
Lecture 8 - Wednesday, January 23 2013.

Material and some slide content from:
- Emerson Murphy-Hill
- Software Architecture: Foundations, Theory, and Practice
- Essential Software Architecture

Architectural Styles
Reid Holmes



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Objectives
‣ What are the benefits / pitfalls of different 

architectural approaches?

‣ What are the phases of the design process?

‣ What are some alternative design strategies? 
When are they necessary?

‣ Define: abstraction, reification, and SoC

‣ Identify key architectural style categories



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural approaches
‣ Creative

‣ Engaging

‣ Potentially unnecessary

‣ Dangerous

‣ Methodical

‣ Efficient when domain is familiar

‣ Predictable outcome

‣ Not always successful

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Design process
1.Feasibility stage:

• Identify set of feasible concepts

2.Preliminary design stage:

• Select and develop best concept

3.Detailed design stage:

• Develop engineering descriptions of concept

4.Planning stage:

• Evaluate / alter concept to fit requirements, also 
team allocation / budgeting

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Abstraction
‣ Definition:

‣ “A concept or idea not associated with a 
specific instance”

‣ Top down
‣ Specify ‘down’ to details from concepts

‣ Bottom up
‣ Generalize ‘up’ to concepts from details

‣ Reification:
‣ “The conversion of a concept into a thing”

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Level of discourse
‣ Consider application as a whole

‣ e.g., stepwise refinement

‣ Start with sub-problems

‣ Combine solutions as they are ready

‣ Start with level above desired application

‣ e.g., consider simple input as general parsing

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Separation of Concerns
‣ Decomposition of problem into independent parts

‣ In arch, separating components and connectors

‣ Complicated by:

‣ Scattering:

‣ Concern spread across many parts

‣ e.g., logging

‣ Tangling:

‣ Concern interacts with many parts

‣ e.g., performance



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural styles
‣ Some design choices are better than others

‣ Experience can guide us towards beneficial sets 
of choices (patterns) that have positive 
properties

‣ Such as?

‣ An architectural style is a named collection of 
architectural design decisions that:

‣ Are applicable to a given context

‣ Constrain design decisions

‣ Elicit beneficial qualities in resulting systems

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural styles
‣ A set of architectural design decisions that are 

applicable to a recurring design problem, and 
parameterized to account for different software 
development contexts in which that problem 
appears.

‣ e.g., Three-tier architectural pattern:

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Good properties of an architecture
‣ Result in a consistent set of principled techniques

‣ Resilient in the face of (inevitable) changes

‣ Source of guidance through product lifetime

‣ Reuse of established engineering knowledge

[CZARNECKI]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

“Pure” architectural styles
‣ Pure architectural styles are rarely used in practice

‣ Systems in practice:

‣ Regularly deviate from pure styles.

‣ Typically feature many architectural styles.

‣ Architects must understand the “pure” styles to 
understand the strength and weaknesses of the 
style as well as the consequences of deviating 
from the style.

[CZARNECKI]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Role of context
‣ Neitzsche believed that all judgements were 

heavily dependent on individual perspective and 
that truth was the subject to interpretation

‣ The role of context is fundamental to the decisions 
surrounding your architecture

‣ Two very similar applications may require 
fundamentally different architectures for 
seemingly trivial reasons



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural
Styles

Language
Based

Layered Dataflow

Shared
Memory

Interpreter
Implicit

Invocation

Peer-to-Peer

Main program &
Subroutines

Object-
oriented

Virtual
Machine

Client
Server

Batch-
sequential

Pipe-and-Filter

Blackboard

Rule-based Interpreter

Mobile
code

Publish-
subscribe

Event-based

[TOPOLOGY FROM 
TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Language-based
‣ Influenced by the languages that implement them

‣ Lower-level, very flexible

‣ Often combined with other styles for scalability

Examples:
Main & subroutine
Object-oriented



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Layered
‣ Layered systems are 

hierarchically organized 
providing services to upper 
layers and acting as clients 
for lower layers

‣ Lower levels provide more 
general functionality to more 
specific upper layers

‣ In strict layered systems, 
layers can only communicate 
with adjacent layers

[CZARNECKI]

Examples:
Virtual machine

Client-server



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Dataflow
‣ A data flow system is one in which:

‣ The availability of data controls computation

‣ The structure of the design is determined by the 
orderly motion of data between components

‣ The pattern of data flow is explicit

‣ Variations:

‣ Push vs. pull

‣ Degree of concurrency

‣ Topology

[CZARNECKI]

Examples:
Batch-sequential

Pipe-and-filter



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Shared state
‣ Characterized by:

‣ Central store that represents system state

‣ Components that communicate through shared 
data store

‣ Central store is explicitly designed and structured

Examples:
Blackboard
Rule-based



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Interpreter
‣ Commands interpreted dynamically

‣ Programs parse commands and act accordingly, 
often on some central data store

Examples:
Interpreter

Mobile code



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Implicit invocation
‣ In contrast to other patterns, the flow of control is 

“reversed”

‣ Commonly integrate tools in shared environments

‣ Components tend to be loosely coupled

‣ Often used in:

‣ UI applications (e.g., MVC)

‣ Enterprise systems 

‣ (e.g., WebSphere)

Examples:
Publish-subscribe

Event-based



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Peer to Peer
‣ Network of loosely-coupled peers

‣ Peers act as clients and servers

‣ State and logic are decentralized amongst peers

‣ Resource discovery a fundamental problem


