
Lecture 18 - Friday February 15 2013.

Material and some slide content from:
- Head First Design Patterns Book
- GoF Design Patterns Book

Design Patterns B
Reid Holmes

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

GoF design patternsDesign Patterns
����������������
��

�
�������� ��
	��	
�� �������
��

�����
��������

����
���������
�

�	����

�
�������

���������

������
� ������

�
����

��!������

����
���

������

������
 ��
���

���"�����

�
�#�

$���
�
���

���������
�������������

��!!���

$��
���

�������

%�!������������

��!����

����
��

�����

��
�����

&�����

�
��

�
�

�
�

�

�
�

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Pattern vocabulary
‣ Shared vocabulary

‣ communicate qualities

‣ reduce verbosity

‣ focus on design

‣ increase understanding

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Observer example
‣ Weather data example (similar to Eclipse example)

‣ WeatherData

‣ temp, humidity, pressure

‣ calls newData() whenever something changes

‣ bad: update views directly from here

‣ WeatherViews

‣ Current View

‣ Forecast View

‣ Stats View

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Singleton
‣ Intent: “Ensure a class has only one instance”

‣ Motivation: For situations when having multiple
copies of an object is either unnecessary or
incorrect.

‣ Applicability:

‣ Situations when there must be only one copy of
a class.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Singleton
‣ Structure:

‣ Participants:

‣ an instance operation that retrieves the instance.

‣ may be responsible for creating instance.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Singleton
‣ Collaborations

‣ All collaboration via instance operation.

‣ Consequences:

‣ Controlled access to instance.
‣ Reduced name space.
‣ Permits variable number of instances.
‣ More flexible than class operation

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Singleton
‣ Implementation:

1.Ensure a unique instance.

2.Provide an easy access point.

‣ Related to:

‣ Can be used to create Abstract Factory, Builder,
and Prototype.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Observer
‣ Intent: Define a one-to-many relationship between

objects so that when an object changes state its
dependents are updated automatically

‣ Motivation: To maintain consistency between
multiple different objects without tightly coupling
them

‣ Applicability:

‣ When you want to compartmentalize
modifications to two dependent objects

‣ When you want to publish updates but not
couple classes

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Observer
‣ Structure:

‣ Participants:

‣ Subject: tracks observers and fires updates

‣ Observer: subscribes/unsubscribes to subjects,
receives updates

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Observer
‣ Collaborations

‣ Subjects call observer’s update method when
they change

‣ Subjects can forward data (push) or just send
blank update notifications (pull)

‣ Consequences:

‣ Reduce coupling between subject & observer

‣ Support broadcast communication
‣ Can result in expensive updates

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Observer
‣ Implementation:

1. Subjects track observers (abstract class helpful)

2.Caching updates

3. Push vs. pull

‣ Related to:

‣ Employed by MVC & MVP.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Composite
‣ Intent: “Enable a group of objects to be treated as

single object”

‣ Motivation: Differentiating between interior and
leaf nodes in tree-structured data data increases
system complexity.

‣ Applicability:

‣ If you notice you are treating groups and
individual of objects the same way

‣ Can also be used when primitives and objects
need to be treated identically

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Composite
‣ Participants:

‣ Component: base class

‣ Leaf: individual leaf node

‣ Composite: node that maintains a list of children
nodes

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Composite
‣ Implementation:

‣ 1) Composite maintains a list of child elements
and methods to maintain the children.

‣ 2) Composite object applies overridden
methods from the component across all child
methods.

‣ Known uses:

‣ Related to: Decorators are often used along with
the Composite pattern to augment objects while
grouping them.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Template Method
‣ Intent: “Define the skeleton of an algorithm

deferring some steps to client subclasses”

‣ Motivation: When two algorithms are largely the
same but differ in only a few small details the
algorithm can be encapsulated in a base class and
defer specific functionality to child classes.

‣ Applicability:

‣ Template method implements invariant parts of
the algorithm.

‣ Base class contains the majority of functionality,
reducing code duplication.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Template Method
‣ Participants:
‣ Base class, defining common functionality in

concrete method making calls to abstract ‘hook’
methods.

‣ Sub classes, overriding subclass-specific parts
of the algorithm.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Template Method
‣ Implementation:

‣ 1) Define template method in base class
implementing skeleton of algorithm that calls
hook methods (which can be either abstract or
provide default implementations).

‣ 2) Subclasses provide the hook methods that
are relevant to them.

‣ 3) Base class prevents template method from
being overridden (e.g., declare it final).

‣ Related to: Strategy is a composition-based
version of the template method (which is
inheritance-based).

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Strategy
‣ Intent: “Define a family of algorithms that can be

easily interchanged with each other”

‣ Motivation: Support the open/closed principle by
abstracting algorithms behind an interface; clients
use the interface while subclasses provide the
functionality and can be easily interchanged.

‣ Applicability:

‣ When you want to be able to replace a
behaviour at runtime (strategy reference can be
dynamically altered).

‣ When you want to have a family of behaviours
that might not be applicable for the client class.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Strategy

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Strategy
‣ Participants:

‣ Context contains reference to chosen strategy
and invokes algorithm.

‣ Strategy interface declares algorithm structure.

‣ ConcreteStrategy implements algorithm.
Context does not use any methods not defined
in the Strategy interface.

‣ Consequences:

‣ Context uses the interface, not the concrete
class.

‣ Concrete classes can be easily exchanged.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Strategy
‣ Implementation:

‣ 1) Create strategy interface and reference in
client.

‣ 2) Interact only through interface.

‣ Related to: Abstract Factory uses inheritance to
achieve a subset of what Strategy does though
a composition-based behaviour. Decorators are
similar but focus on extending the functionality
of a base class.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Adapter
‣ Intent: “Convert the interface of one class to make

it compatible with another class.”

‣ Motivation: Components often have incompatible
interfaces that cannot be used by a client but also
cannot be modified.

‣ Applicability:

‣ When an intermediate representation between
one component and another is required.

‣ When you want to isolate a client from changes
in an external component’s interface.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Adapter

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Adapter
‣ Participants:

‣ Client: Calls the adapter; is completely isolated
from the adaptee.

‣ Adapter: Forwards calls between client and
adapter. The adapter may have to interact with
multiple classes.

‣ Adaptee: Component being adapted.

‣ Alternatives:
‣ Both class and object adapters exist. Class

adapters use multiple inheritance to be an
instance of both objects simultaneously while
object adaptors rely on composition.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Adapter
‣ Implementation:

‣ 1) Client calls adapter.

‣ 2) Adapter marshals calls and interacts with
adaptee.

‣ Related to: Bridge is an a priori version of the
adapter pattern. The object-based Adapter heavily
leverages delegation. Facades define new
interfaces simplifying existing modules.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Facade
‣ Intent: “Provide a unified, higher-level, interface to

a whole module making it easier to use.”

‣ Motivation: Composing classes into subsystems
reduces complexity. Using a Facade minimizes the
communication dependencies between
subsystems.

‣ Applicability:

‣ When you want a simple interface to a complex
subsystem.

‣ There are many dependencies between clients
and a subsystem.

‣ You want to layer your subsystems.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Facade

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Facade
‣ Participants:

‣ Facade

‣ Subsystem classes

‣ Collaborations:

‣ Clients interact subsystem via Facade.

‣ Consequences:

‣ Shields clients from subsystem components.
‣ Promotes weak coupling. (strong within subsystem, weak between them)

‣ Doesn’t prevent access to subsystem classes.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Facade
‣ Implementation:

‣ 1) Analyze client / subsystem tangling.

‣ 2) Create interface. Abstract factories can also
be used to add further decoupling.

‣ Known uses: Varied.

‣ Related to: Abstract Factory can be used with
Facade to create subsystem objects. Facades are
frequently Singletons. Abstracts functionality
similar to Mediator but does not concentrate on
communication.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Command
‣ Intent: “Encapsulate requests enabling clients to

log / undo them as required.”

‣ Motivation: In situations where you need to be
able to make requests to objects without knowing
anything about the request itself or the receiver of
the request, the command pattern enables you to
pass requests as objects.

‣ Applicability:
‣ Parameterize requests.
‣ Specify, queue, and log actions.
‣ Support undo.
‣ Model high-level operations on primitive

operations.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Command
‣ Structure

‣ Participants:
‣ Command / ConcreteCommand
‣ Client
‣ Invoker
‣ Receiver

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Command
‣ Collaborations:
‣ Client creates ConcreteCommand and specifies

receiver.
‣ Invoker stores ConcreteCommand object.
‣ Invoker requests execute on Command; stores

state for undoing prior to execute (if undoable).
‣ Concrete invokes operations on its receiver to

perform request.
‣ Consequences:
‣ Decouples the invoker from the object that

knows how to perform an action.
‣ Commands are first-class objects.
‣ Commands can be assembled into composite.
‣ Adding new commands is easy.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Command
‣ Implementation:

‣ 1) How smart should a command be?

‣ 2) Support undo/redo.

‣ 3) Avoiding error accumulation in the undo
process.

‣ Related to: Composite commands can be created;
the Memento pattern can store undo state.
Commands often use Prototype when they need
to be stored for undo/redo.

