Material and some slide content from:
Taylor et. al.
http://queue.acm.org/detail.cfm?id=1556050

Architecture in Practice: Chrome

Reid Holmes

NFP: Security

Security: "The protection afforded a system to preserve its integrity, availability, and confidentiality if its resources."

Confidentiality

Preserving the confidentiality of information means preventing unauthorized parties from accessing the information or perhaps even being aware of the existence of the information. I.e., secrecy.

Integrity

Maintaining the integrity of information means that only authorized parties can manipulate the information and do so only in authorized ways.

Availability

Resources are available if they are accessible by authorized parties on all appropriate occasions.

Security principles

- Security is a cross-cutting concern that cannot be retroactively added to a system.
- Several principles exist for reasoning about design decisions from a security perspective:
 - Least privilege
 - Fail-safe defaults
 - Economy of mechanism
 - Open design
 - Separation of privilege
 - Least common mechanism
 - Psychological acceptability
 - Defense in depth

Chrome

- Online content is insecure and can compromise:
 - Confidentiality: Leak user data
 - Integrity: Read/write arbitrary data on disk
 - Availability: Crash host application and/or OS

Chrome relies on least privilege, separation of privilege, and defense in depth to securely parse and render insecure content.

Chrome architecture

