
Designing for Testability

Laura Inozemtseva

University of Waterloo

March 13, 2013

Designing for Testability 1/15

What is Testability?

“Any features that aid your ability to observe or control
software operations improve testability.” (Lessons Learned in
Software Testing, Kaner et al., pp. 123)

Before you code, think about what, where and how you want
to test

Designing for Testability 2/15

Your Architecture can Help or Hinder

Three examples:

1 MVC
2 Event-based
3 Pipe and filter

Designing for Testability 3/15

MVC

Testing on the ToiletTesting on the Toilet Feb 5, 2009

Be an MVP of GUI TestingBe an MVP of GUI Testing

With all the sport drug scandals of late, it's difficult to find good role models these days. However, when your role model is a
Domain Model (object model of the business entities), you don't need to cheat to be an MVP--Use Model-View-Presenter!

MVP is very similar to MVC (Model-View-Controller). In MVC, the presentation logic is shared by Controller and
View, as shown in the diagram below. The View is usually derived directly from visible GUI framework component,
observing the Model and presenting it visually to the user. The Controller is responsible for deciding how to translate user
events into Model changes. In MVP, presentation logic is taken over entirely by a Supervising Controller, also known
as a Presenter.

The View becomes passive, delegating to the Presenter.
public CongressionalHearingView() {
 testimonyWidget.addModifyListener(
 new ModifyListener() {
 public void modifyText(ModifyEvent e) {
 presenter.onModifyTestimony(); // presenter decides what action to take
 }});
}

The Presenter fetches data from the Model and updates the View.
public class CongressionalHearingPresenter {
 public void onModifyTestimony() {
 model.parseTestimony(view.getTestimonyText()); // manipulate model
 }
 public void setWitness(Witness w) {
 view.setTestimonyText(w.getTestimony()); // update view
 }
}

This separation of duties allows for more modular code, and also enables easy unit testing of the Presenter and the View.
public void testSetWitness() {
 spyView = new SpyCongressionalHearingView();
 presenter = new CongressionalHearingPresenter(spyView);
 presenter.setWitness(new Witness(“Mark McGwire”, “I didn't do it”));
 assertEquals(“I didn't do it”, spyView.getTestimonyText());
}

Note that this makes use of a perfectly legal injection -- Dependency Injection.

More information, discussion, and archives:
http://googletesting.blogspot.com

Copyright © 2007 Google, Inc. Licensed under a Creative Commons
Attribution–ShareAlike 2.5 License (http://creativecommons.org/licenses/by-sa/2.5/).

View Controller

Model

Passive View

Presenter
(Supervising Controller)

Model

MVC vs. MVP

user events

updates modelqueries model

forwards
user events

updates
model

updates view

state-change
events

state-change
 events

Figure from

http://commondatastorage.googleapis.com/gtb/TotT-2009-02-05.pdf

Designing for Testability 4/15

http://commondatastorage.googleapis.com/gtb/TotT-2009-02-05.pdf

Aside: Testing GUIs

Exponential number of test cases

GUI changes more than underlying code

How do you capture NFPs like usability?

Designing for Testability 5/15

Alternative to MVC: MVP

Testing on the ToiletTesting on the Toilet Feb 5, 2009

Be an MVP of GUI TestingBe an MVP of GUI Testing

With all the sport drug scandals of late, it's difficult to find good role models these days. However, when your role model is a
Domain Model (object model of the business entities), you don't need to cheat to be an MVP--Use Model-View-Presenter!

MVP is very similar to MVC (Model-View-Controller). In MVC, the presentation logic is shared by Controller and
View, as shown in the diagram below. The View is usually derived directly from visible GUI framework component,
observing the Model and presenting it visually to the user. The Controller is responsible for deciding how to translate user
events into Model changes. In MVP, presentation logic is taken over entirely by a Supervising Controller, also known
as a Presenter.

The View becomes passive, delegating to the Presenter.
public CongressionalHearingView() {
 testimonyWidget.addModifyListener(
 new ModifyListener() {
 public void modifyText(ModifyEvent e) {
 presenter.onModifyTestimony(); // presenter decides what action to take
 }});
}

The Presenter fetches data from the Model and updates the View.
public class CongressionalHearingPresenter {
 public void onModifyTestimony() {
 model.parseTestimony(view.getTestimonyText()); // manipulate model
 }
 public void setWitness(Witness w) {
 view.setTestimonyText(w.getTestimony()); // update view
 }
}

This separation of duties allows for more modular code, and also enables easy unit testing of the Presenter and the View.
public void testSetWitness() {
 spyView = new SpyCongressionalHearingView();
 presenter = new CongressionalHearingPresenter(spyView);
 presenter.setWitness(new Witness(“Mark McGwire”, “I didn't do it”));
 assertEquals(“I didn't do it”, spyView.getTestimonyText());
}

Note that this makes use of a perfectly legal injection -- Dependency Injection.

More information, discussion, and archives:
http://googletesting.blogspot.com

Copyright © 2007 Google, Inc. Licensed under a Creative Commons
Attribution–ShareAlike 2.5 License (http://creativecommons.org/licenses/by-sa/2.5/).

View Controller

Model

Passive View

Presenter
(Supervising Controller)

Model

MVC vs. MVP

user events

updates modelqueries model

forwards
user events

updates
model

updates view

state-change
events

state-change
 events

Figure from

http://commondatastorage.googleapis.com/gtb/TotT-2009-02-05.pdf

Designing for Testability 6/15

http://commondatastorage.googleapis.com/gtb/TotT-2009-02-05.pdf

Event-Based

Designing for Testability 7/15

Aside: Testing Parallel Programs

Very hard to do well

Some research into concurrent testing/debugging (e.g., Chess
from Microsoft Research)

Designing for Testability 8/15

Technique: Mock Objects

Mocks can increase isolation and performance

However, introduce maintenance overhead

What if the object being tested creates another object it uses?

Designing for Testability 9/15

Example

class Application {

...

public void run() {

View v = new View();

v.display();

...

Designing for Testability 10/15

Pipe and Filter

DITROFF FLOW:

file psfig refer et_al grap pic tbl eqn alg*
dotchart

scatmat

drag

dformat

dag

chem

flo

music

swizzle

dtroff

macros

indx

index
terms

ffortid bditroff pm psdit
laser

printer

screen

photo
type-
setter

Figure from Dan Berry’s slides

Designing for Testability 11/15

Summary

Each architecture has different strengths and weaknesses

Knowing about them helps you plan the what, where and how
of testing (extreme version: TDD)

Rule of thumb: decrease coupling

Designing for Testability 12/15

What We Didn’t Talk About

What tests do versus what users do

Identifying testability smells (Testability Explorer)

The tradeoff between adding complexity and catching bugs

...

Designing for Testability 13/15

Resources

GoogleTechTalks
(http://www.youtube.com/user/GoogleTechTalks)

Google’s testing blog
(http://googletesting.blogspot.ca/)

Lessons Learned in Software Testing – Kaner, Bach and
Pettichord

Designing for Testability 14/15

http://www.youtube.com/user/GoogleTechTalks
http://googletesting.blogspot.ca/

Activity

Discuss in project groups: how can you make your projects
more testable?

Designing for Testability 15/15

