
Lecture 27 -Monday, March 18, 2013.

Material and some slide content from:
 Taylor et. al.
 http://queue.acm.org/detail.cfm?id=1556050

Architecture in Practice:
Chrome
Reid Holmes

46 COMMUNICATIONS OF THE ACM | AUGUST 2009 | VOL. 52 | NO. 8

practice

user input events are exchanged via
such messages.

To prevent the rendering engine
from interacting with the operating
system directly, our Windows imple-
mentation of the sandbox runs with a
restricted Windows security token, a
separate and invisible Windows desk-
top, and a restricted Windows job
object.12 These security mechanisms
block access to any files, devices, and
other resources on the user’s comput-
er. Even if an attacker is able to exploit
a vulnerability and run arbitrary code
in the rendering engine, the sandbox
will frustrate the attacker’s attempts to
install malware on the user’s computer
or to read sensitive files from the user’s
hard drive. The attacker’s code could
send messages to the browser kernel
via the IPC channel, but we aim to keep
this interface simple and restricted.

Getting existing code bases such as
rendering engines to work fully within
this type of sandbox sometimes pres-
ents engineering challenges. For exam-
ple, the rendering engine typically loads
font files directly from the system’s font
directory, but our sandbox does not al-
low such file access. Fortunately, Win-
dows maintains a system-wide memory
cache of loaded fonts. We can thus load
any desired fonts in the browser-kernel
process, outside the sandbox, and the
rendering-engine process is then able
to access them from the cache.

There are a number of other tech-
niques for sandboxing operating-
system processes that we could have
used in place of our current sandbox.
For example, Internet Explorer 7 uses
a “low rights” mode that aims to block
unwanted writes to the file system.4
Other techniques include system-call
interposition (as seen recently in Xax2)
or binary rewriting (as seen in Native
Client14). Mac OS X has an operating
system-provided sandbox, and Linux
processes can be sandboxed using
AppArmor and other techniques. For
Windows, we chose our current sand-
box because it is a mature technology
that aims to provide both confidential-
ity and integrity for the user’s resourc-
es. As we port Google Chrome to other
platforms such as Mac and Linux, we
expect to use a number of different
sandboxing techniques but keep the
same security architecture.

Exploit Mitigation. Google Chrome

The window of vulnerability. ! Brows-
ers can reduce this window by improv-
ing the user experience for installing
browser updates, thus minimizing the
number of users running old versions
that lack security patches.

The frequency of exposure. ! By warn-
ing users before they visit known ma-
licious sites, browsers can reduce the
frequency with which users interact
with malicious content.

Each of these mitigations, on its
own, improves security. Taken togeth-
er, the benefits multiply and help keep
users safe on today’s Web.

In this article, we discuss how our
team used these techniques to improve
security in Google Chrome. We hope
our firsthand experience will shed light
on key security issues relevant to all
browser developers.

Reducing Vulnerability Severity
In an ideal world, all software, includ-
ing browsers, would be bug-free and
lack exploitable vulnerabilities. Unfor-
tunately, every large piece of software
contains bugs. Given this reality, we
can hope to reduce the severity of vul-
nerabilities by isolating a browser’s
complex components and reducing
their privileges.

Google Chrome incorporates sever-
al layers of defenses to protect the user
from bugs, as shown in Figure 1. Web
content itself is run within a JavaScript
virtual machine, which acts as one
form of a sandbox and protects differ-
ent Web sites from each other. We use
exploit barriers, such as address-space
layout randomization, to make it more

difficult to exploit vulnerabilities in
the JavaScript sandbox. We then use a
sandbox at the operating-system level
to limit the process itself from caus-
ing damage, even if exploits escape the
earlier security mechanisms. Here, we
discuss in more detail how these layers
of defense are used.

Security Architecture. Google
Chrome uses a modular architecture
that places the complex rendering en-
gine in a low-privilege sandbox, which
we discuss in depth in a separate re-
port.1 Google Chrome has two major
components that run in different op-
erating-system processes: a high-privi-
lege browser kernel and a low-privilege
rendering engine. The browser kernel
acts with the user’s authority and is
responsible for drawing the user in-
terface, storing the cookie and history
databases, and providing network ac-
cess. The rendering engine acts on
behalf of the Web principal and is not
trusted to interact with the user’s file
system. The rendering engine parses
HTML, executes JavaScript, decodes
images, paints to an off-screen buffer,
and performs other tasks necessary for
rendering Web pages.

To mitigate vulnerabilities in the
rendering engine, Google Chrome
runs rendering-engine processes in-
side a restrictive operating-system-lev-
el sandbox (see Figure 1). The sandbox
aims to prevent the rendering engine
from interacting with other processes
and the user’s operating system, ex-
cept by exchanging messages with the
browser kernel via an IPC channel.
All HTTP traffic, rendered pages, and

Figure 1. Layers of defense around Google Chrome’s rendering engine.

Browser Kernel
(trusted)

Browser Kernel Process Rendering Engine Process

OS/Runtime
Exploit Barriers

JavaScript Sandbox

Web Content
(untrusted)

OS/Runtime
Exploit Barriers

OS-Level Sandbox

IPC Channel

http://queue.acm.org/detail.cfm?id=1556050
http://queue.acm.org/detail.cfm?id=1556050

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

NFP: Security
‣ Security: “The protection afforded a system to

preserve its integrity, availability, and confidentiality
if its resources.”

‣ Confidentiality
‣ Preserving the confidentiality of information means preventing

unauthorized parties from accessing the information or perhaps
even being aware of the existence of the information. I.e., secrecy.

‣ Integrity
‣ Maintaining the integrity of information means that only authorized

parties can manipulate the information and do so only in authorized
ways.

‣ Availability
‣ Resources are available if they are accessible by authorized parties

on all appropriate occasions.

[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Security principles
‣ Security is a cross-cutting concern that cannot be

retroactively added to a system.

‣ Several principles exist for reasoning about design
decisions from a security perspective:
‣ Least privilege
‣ Fail-safe defaults
‣ Economy of mechanism
‣ Open design
‣ Separation of privilege
‣ Least common mechanism
‣ Psychological acceptability
‣ Defense in depth

[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Chrome
‣ Online content is insecure and can compromise:

‣ Confidentiality: Leak user data

‣ Integrity: Read/write arbitrary data on disk

‣ Availability: Crash host application and/or OS

Chrome relies on least privilege, separation
of privilege, and defense in depth to securely

parse and render insecure content.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Chrome architecture

46 COMMUNICATIONS OF THE ACM | AUGUST 2009 | VOL. 52 | NO. 8

practice

user input events are exchanged via
such messages.

To prevent the rendering engine
from interacting with the operating
system directly, our Windows imple-
mentation of the sandbox runs with a
restricted Windows security token, a
separate and invisible Windows desk-
top, and a restricted Windows job
object.12 These security mechanisms
block access to any files, devices, and
other resources on the user’s comput-
er. Even if an attacker is able to exploit
a vulnerability and run arbitrary code
in the rendering engine, the sandbox
will frustrate the attacker’s attempts to
install malware on the user’s computer
or to read sensitive files from the user’s
hard drive. The attacker’s code could
send messages to the browser kernel
via the IPC channel, but we aim to keep
this interface simple and restricted.

Getting existing code bases such as
rendering engines to work fully within
this type of sandbox sometimes pres-
ents engineering challenges. For exam-
ple, the rendering engine typically loads
font files directly from the system’s font
directory, but our sandbox does not al-
low such file access. Fortunately, Win-
dows maintains a system-wide memory
cache of loaded fonts. We can thus load
any desired fonts in the browser-kernel
process, outside the sandbox, and the
rendering-engine process is then able
to access them from the cache.

There are a number of other tech-
niques for sandboxing operating-
system processes that we could have
used in place of our current sandbox.
For example, Internet Explorer 7 uses
a “low rights” mode that aims to block
unwanted writes to the file system.4
Other techniques include system-call
interposition (as seen recently in Xax2)
or binary rewriting (as seen in Native
Client14). Mac OS X has an operating
system-provided sandbox, and Linux
processes can be sandboxed using
AppArmor and other techniques. For
Windows, we chose our current sand-
box because it is a mature technology
that aims to provide both confidential-
ity and integrity for the user’s resourc-
es. As we port Google Chrome to other
platforms such as Mac and Linux, we
expect to use a number of different
sandboxing techniques but keep the
same security architecture.

Exploit Mitigation. Google Chrome

The window of vulnerability. ! Brows-
ers can reduce this window by improv-
ing the user experience for installing
browser updates, thus minimizing the
number of users running old versions
that lack security patches.

The frequency of exposure. ! By warn-
ing users before they visit known ma-
licious sites, browsers can reduce the
frequency with which users interact
with malicious content.

Each of these mitigations, on its
own, improves security. Taken togeth-
er, the benefits multiply and help keep
users safe on today’s Web.

In this article, we discuss how our
team used these techniques to improve
security in Google Chrome. We hope
our firsthand experience will shed light
on key security issues relevant to all
browser developers.

Reducing Vulnerability Severity
In an ideal world, all software, includ-
ing browsers, would be bug-free and
lack exploitable vulnerabilities. Unfor-
tunately, every large piece of software
contains bugs. Given this reality, we
can hope to reduce the severity of vul-
nerabilities by isolating a browser’s
complex components and reducing
their privileges.

Google Chrome incorporates sever-
al layers of defenses to protect the user
from bugs, as shown in Figure 1. Web
content itself is run within a JavaScript
virtual machine, which acts as one
form of a sandbox and protects differ-
ent Web sites from each other. We use
exploit barriers, such as address-space
layout randomization, to make it more

difficult to exploit vulnerabilities in
the JavaScript sandbox. We then use a
sandbox at the operating-system level
to limit the process itself from caus-
ing damage, even if exploits escape the
earlier security mechanisms. Here, we
discuss in more detail how these layers
of defense are used.

Security Architecture. Google
Chrome uses a modular architecture
that places the complex rendering en-
gine in a low-privilege sandbox, which
we discuss in depth in a separate re-
port.1 Google Chrome has two major
components that run in different op-
erating-system processes: a high-privi-
lege browser kernel and a low-privilege
rendering engine. The browser kernel
acts with the user’s authority and is
responsible for drawing the user in-
terface, storing the cookie and history
databases, and providing network ac-
cess. The rendering engine acts on
behalf of the Web principal and is not
trusted to interact with the user’s file
system. The rendering engine parses
HTML, executes JavaScript, decodes
images, paints to an off-screen buffer,
and performs other tasks necessary for
rendering Web pages.

To mitigate vulnerabilities in the
rendering engine, Google Chrome
runs rendering-engine processes in-
side a restrictive operating-system-lev-
el sandbox (see Figure 1). The sandbox
aims to prevent the rendering engine
from interacting with other processes
and the user’s operating system, ex-
cept by exchanging messages with the
browser kernel via an IPC channel.
All HTTP traffic, rendered pages, and

Figure 1. Layers of defense around Google Chrome’s rendering engine.

Browser Kernel
(trusted)

Browser Kernel Process Rendering Engine Process

OS/Runtime
Exploit Barriers

JavaScript Sandbox

Web Content
(untrusted)

OS/Runtime
Exploit Barriers

OS-Level Sandbox

IPC Channel

