of data between components

» The pattern of data flow is explicit
» Variations:

Examples:
» Push vs. pull

Batch-sequential
» Degree of concurrency

Pipe-and-filter

» Topology

R
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Batch-sequential

» Separate programs executed in order passed, each
step proceeding after the the previous finishes.

» Components:

» Independent programs.

» Connections:

» Snheaker-net.

» Data elements:

» Explicit output of complete program from preceding step.

» Topology:

» Linear.

R
h& REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Batch-sequential

» Additional constraints:

» One program runs at a time (to completion).
» Qualities:

» Interruptible execution.

» Typical uses:

» Transaction processing in financial systems.

» Cautions:

» Programs cannot easily feed back in to one another.

R
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Style: Pipe-and-filter

‘ Display new

Stream > lalues to user

Get BurnRate

l Compute new

values

Stream

from user

in: br
out: none

in:a, ft, v
out: none

R
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Style: Pipe-and-filter

» Streams of data are passed concurrently from one
program to another.

» Components:

» Independent programs (called filters).

» Connections:

» Explicitly routed by OS.

» Data elements:

» Linear data streams, often text.

» Topology:

» Typically pipeline.

R
h& REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Style: Pipe-and-filter
» Qualities:

» Filters are independent and can be composed in novel
seqguences.

» Typical uses:

» Very common in OS utilities.

» Cautions:

» Not optimal for interactive programs or for complex data
structures.

R
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[CZARNECKI]

Laye re d Application
» Layered systems are Presentation
hierarchically organized Session
providing services to upper Transport
layers and acting as clients Network
for lower layers ———
» Lower levels provide more rhveiea

Physical Medium

g e n e ral fu n Ct i O n a I ity -to m O re A A T A A A A A A A AT AT AT AT AT AT AT AT ATATATATS
specific upper layers

» In strict layered systems, Examples:
layers can only communicate Vi | "
with adjacent layers Irtual macnine

Client-server

R
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Client-server

CLIENT 1 CLIENT 2 CLIENT n
Get/Display Info Get/Display Info Get/Display Info

Graphics Graphics Graphics
Processing Processing Processing

| | =J | |
Procedure Call Procedure Call Procedure Call
M ' [}
J
in: burnR ate
out: altitude, fuel, time, velocity

SERVER:
Game State

Game Logic
Environment
Simulation

R
h& REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

4

Style: Client-server

Clients communicate with server which performs

[TAILOR ET AL.]

actions and returns data. Client initiates communication.

Components:

» Clients and server.

Connections:

» Protocols, RPC.

Data elements:

» Parameters and return values sent / received by connectors.

Topology:

» Two level. Typically many clients.

%
t REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Client-server

» Additional constraints:
» Clients cannot communicate with each other.
» Qualities:
» Centralization of computation. Server can handle many clients.

» Typical uses:

» Applications where: client is simple; data integrity important;
computation expensive.

» Cautions:

» Bandwidth and lag concerns.

R
h: REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

INterpreter

» Commands interpreted dynamically

» Programs parse commands and act accordingly,
often on some central data store

Examples:

Interpreter

Mobile code

%
t REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Style: Mobile code

Game Server
v v] Ad
Stream Stream Stream

in: game code
out: none

Lunar Lander Lunar Lander Lunar Lander

Game Applet Game Applet Game Applet

%
h& REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Mobile code

» Code and state move to different hosts to be
interpreted.

» Components:

» Execution dock, compilers / interpreter.

» Connections:

» Network protocols.

» Data elements:

» Representations of code, program state, data.

» Topology:

» Network.

R
h& REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Mobile code

» Variants:

» Code-on-demand, remote evaluation, and mobile agent.
» Qualities:

» Dynamic adaptability.
» Typical uses:

» For moving code to computing locations that are closer to the
large data sets being operated on.

» Cautions:

» Security. Transmission costs. Network reliability.

R
h& REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Style: Interpreter

Get Command
from user

(Burn, 50)
(Check Status)

A}
Stream

1

in: line of code
out: result of code
executed

Interpret and
Execute

=J =J
Data Access Data Access

in: none

out: variable updated -
— || result of code
executed

in: variable updated
result of code
executed

out: none

Interpreter State

R
* REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Style: Interpreter

» Interpret commands on the fly.
» Based on a virtual machine produced in SW.

» Components are the ‘program’, its data, its state,
and the interpretation engine.

» e.g., Java Virtual Machine. JVM interprets Java
bytecode).

%
t REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Interpreter

» Update state by parsing and executing commands.

» Components:

» Command interpreter, program state, Ul.

» Connections:

» Components tightly bound; uses procedure calls and shared
state.

» Data elements:

» Commands.

» Topology:

» Tightly coupled three-tier.

h: REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Interpreter

» Qualities:

» Highly dynamic behaviour. New capabilities can be added
without changing architecture by introducing new commands.

» Typical uses:
» End-user programming.

» Cautions:

» May not be performant.

R
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Shared state

» Characterized by:

data store

» Central store that represents system state

» Components that communicate through shared

» Central store is explicitly designed and structured

Examples:

Blackboard

Rule-based

%
h& REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Style: Blackboard

Compute new
En#eorrguurger? ke Display values values and
Update

Provides: br Obtains: a, f,t, v Obtains: a, br, 1,1, v
Provides: a, f t, v

| .
Data Access ‘

Blackboard

Data Storage (altitude, burnRate, fuel,
time, velocity)

%
h& REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Blackboard

» Independent programs communicate exclusively
through shared global data repository.

» Components:

» Independent programs (knowledge sources), blackboard.

» Connections:

» Varies: memory reference, procedure call, DB query.

» Data elements:

» Data stored on blackboard.

» Topology:

» Star; knowledge sources surround blackboard.

%
h& REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Blackboard

» Variants:

» Pull: clients check for blackboard updates.

» Push: blackboard notifies clients of updates.
» Qualities:

» Efficient sharing of large amounts of data. Strategies to complex
problems do not need to be pre-planned.

» Typical uses:

» Heuristic problem solving.

» Cautions:

» Not optimal if regulation of data is needed or the data frequently
changes and must be updated on all clients.

W

%
t REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

“reversed”

» Often used in:
» Ul applications (e.g., MVC)
» Enterprise systems

> (e.g., WebSphere)

Implicit iInvocation

» In contrast to other patterns, the flow of control is

» Commonly integrate tools in shared environments

» Components tend to be loosely coupled

Examples:

Publish-subscribe

—vent-based

R
12 REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Style: Publish-subscribe

in: new terrain,
spacecraft

Stream Stream Event Stream

1

in: register, req info
out: none

Game Server

R
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Publish-subscribe

» Subscribers register for specific messages or content.
Publishers maintain registrations and broadcast messages to
subscribers as required.

» Components:

» Publishers, subscribers, proxies.

» Connections:

» Typically network protocols.
» Data elements:

» Subscriptions, notifications, content.
» Topology:

» Subscribers connect to publishers either directly or through
iIntermediaries.

= W
h: REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Publish-subscribe

» Variants:

» Complex matching of subscribers and publishers can be
supported via intermediaries.

» Qualities:
» Highly-efficient one-way notification with low coupling.
» Typical uses:

» News, GUI programming, network games.

» Cautions:

» Scalability to large numbers of subscriber may require
specialized protocols.

R
h: REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Style: Event-based

SpaceCraft Clock
m
Send: br Send: a, br, f, v Send: t (sec)
af, v
| |
Event
A A
Send: a,f, v send: a, br, f,v Send: br Send:; £y

Game Logic

%
h& REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

4

4

4

Style: Event-based

[TAILOR ET AL.]

Independent components asynchronously emit and

receive events.

Components:

» Event generators / consumers.
Connections:

» Event bus.

Data elements:

» Events.

Topology:

» Components communicate via bus, not directly.

R
h& REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Event-based

» Variants:
» May be push or pull based (with event bus).

» Qualities:

» Highly scalable. Easy to evolve. Effective for heterogenous
applications.

» Typical uses:

» User interfaces. Widely distributed applications (e.g., financial
markets, sensor networks).

» Cautions:

» No guarantee event will be processed. Events can overwhelm
clients.

=7x W
h& REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

FPeer to Peer

» Network of loosely-coupled peers
» Peers act as clients and servers
» State and logic are decentralized amongst peers

» Resource discovery a fundamental problem

R
h: REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Peer-to-peer

LL3 @—@ Steam [@—@ L1 W Steam @ 12 @—@ steam @—® 5

LL1 Fﬂ—dlﬂ Stream @} @] LL5

e
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Peer-to-peer

» State and behaviour are distributed among peers that
can act as clients or servers.

» Components:

» Peers (aka independent components).

» Connections:

» Network protocols.

» Data elements:

» Network messages.

» Topology:

» Network. Can vary arbitrarily and dynamically.

R
h: REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

[TAILOR ET AL.]

Style: Peer-to-peer

» Qualities:

» Decentralized computing. Robust to node failures. Scalable.

» Typical uses:

» When informations and operations are distributed.

» Cautions:

» Security. Time criticality.

R
* REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

