Creating and Analyzing
Software Architecture

Dr. Igor Ivkovic

livkovic@uwaterloo.ca

[with material from “Software Architecture: Foundations, Theory, and Practice”, by Taylor, Medvidovic, and
Dashofy, published by Wiley; and from “Object-Oriented Software Engineering”, by Bruegge and Dutolt,
published by Prentice Hall]

Objectives

Model the architecture using architectural views
Express architectural viewpoints using metamodels
Use quality attributes to drive architectural design

Architectural Views and Viewpoints /1

m [tis typically not feasible to capture everything we
want to model in a single architectural model

The model would be too big, complex, and confusing

m [nstead, we create several coordinated models, each
capturing a subset of the design decisions

Generally, the subset is organized around a particular
concern or other selection criteria

Architectural Views and Viewpoints /2

m The subset-model is called an “architectural view”
and the concern an “architectural viewpoint”
For instance, deployment viewpoint is concerned with
how software systems are deployed on hardware and
networking nodes
Instances of the deployment viewpoint are called
Views

See Kruchten’s “4+1 View Model of Software
Architecture” paper for additional viewpoints

Commonly-Used Viewpoints /1

m Logical Viewpoints:

Capture the logical entities in a system and how they are
Interconnected

Use UML component diagram to show interfaces and
decomposition between components

[Tester

«component»@ «component»@
.) - .
Operations Oj Administration
// r\ . .
IHardwareData O Q@' BillAdmin
«Component»g «component»{'
DataStorage OJ Billing
IBillingData

m Physical Viewpoints:

Capture the physical (often hardware) entities in a system and
how they are interconnected

Commonly-Used Viewpoints /2

m Deployment Viewpoints:
Capture how logical entities are mapped onto physical entities
Can combine the deployment and physical viewpoints into one

using UML deployment diagrams

:DBMS

<<device>>
:WebServer :ApplicationServer
{OS=Solaris}
<<RMI>> <<JDBC>> «component>{|

«componentH | «component | DataStorage
Userinterface Administration

<<MessageBus>>

<<device>>
Mainframe

Commonly-Used Viewpoints /3

m Concurrency/Process Viewpoints:
Capture how concurrency and threading will be managed

In a system
<<process>> <<thread>> <<process>>
Operations [reetiTest HardwareTester——— Administration
+Store Admin Data
Store H/W Dat <<process>> +Store Billing Data <<t.hre.a >
+Store ata
Database Billing

m Behavioral Viewpoints:
Capture the expected behavior of (parts of) a system
System scenarios using UML collaboration diagrams

UML Component Diagram

m lllustrate dependencies between architectural components at
design time, compilation time and runtime

Used to model the system in terms of components and
dependencies among the components

Also called “software wiring diagrams*

They show how the software components are wired together in
the overall application

m The dependencies (edges in the graph) are shown as
dashed lines with arrows from the client component to the
supplier component:

The lines are often also called connectors
The types of dependencies are implementation-language
specific
m Components can also be
Source code, linkable libraries, executables

UML Interfaces

m A UML interface describes a group of operations
used or created by UML components

m There are two types of interfaces: provided and
required interfaces

A provided interface (implemented by the component)
IS modeled using the lollipop notation

A required interface (accessed by the component) is
modeled using the socket notation

A port specifies a distinct interaction point between the
component and its environment

Ports are depicted as small squares on the sides of
classifiers (in some tools, ports are mandatory)

UML Component Diagram Example

|

UML
Component

L

= |
Scheduler
= |
Planner
= |

GUI

reservations

“reservations” is an
interface provided by

Scheduler

update

%Interface]

10

UML Deployment Diagrams

UML deployment diagrams are used for showing
physical and deployment architectural viewpoints

UML deployment diagrams are also used during

Subsystem decomposition <
PC .Server
Concurrency -

Hardware/Software Mapping

A deployment diagram is a graph of nodes and
connections (“communication associations”)

Nodes are shown as 3D boxes

Connections between nodes are shown as solid lines
Nodes may contain components

Components are connected through deployment connectors

Components may contain objects (indicating that the object is
part of the component)

11

UML Deployment Diagram Example

[UML N&

[UML Interfacci

Dependency
(in anode)

|

:HostMachine

AngDB:

Database

|

Dependency
(between nodes)

:Scheduler }---- >
\ (E
o
=
../f
=
2]

:Planner

12

ARENA Deployment Diagram

:ServerMachine
:UserMachine
<) ©
L—| :ArenaServer s :ArenaStorage
AO/ —g—
=] |
:ArenaClient <
e N {|
>© :Advertisement
=] P Server
:MatchFrontEndPeer <\\(O\
L 2]
:GamePeer

Consistency Among Views

Views can contain overlapping and related design
decisions

There is the possibility that the views can thus become
Inconsistent with one another

Views are consistent if the design decisions they
contain are compatible

Views are inconsistent if two views assert design
decisions that cannot simultaneously be true

Inconsistency iIs usually but not always indicative of
problems

Temporary inconsistencies are a natural part of
exploratory design

Inconsistencies cannot always be fixed

14

Integrating Multiple Architectural Views

m Diagrams of different types cover different,
complementary facets of the system

Overlapping aspects require an integration mechanism
needed for compatibility among diagrams

m Metamodel

Model defining and relating conceptual abstractions in
terms of which other models are defined

Defines the structure of the modeling language, provides
meta-language for defining it, summarizes main features

m Typical approach:

Define a common metamodel interrelating all conceptual
abstractions used in each type of diagram

Enforce inter-diagram consistency rules based on
the integrated metamodel

15

Model-Driven Software Architecture /1

<<metaclass>> <<metaclass>>
System % Software Architecture
+includes|1..* +described by
<<metaclass>> . _ <<metaclass>>
Stakeholder —====% Architectural Model ——
+expresses [1..* +selects|1..* +composed of | 1..*
<<metaclass>> _ <<metaclass>> <<metaclass>>
Concern e Viewpoint e View

Based on IEEE Std 1471-2000:

IEEE Recommended Practice for Architectural Description of Software-Intensive Systems

16

Model-Driven Software Architecture /2

Model-driven software
architecture creation:

|dentify relevant system stakeholders

For each stakeholder, determine their
key concerns (e.g., logical structure,
performance, concurrency)

Express their concerns as viewpoints

o Model the viewpoint elements
(terminology) as metaclasses, and
each viewpoint itself as a metamodel

Create views that conform to the
matching viewpoints
o Represent each view as a model

that conforms to the corresponding
viewpoint/metamodel

<<metaclass>>

Viewpoint

+represents

<<metaclass>>

+instance of

<<metaclass>>

View

+represents

Metamodel

+instance of

<<metaclass>>

Model

17

Model-Driven Software Architecture /3

Project the elements of a MM2:

<<metaclass>> +source

Component

metamodel using
stereotypes:

+target

<<metaclass>>

Connector

Apply stereotypes to UML MM 1 <<component>>

classes and metaclasses WebServerFile

Get a deeper I
understanding of the

model semantics

Narrow the amount of
valid models

<<component>> <<component>>

JavaFile HTMLFile

Metaclasses

JSPFile

<<component>>

used as M1:

Stereotypes <<JavaFile>>

client.java server.java

<<JavaFile>>

18

Types of Requirements

m Functional requirements

Describe the interactions between the system and its

environment, independent from the implementation

o Example: “An operator must be able to issue a new ticket*
m Nonfunctional requirements

Aspects not directly related to functional behavior

o Example: “The response time must be less than 1 second”

m Constraints

Imposed by the client or the environment
o Example: “The system must be implemented on Windows*

Also referred to as “pseudo requirements”

19

Functional vs. Nonfunctional Requirements

m Functional Requirements

Describe user tasks that
the system needs to
support

Phrased as actions

o “Advertise a new
league”

o “Schedule tournament”

o “Notify an interest
group”

m Nonfunctional Requirements

Describe properties of the
system or the domain

Phrased as constraints or

negative assertions

o “All user inputs should be
acknowledged within 1
second”

o “Asystem crash should
not result in data loss”.

20

Examples of Nonfunctional Requirements

Usability Requirement

“Passengers must be able to buy a ticket for travel
without prior registration”

Performance Requirement
“The system must support 10 parallel transactions”

Supportability Requirement

“The operator must be able to add new travel routes
without modifications to the existing system.”

21

Quality Attributes in Architectural Design

m Quality attributes can be used to guide software
architecture design:

Architectural styles discussed so far offer specific advantages
and disadvantages with respect to various quality attributes

For instance, pipes and filters does not support interactive
software and hence (broadly speaking) has limited adaptability

In addition, there are general architectural heuristics that apply
to specific quality-driven design goals and can be used as
drivers of architectural design

m Specific design goals include (see Chapter 12 of Taylor et al
textbook for details of these and other goals):
Reducing complexity
Improving scalability and heterogeneity
Improving dependability and fault tolerance

22

Goal: Reduce Complexity /1

m |EEE Definition:

Complexity is the degree to which a software system or
one of its components has a design or implementation
that is difficult to understand and verify

m Complexity can also be viewed as:

A property that is directly proportional to the size of the
system, number of its constituent elements, their internal
structure, and the number of their interdependencies

23

Goal: Reduce Complexity /2

m Software components and complexity:
Separate concerns into different components

Keep only the functionality inside components
O Move the interactions into connectors

Insulate processing components from changes in data format
(use abstract data types, or specialized data components)

m Software connectors and complexity:
Keep only interaction facilities inside connectors

Separate interaction concerns into different connectors
o E.g., split communication (streams) from facilitation (delivery, routing)

Support connector composition
Restrict interactions facilitated by each connector

m Architectural configurations and complexity:
Eliminate unnecessary dependencies
Use hierarchical decomposition

24

Goal: Reduce Complexity /3

m Linux OS Kernel m Linux OS Kernel
Conceptual Architecture: Concrete Architecture:

<

File System
\ File System
Memory Network 1 / \ l
Manager Interface Memory < > Network
Manager Interface
Q Process > Inter-Process & /
Scheduler |~ Communications Process Inter-Process

Scheduler [P Communications
/e N1 1P ,/&\

Initialization Library Initialization | > Library

|

25

Goal: Scalability and Heterogeneity /1

m Scalability:

The capabillity of a software system to be adapted to
meet new requirements of size and scope

m Adaptability:
Ablility to satisfy new requirements and adjust to new
operating conditions during its lifetime
m Heterogeneity:
Ability to consist of multiple disparate constituents or
function in multiple disparate computing environments
m Portability:

Ability to execute on multiple platforms with minimal
modifications and without significant degradation in
functional or non-functional characteristics

26

Goal: Scalability and Heterogeneity /2

m Software components and scalability:

Define each component to have a simple and
understandable interface

Distribute the data sources and replicate data when
necessary

m Software connectors and scalability:
Give each connector a clearly defined responsibility
Choose the simplest connector suited for the task

m Architectural configurations and scalability:
Place the data sources close to the data consumers
Make use of parallel processing capabilities

27

Goal: Dependability /1

m Dependability is a collection of system properties that
allows one to rely on a system functioning as required
Reliability is the probability that a system will perform its

Intended functionality under specified design limits,
without failure, over a given time period

Availability is the probability that a system is operational
at a particular time

Robustness is a system’s ability to respond adequately
to unanticipated runtime conditions

Fault-tolerant is a system’s ability to respond gracefully
to failures at runtime

28

Goal: Dependability /2

m Software components and dependability:

Provide reflection capabilities in components to check
status of a component at runtime

Provide suitable exception handling mechanisms and
avoid single points of failure

m Software connectors and dependability:
Employ connectors that strictly control component
dependencies

m Architectural configurations and dependability:
Provide redundancy of critical functionality and data
Implement non-intrusive system health monitoring

29

Food for Thought

m Read:

Chapter 6 from “Software Architecture: Foundations,

Theory, and Practice”
o Read sections 6.1, 6.2, and 6.3 on architecture modeling

Chapter 12 from “Software Architecture: Foundations,

Theory, and Practice”

o Read detailed explanations of design heuristics discussed in the
lecture notes

30

