
Reid Holmes

Architectural Style Intro &
Early Feedback Evaluation

Material and some slide content from:
- Emerson Murphy-Hill
- Software Architecture: Foundations, Theory, and Practice
- Essential Software Architecture

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Fami
GroupGrub
iFoundClassmate
Mango
Mezzo
Motcha
Motivatr

Musio
OneRun
Ourdea
PoolMe
SoundScope
Tutoo
Unbreakable

BOLD == 2% PROJECT BONUS

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Choose
Two

Good

Fast Cheap

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Choose
Two

Scope

(features)

Resources

(cost)

Schedule

(time)

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Choose
Two

Availability

Consistency Partition

Tolerance

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Choose
Two

Complexity

Scalability Performance

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

NFP Tradeoffs (small number of examples)

‣ complexity <-> scalability

‣ availability <-> performance

‣ performance <-> portability

‣ testability <-> understandability

‣ usability <-> security

‣ scalability <-> portability

‣ dependability <-> heterogeneity

‣ deployability <-> testability

‣ portability <-> usability

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

SOFTWARE
DESIGN

SOFTWARE
ARCHITECTURE

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural styles
‣ Some design choices are better than others

‣ Experience can guide us towards beneficial sets
of choices (patterns) that have positive
properties

‣ An architectural style is a named collection of
architectural design decisions that:

‣ Are applicable to a given context

‣ Constrain design decisions

‣ Elicit beneficial qualities in resulting systems

[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural styles
‣ A set of architectural design decisions that are

applicable to a recurring design problem, and
parameterized to account for different software
development contexts in which that problem
appears.

‣ e.g., Three-tier architectural pattern:

[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural styles
[CZARNECKI]

‣ Defines a family of architectures that are
constrained by:

‣ Component/connector vocabulary

‣ Topology

‣ Semantic constraints

‣ When describing styles diagrammatically:

‣ Nodes == components (e.g., procedures, modules, processes, databases, …)

‣ Edges == connectors (e.g., procedure calls, events, db queries, pipes, …)

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Understanding a style
[CZARNECKI]

‣ What is the structural pattern?

‣ What is the underlying computational model?

‣ What are the essential invariants of the style?

‣ What are some common usage examples?

‣ What are the style’s advantages and disadvantages?

‣ What are some common specializations?

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Structure and Dependencies
‣ All styles minimize

coupling in a specific
way

‣ Excessive dependencies
are not a good idea.

‣ Key issue:

‣ Identifying likely
change points.

‣ Reduce direct
dependencies on
these points.

C1

Third Party
Component

Diagram Key

Component

Dependency

C1 C2 C3 C4

C

Third Party
Component

AL

Four components are directly dependent on a
third party component. If the third party
component is replaced with a new component
with a different interface, changes to each
component are likely.

Only the AL (abstraction layer) component is directly
dependent on the third party component. If the third party
component is replaced, changes are restricted to the AL
component only

C2 C4C3

[GORTON]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Good properties of an architecture
‣ Result in a consistent set of principled techniques

‣ Resilient in the face of (inevitable) changes

‣ Source of guidance through product lifetime

‣ Reuse of established engineering knowledge

[CZARNECKI]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

“Pure” architectural styles
‣ Pure architectural styles are rarely used in practice

‣ Systems in practice:

‣ Regularly deviate from pure styles.

‣ Typically feature many architectural styles.

‣ Architects must understand the “pure” styles to
understand the strength and weaknesses of the
style as well as the consequences of deviating
from the style.

[CZARNECKI]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Role of context
‣ Neitzsche believed that all judgements were

heavily dependent on individual perspective and
that truth was the subject to interpretation

‣ The role of context is fundamental to the decisions
surrounding your architecture

‣ Two very similar applications may require
fundamentally different architectures for
seemingly trivial reasons

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural
Styles

Language
Based

Layered Dataflow

Shared
Memory

Interpreter
Implicit

Invocation

Peer-to-Peer

Main program &
Subroutines

Object-
oriented

Virtual
Machine

Client
Server

Batch-
sequential

Pipe-and-Filter

Blackboard

Rule-based Interpreter

Mobile
code

Publish-
subscribe

Event-based

[TOPOLOGY FROM
TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Language-based
‣ Influenced by the languages that implement them

‣ Lower-level, very flexible

‣ Often combined with other styles for scalability

Examples:
Main & subroutine
Object-oriented

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Layered
‣ Layered systems are

hierarchically organized
providing services to upper
layers and acting as clients
for lower layers

‣ Lower levels provide more
general functionality to more
specific upper layers

‣ In strict layered systems,
layers can only communicate
with adjacent layers

[CZARNECKI]

Examples:
Virtual machine

Client-server

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Dataflow
‣ A data flow system is one in which:

‣ The availability of data controls computation

‣ The structure of the design is determined by the
orderly motion of data between components

‣ The pattern of data flow is explicit

‣ Variations:

‣ Push vs. pull

‣ Degree of concurrency

‣ Topology

[CZARNECKI]

Examples:
Batch-sequential

Pipe-and-filter

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Shared state
‣ Characterized by:

‣ Central store that represents system state

‣ Components that communicate through shared
data store

‣ Central store is explicitly designed and structured

Examples:
Blackboard
Rule-based

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Interpreter
‣ Commands interpreted dynamically

‣ Programs parse commands and act accordingly,
often on some central data store

Examples:
Interpreter

Mobile code

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Implicit invocation
‣ In contrast to other patterns, the flow of control is

“reversed”

‣ Commonly integrate tools in shared environments

‣ Components tend to be loosely coupled

‣ Often used in:

‣ UI applications (e.g., MVC)

‣ Enterprise systems

‣ (e.g., WebSphere)

Examples:
Publish-subscribe

Event-based

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Survey Feedback
‣ Feedback on early evaluation forms

‣ Map activities back to intended learning outcomes

‣ Critique an existing architecture or design.

‣ Differentiate how various architectural styles and

design patterns enhance and degrade a system’s
functional-and non-functional properties.

‣ Generate and justify and architecture and/or design
given a collection of requirements.

‣ Produce and present concise and unambiguous
architecture and design descriptions.

‣ Create and implement an architecture and design,
refining it into a complete system.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural Analogy
‣ Kitchen design activity.

‣ What are the architectural components?

‣ How are they related to each other?

‣ What connectors exist?

‣ Why did you choose they components /
connectors / topology you did?

‣ How do the connectors bind the components?

‣ Why is software arch. like traditional arch.?

‣ Why is software arch. not like traditional arch.?

1/4

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural Decomposition
‣ Generate an architecture for an automated

shopping cart.

‣ Identify the key components and connectors.

‣ Derive a system topology.

‣ Justify your decomposition.

‣ Why these components?

‣ Does the architecture adequately capture the
broad system goals?

‣ What are the strengths and weaknesses of the
proposed architecture?

2/4

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural Tradeoffs
‣ Generate an architecture for a context-aware

notification system.

‣ Identify NFPs for a given stakeholder.

‣ Justify why those NFPs matter.

‣ Determine how those NFPs influence the
architecture of the system.

‣ Compare the architectures derived when
different stakeholders care about divergent
NFPs.

‣ Understand how NFPs can be in tension with
each other.

3/4

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Completeness & Consistency
‣ The Spec is Right.

‣ For a given system description, can we identify:

‣ Aspects that are inconsistent

‣ Aspects that are incomplete

‣ How can we build a description that all
stakeholders can understand and reason about?

‣ What is the right level of abstraction for an
architectural document?

‣ What tools and techniques can help us generate
complete and consistent system descriptions?

4/4

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Peer to Peer
‣ Network of loosely-coupled peers

‣ Peers act as clients and servers

‣ State and logic are decentralized amongst peers

‣ Resource discovery a fundamental problem

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Early Evaluation Feedback
‣ Video points:

‣ More details in video / recap in class?

‣ Move a bit of the video content into class.

‣ Why not more examples in the videos?

‣ Can’t ask questions during videos.

‣ “If you’re not watching the videos @1.5x you’re doing it wrong”

‣ In-class activities:

‣ Initial activities could have used greater background.

‣ Exercises should have related sample questions.

‣ Mobile-dev course should be a prerequisite.

‣ Have one web address / use normal website.

