Material and some slide content from:
- Mehdi Amoui Kalareh

- Derek Rayside

- Steve Easterbrook

- David Budgen

Design Qualities
Reid Holmes

Lecture 15 - Monday February 11, 2013.




Software design

» Designers control risk by limiting unknown factors
» e.g., to reduce risk they can:
» Compose existing components in a novel way
» Compose new components in a known way
» All software quality measures are relative

» e.g., how would you measure the quality of a
chair?

» construction quality? aesthetic quality? fitness
for purpose?

R
* REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



Software design

» Predominant quality concern: fitness for purpose
» Does it do what it should?
» Does it do it as the users require?
» Is it reliable / safe / fast / secure enough?
» |Is it affordable? Will it be finished on time?
» Can it be adapted in the future?

» Questions are intermingled between software and
its domain

R
* REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



Measuring quality

examples. ..
The Quality Concepts

(abstract notions of ‘ reliability I ‘ complexity I ‘ usability I

quality properties)

\ 4 \ 4
\ 4
Measurable Quantities mean time f'l”f°';m$“°" T':‘el taken
. . to fGilUf‘C? OW beTween O learn
(define some metrics) modules? how to use?

Counts taken from run it and count minutes
Design Representations count crashes procedure taken for
(realization of the metrics) | Pper hour??? calls??? some user

task???

R
a REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



Quality attributes

» Simplicity

» “There are two ways of constructing a software
design. One way is to make it so simple that
there are no obvious deficiencies. And the other

IS to make it so complicated that there are no
obvious deficiencies.” -- Hoare [1981]

» Meets goals without extraneous embellishment

» Measured by its converse --> complexity

R
* REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



Coupling

Given two units (e.g. methods, c/ass:és, modules, ..), A and B:

Form Features Desirability

A & B communicate by |High (use parameter passing &

Data coupling simple data only only pass necessary info)

A & B use a common |Okay (but should they be

Stamp coupling type of data grouped in a data abstraction?)
Control coupling A transfers control to N |
(activating) B by procedure call SEEry

Control coupling A passes a flag to B to |Undesirable (why should A
(switching) tell it how to behave |interfere like this?)

A & B make use of a |Undesirable (if you change

Common environment shared data area the shared data, you have to

coupling (global variables) change both A and B)
A changes B's data, or .
Content coupling S G o e Extremely Foolish (almost

middle of B impossible to debug!)

o
—'—2 REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHTECTURE



Cohesion

How well do the contents of a procedure (module,
nackage, ...) go together?

Form Features Desirability

: all part of a well defined data .
Data cohesion abstraction Very High
. . Il part single problem solvin .
Functional cohesion | @ Part of a single problem solving High
task
: : outputs of one part form inputs to
Sequential cohesion the nesxt
Communicational operations that use the same input Moderat
cohesion or output data eyt
. a set of operations that must be
Procedural cohesion executed in a particular order Low
- | cohesi elements must be active around the L I
emporal cohesion same time (e.g. at startup) -l
: : elements perform logically similar
Logical cohesion operations (e.g. printing things) No way!!
Coincidental elements have no conceptual link N I
cohesion other than repeated code 2 A

o
—'_2 REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHTECTURE



Spotting Incoherency

» An operation’s description is full of ‘and’ clauses:
> e.g.,
» Results in temporal cohesion, logical cohesion

» An operation’s description has many ‘if..then..else’
> e.g.,

» Results in control coupling, coincidental
cohesion, logical cohesion

%
E.Q REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



Cognitive dimensions

» Premature commitment

» decision made with insufficient data that constrains future choices

- encouraging out-of-order decision making can help, locked-in process == undesirable

» Hidden dependencies

» some deps may be obvious (e.g., static), but others may be latent (e.g., temporal)

» Secondary notation

> non-obvious relationships may be meaningful or provide context (why patterns good)

» Viscosity

» resistence to change

R
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



Design Principles

» Some high-level advice exists in the form of
principles that can help guide design decisions.

» SOLID represents common subset of these:
» Single Responsibility
» Open/Close
» Liskov Substitution Principle
» Inversion of Control

» Dependency Inversion

-
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



Design principles

» Single Responsibility
» Classes should have only one major task
» Insulates classes from one another

» Open/Close

» Classes should be open for extension but
closed to modification

» |f a class needs to be extended, try to do it
through subclassing to minimize impact on
existing clients

R
* REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



Design principles
» Liskov substitution principle
» Subtypes should behave as their parent types
» aka a program should still behave correctly
should two subtypes of a common be
interchanged
» Interface segregation

» Only place key methods in interfaces

» Clients should not need to support methods that
are irrelevant to their behaviour

» This can lead to a larger number of smaller
interfaces in practice

E W
E REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE




Design principles

» Dependency inversion

» Also known as the ‘hollywood principle’ or
‘inversion of control’

» High-level methods should not depend on
lower-level modules

» Minimizes direct coupling between concrete
classes

e
l‘? REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



| ower-level principles

» Encapsulate what varies

» This Is a key concern to increase reusability and
reduce the impact regression bugs

» Program to interfaces, not implementations
» Reduces coupling between classes
» Favour composition over inheritance

» Enables runtime behaviour changes and makes
code easier to evolve in the future

» Strive for loose coupling

R
* REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



Why design patterns®

—ase communication by
using a shared vocabulary

Enhance flexibility
for future change

R —

Leverage existing

design knowledge
Increase reusab

0 — S

———

lity

of developed code

R —

——

% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

W



GoF design patterns

GoF Design Patterns

Croatonal J Sructral J Genaviora

Factory Method Adaptor - class Interpreter

Template Method

Abstract Factory
Builder
Prototype

Adaptor-object Chain of responsibility

Bridge Command
lterator
Mediator

Memento

Composite

Singleton Decorator
Facade
Observer
State

Strategy

Flyweight
Proxy

Visitor

class

object

R
a REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE




Design patterns

» Design patterns are:
» Common solutions to a recurring design problems.
» Abstract recurring structures.

» Comprises of class and/or object:

» Dependencies
» Structures

» Interactions

» Conventions

» Names the design structure explicitly.

» Distills design experience.

-
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



Design patterns

» Design patterns have four main parts:

1.Name

2.Problem

3. Solution

4.Consequences / trade-offs

» Are language-independent.
» Are “micro-architectures”

» Cannot be mechanically applied

» Must be translated to a context by the developer.

%
E.Q REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE



=

Henrl Poincaré

“Science Is built up of facts as a
house IS built of stones, but an

accumulation of facts i1Is no more
a sclence than a heap of stones

IS a house.”

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHTECTURE




