
Lecture 15 - Monday February 11, 2013.

Material and some slide content from:
- Mehdi Amoui Kalareh
- Derek Rayside
- Steve Easterbrook
- David Budgen

Design Qualities
Reid Holmes



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Software design
‣ Designers control risk by limiting unknown factors

‣ e.g., to reduce risk they can:

‣ Compose existing components in a novel way

‣ Compose new components in a known way

‣ All software quality measures are relative

‣ e.g., how would you measure the quality of a 
chair?

‣ construction quality? aesthetic quality? fitness 
for purpose?



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Software design
‣ Predominant quality concern: fitness for purpose

‣ Does it do what it should?

‣ Does it do it as the users require?

‣ Is it reliable / safe / fast / secure enough?

‣ Is it affordable? Will it be finished on time?

‣ Can it be adapted in the future?

‣ Questions are intermingled between software and 
its domain



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Measuring quality

5

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Measuring Quality

➜ We have to turn our vague ideas about quality into
measurables

The Quality Concepts
(abstract notions of
quality properties)

Measurable Quantities
(define some metrics)

Counts taken from
Design Representations

(realization of the metrics)

usabilityusability

minutes
taken for
some user
task???

minutes
taken for
some user
task???

time taken
to learn

how to use?

time taken
to learn

how to use?

complexitycomplexity

count
procedure
calls???

count
procedure
calls???

information
flow between

modules?

information
flow between

modules?

reliabilityreliability

run it and
count crashes
per hour???

run it and
count crashes
per hour???

mean time
to failure?
mean time
to failure?

examples...

Source: Budgen, 1994, pp60-1

6

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Four Key Quality Concepts

➜ Reliability
! designer must be able to predict how the system will behave:

! completeness - does it do everything it is supposed to do? (e.g. handle all
possible inputs)

! consistency - does it always behave as expected? (e.g. repeatability)
! robustness - does it behave well under abnormal conditions? (e.g. resource

failure)

➜ Efficiency
! Use of resources such as processor time, memory, network bandwidth

! This is less important than reliability in most cases

➜ Maintainability
! How easy will it be to modify in the future?

! perfective, adaptive, corrective

➜ Usability
! How easy is it to use?

Source: Budgen, 1994, pp65-7

7

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Boehm’s NFR list

General 
utility

portability

As-is utility

Maintainability

reliability

efficiency

usability

testability

understandability

modifiability

device-independence

self-containedness

accuracy

completeness

robustness/integrity

consistency

accountability

device efficiency

accessibility

communicativeness

self-descriptiveness

structuredness

conciseness

legibility

augmentability

Source: See Blum, 1992, p176

8

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

McCall’s NFR list

Product operation

usability

Product revision

Product transition

integrity

maintainability

testability

reusability

portability

interoperability

operability
training

I/O volume

Access control
Access audit
Storage efficiency

consistency

instrumentation
expandability
generality
Self-descriptiveness
modularity
machine independence
s/w system independence
comms. commonality

efficiency

correctness

reliability

flexibility

communicatativeness

I/O rate

execution efficiency

Source: See van Vliet 2000, pp111-3

traceability
completeness
accuracy
error tolerance

simplicity
conciseness

data commonality



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Quality attributes	
‣ Simplicity

‣ “There are two ways of constructing a software 
design. One way is to make it so simple that 
there are no obvious deficiencies. And the other 
is to make it so complicated that there are no 
obvious deficiencies.” -- Hoare [1981]

‣ Meets goals without extraneous embellishment

‣ Measured by its converse --> complexity



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Coupling

9

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Measurable Predictors of Quality
➜ Simplicity

! the design meets its objectives and has no extra embellishments
! can be measured by looking for its converse, complexity:

! control flow complexity (number of paths through the program)
! information flow complexity (number of data items shared)
! name space complexity (number of different identifiers and operators)

➜ Modularity
! different concerns within the design have been separated
! can be measured by looking at:

! cohesion (how well components of a module go together)
! coupling (how much different modules have to communicate)

Source: Budgen, 1994, pp68-74

10

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Coupling
Given two units (e.g. methods, classes, modules, …), A and B:

Form Features Desirability

Data coupling A & B communicate by
simple data only

High (use parameter passing &
only pass necessary info)

Stamp coupling A & B use a common
type of data

Okay (but should they be
grouped in a data abstraction?)

Control coupling
(activating)

A transfers control to
B by procedure call Necessary

Control coupling
(switching)

A passes a flag to B to
tell it how to behave

Undesirable (why should A
interfere like this?)

Common environment
coupling

A & B make use of a
shared data area
(global variables)

Undesirable (if you change
the shared data, you have to
change both A and B)

Content coupling
A changes B’s data, or
passes control to the

middle of B
Extremely Foolish (almost
impossible to debug!)

Form Features Desirability

Data coupling A & B communicate by
simple data only

High (use parameter passing &
only pass necessary info)

Stamp coupling A & B use a common
type of data

Okay (but should they be
grouped in a data abstraction?)

Control coupling
(activating)

A transfers control to
B by procedure call Necessary

Control coupling
(switching)

A passes a flag to B to
tell it how to behave

Undesirable (why should A
interfere like this?)

Common environment
coupling

A & B make use of a
shared data area
(global variables)

Undesirable (if you change
the shared data, you have to
change both A and B)

Content coupling
A changes B’s data, or
passes control to the

middle of B
Extremely Foolish (almost
impossible to debug!)

Source: See van Vliet 2000, pp301-2

11

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Cohesion
How well do the contents of a procedure (module,

package,…) go together?
Form Features Desirability

Data cohesion all part of a well defined data
abstraction Very High

Functional cohesion all part of a single problem solving
task High

Sequential cohesion outputs of one part form inputs to
the next Okay

Communicational
cohesion

operations that use the same input
or output data Moderate

Procedural cohesion a set of operations that must be
executed in a particular order Low

Temporal cohesion elements must be active around the
same time (e.g. at startup) Low

Logical cohesion elements perform logically similar
operations (e.g. printing things) No way!!

Coincidental
cohesion

elements have no conceptual link
other than repeated code No way!!

Form Features Desirability

Data cohesion all part of a well defined data
abstraction Very High

Functional cohesion all part of a single problem solving
task High

Sequential cohesion outputs of one part form inputs to
the next Okay

Communicational
cohesion

operations that use the same input
or output data Moderate

Procedural cohesion a set of operations that must be
executed in a particular order Low

Temporal cohesion elements must be active around the
same time (e.g. at startup) Low

Logical cohesion elements perform logically similar
operations (e.g. printing things) No way!!

Coincidental
cohesion

elements have no conceptual link
other than repeated code No way!!

Source: van Vliet 1999, pp299-300 (after Yourdon & Constantine)

12

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Typical cohesion problems
➜ Syntactic structure

! cohesion is all about program semantics
! if you use syntactic measures to decide how to design procedures…

! e.g. length, no of loops, etc
! …your design will lack coherence

➜ Hand optimization
! removing repeated code is often counter-productive
! it makes the program harder to modify
! unless the repeated code represents an abstraction

➜ Complicated explanations
! if the only way to explain a procedure is to describe its internals…

! …it is probably incoherent
! look for simple abstractions that can be described succinctly

➜ Naming problems
! if it is hard to think of a simple descriptive name for a procedure…

! …it is probably incoherent



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Cohesion

9

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Measurable Predictors of Quality
➜ Simplicity

! the design meets its objectives and has no extra embellishments
! can be measured by looking for its converse, complexity:

! control flow complexity (number of paths through the program)
! information flow complexity (number of data items shared)
! name space complexity (number of different identifiers and operators)

➜ Modularity
! different concerns within the design have been separated
! can be measured by looking at:

! cohesion (how well components of a module go together)
! coupling (how much different modules have to communicate)

Source: Budgen, 1994, pp68-74

10

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Coupling
Given two units (e.g. methods, classes, modules, …), A and B:

Form Features Desirability

Data coupling A & B communicate by
simple data only

High (use parameter passing &
only pass necessary info)

Stamp coupling A & B use a common
type of data

Okay (but should they be
grouped in a data abstraction?)

Control coupling
(activating)

A transfers control to
B by procedure call Necessary

Control coupling
(switching)

A passes a flag to B to
tell it how to behave

Undesirable (why should A
interfere like this?)

Common environment
coupling

A & B make use of a
shared data area
(global variables)

Undesirable (if you change
the shared data, you have to
change both A and B)

Content coupling
A changes B’s data, or
passes control to the

middle of B
Extremely Foolish (almost
impossible to debug!)

Form Features Desirability

Data coupling A & B communicate by
simple data only

High (use parameter passing &
only pass necessary info)

Stamp coupling A & B use a common
type of data

Okay (but should they be
grouped in a data abstraction?)

Control coupling
(activating)

A transfers control to
B by procedure call Necessary

Control coupling
(switching)

A passes a flag to B to
tell it how to behave

Undesirable (why should A
interfere like this?)

Common environment
coupling

A & B make use of a
shared data area
(global variables)

Undesirable (if you change
the shared data, you have to
change both A and B)

Content coupling
A changes B’s data, or
passes control to the

middle of B
Extremely Foolish (almost
impossible to debug!)

Source: See van Vliet 2000, pp301-2

11

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Cohesion
How well do the contents of a procedure (module,

package,…) go together?
Form Features Desirability

Data cohesion all part of a well defined data
abstraction Very High

Functional cohesion all part of a single problem solving
task High

Sequential cohesion outputs of one part form inputs to
the next Okay

Communicational
cohesion

operations that use the same input
or output data Moderate

Procedural cohesion a set of operations that must be
executed in a particular order Low

Temporal cohesion elements must be active around the
same time (e.g. at startup) Low

Logical cohesion elements perform logically similar
operations (e.g. printing things) No way!!

Coincidental
cohesion

elements have no conceptual link
other than repeated code No way!!

Form Features Desirability

Data cohesion all part of a well defined data
abstraction Very High

Functional cohesion all part of a single problem solving
task High

Sequential cohesion outputs of one part form inputs to
the next Okay

Communicational
cohesion

operations that use the same input
or output data Moderate

Procedural cohesion a set of operations that must be
executed in a particular order Low

Temporal cohesion elements must be active around the
same time (e.g. at startup) Low

Logical cohesion elements perform logically similar
operations (e.g. printing things) No way!!

Coincidental
cohesion

elements have no conceptual link
other than repeated code No way!!

Source: van Vliet 1999, pp299-300 (after Yourdon & Constantine)

12

University of Toronto Department of Computer Science

© 2001, Steve Easterbrook

Typical cohesion problems
➜ Syntactic structure

! cohesion is all about program semantics
! if you use syntactic measures to decide how to design procedures…

! e.g. length, no of loops, etc
! …your design will lack coherence

➜ Hand optimization
! removing repeated code is often counter-productive
! it makes the program harder to modify
! unless the repeated code represents an abstraction

➜ Complicated explanations
! if the only way to explain a procedure is to describe its internals…

! …it is probably incoherent
! look for simple abstractions that can be described succinctly

➜ Naming problems
! if it is hard to think of a simple descriptive name for a procedure…

! …it is probably incoherent



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Spotting incoherency
‣ An operation’s description is full of ‘and’ clauses:

‣ e.g.,

‣ Results in temporal cohesion, logical cohesion

‣ An operation’s description has many ‘if..then..else’

‣ e.g.,

‣ Results in control coupling, coincidental 
cohesion, logical cohesion



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Cognitive dimensions
‣ Premature commitment
‣ decision made with insufficient data that constrains future choices

! - encouraging out-of-order decision making can help, locked-in process == undesirable

‣ Hidden dependencies
‣ some deps may be obvious (e.g., static), but others may be latent (e.g., temporal)

‣ Secondary notation
‣ non-obvious relationships may be meaningful or provide context (why patterns good)

‣ Viscosity
‣ resistence to change



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Design Principles
‣ Some high-level advice exists in the form of 

principles that can help guide design decisions.

‣ SOLID represents common subset of these:

‣ Single Responsibility

‣ Open/Close

‣ Liskov Substitution Principle

‣ Inversion of Control

‣ Dependency Inversion



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Design principles
‣ Single Responsibility

‣ Classes should have only one major task

‣ Insulates classes from one another

‣ Open/Close

‣ Classes should be open for extension but 
closed to modification

‣ If a class needs to be extended, try to do it 
through subclassing to minimize impact on 
existing clients



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Design principles
‣ Liskov substitution principle

‣ Subtypes should behave as their parent types

‣ aka a program should still behave correctly 
should two subtypes of a common be 
interchanged

‣ Interface segregation

‣ Only place key methods in interfaces

‣ Clients should not need to support methods that 
are irrelevant to their behaviour

‣ This can lead to a larger number of smaller 
interfaces in practice



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Design principles
‣ Dependency inversion

‣ Also known as the ‘hollywood principle’ or 
‘inversion of control’

‣ High-level methods should not depend on 
lower-level modules

‣ Minimizes direct coupling between concrete 
classes



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Lower-level principles
‣ Encapsulate what varies

‣ This is a key concern to increase reusability and 
reduce the impact regression bugs

‣ Program to interfaces, not implementations

‣ Reduces coupling between classes

‣ Favour composition over inheritance

‣ Enables runtime behaviour changes and makes 
code easier to evolve in the future

‣ Strive for loose coupling



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Why design patterns?

Leverage existing 
design knowledge

Enhance flexibility 
for future change

Increase reusability 
of developed code

Ease communication by 
using a shared vocabulary



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

GoF design patternsDesign Patterns
����������������
��

�
�������� ��
	��	
�� �������
��

�����
��������

����
���������
�

�	����


�
�������

���������

������
� ������

�
����

��!������

����
���


������

������
 ��
���

���"�����

�
�#�

$���
�
���


���������
�������������

��!!���

$��
���


�������


%�!������������

��!����

����
��


�����

��
�����

&�����


�
��

�
�

�
�

�

�
�



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Design patterns
‣ Design patterns are:

‣ Common solutions to a recurring design problems.

‣ Abstract recurring structures.

‣ Comprises of class and/or object:
‣ Dependencies
‣ Structures
‣ Interactions
‣ Conventions

‣ Names the design structure explicitly.

‣ Distills design experience.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Design patterns
‣ Design patterns have four main parts:

1.Name
2.Problem
3.Solution
4.Consequences / trade-offs

‣ Are language-independent.

‣ Are “micro-architectures”

‣ Cannot be mechanically applied
‣ Must be translated to a context by the developer.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Henri Poincaré
‣ “Science is built up of facts as a 

house is built of stones, but an 
accumulation of facts is no more 
a science than a heap of stones 
is a house.”


