
Lecture 28 - Wednesday March 20 2013.

Material and some slide content from:
- Krzysztof Czarnecki
- Ian Sommerville
- Head First Design Patterns

MVC / MVP
Dependency Injection
Reid Holmes



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Background
‣ MVC started w/ Smalltalk-80

‣ Java UI frameworks & EJBs reignited interest

‣ Also prevalent in GWT and .NET development



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

MVC Motivation
‣ UI changes more frequently than business logic
‣ e.g., layout changes (esp. in web applications)

‣ The same data is often displayed in different ways
‣ e.g., table view vs chart view
‣ The same business logic can drive both

‣ Designers and developers are different people
‣ Testing UI code is difficult and expensive
‣ Main Goal: Decouple models and views
‣ Increase maintainability/testability of system
‣ Permit new views to be developed



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Model
‣ Contains application data

‣ This is often persisted to a backing store

‣ Does not know how to present itself

‣ Is domain independent

‣ Are often Subjects in the Observer pattern



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

View
‣ Presents the model to the user

‣ Allows the user to manipulate the data

‣ Does not store data

‣ Is configurable to display different data



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Controller
‣ Glues Model and View together

‣ Updates the view when the Model changes

‣ Updates the model when the user manipulates the 
view

‣ Houses the application logic

‣ Loose coupling between Model and others

‣ View tightly cohesive with its Controller



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Abstract topology
Controller

View

Model

<<updates state>>

<<changes>>

<<retrieves state>>

<<notifies of state changes>>

1

2

3
4



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Concrete topology

ViewController

MobileView

Model

BrowserView TabletView MockView

Factory f = GWT.create(Factory.class);
ViewController c = new ViewController();
View v = f.createView(c);

[gwt.xml maps Factory.class
 to the right type]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Interaction mechanism
‣ User interacts with the UI (View)

‣ UI (View) notifies controller of changes

‣ Controller handles notifications, processing them 
into actions that can be performed on the model

‣ Controller modifies the model as required

‣ If the model changes, it fires modification events

‣ The view responds to the modification events



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Benefits and tradeoffs
‣ Pro:
‣ Decouple view from model
‣ Support multiple views [collaborative views]
‣ Maintainability [add new views]
‣ Split teams [relieve critical path]

‣ Testability [reduce UI testing]
‣ Con:
‣ Complexity [indirection, events]
‣ Efficiency [frequent updates, large models]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

MVP Motivation
‣ Take MVC a tiny bit further:

‣ Enhance testability

‣ Further separate Designers from Developers

‣ Leveraged by both GWT and .NET



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Model
‣ Contains application data

‣ This is often persisted to a backing store

‣ Does not know how to present itself

‣ Is domain independent

‣ Often fires events to an Event Bus



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

View
‣ Thin UI front-end for controller

‣ Does not store data

‣ Can be interchanged easily

‣ Does not ever see or manipulate Model objects

‣ Only interacts with primitives

‣ e.g., (setUser(String) instead of setUser(User))



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Controller
‣ Glues Model and View together

‣ Updates the view when the Model changes

‣ Updates the model when the user manipulates the 
view

‣ Houses the application logic



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

MVP Topology

Presenter

View

Model

<<updates, retrieves state>>

<<notifies>> <<refresh>>

<<notifies of state 
changes>>

Event Bus

1

2 3

4



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Concrete MVP Topology

ViewController

MobileView

Model

BrowserView MockView

App Controller

OutlineController

OutlineView MockOutline

<<notifies of state 
changes>>

Event Bus



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Concrete Example
Factory f = GWT.create(Factory.class);
AppController ac = new AppController(f);
ac.showMain();
-->

View v = f.createView(new ViewController());
Outline o = f.createOutline(new OutlineController());

[gwt.xml maps Factory.class
 to the right type]

public interface IJoinTripView {

	 Widget asWidget();

	 public void setPresenter(Presenter presenter);

	 public interface Presenter {
	 	 void onCancel();

	 	 void onJoin(String string);
	 }
}



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Benefits and tradeoffs
‣ Same as MVC with improved:
‣ Decoupling of views from the model
‣ Split teams [relieve critical path]

‣ Testability [reduce UI testing]
‣ A little less complex than MVC [fewer events]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Dependency Injection
‣ Common problem: ‘how can we wire these 

interfaces together without creating a dependency 
on their concrete implementations?’

‣ This often challenges the ‘program to interfaces, 
not implementations ’ design principle

‣ Would like to reduce (eliminate) coupling 
between concrete classes

‣ Would like to be able to substitute different 
implementations without recompiling

‣ e.g., be able to test and deploy the same 
binary even though some objects may vary

‣ Solution: separate objects from their assemblers



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Goal
‣ Eliminate initialization statements. e.g.,

‣ Foo f = new ConcreteFoo();

‣ In dependency injection a third party (an injector)

‣ At a high level dependency injection:

‣ Takes a set of components (classes + interfaces)

‣ Adds a set of configuration metadata

‣ Provides the metadata to an injection framework

‣ Bootstraps object creation with a configured 
injector 



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Credit-card example


