
C ti d A l iCreating and Analyzing
Software Architecture

D I I k iDr. Igor Ivkovic
iivkovic@uwaterloo.ca@

[with material from “Software Architecture: Foundations, Theory, and Practice”, by Taylor, Medvidovic, and
Dashofy, published by Wiley; and from “Object-Oriented Software Engineering”, by Bruegge and Dutoit,
published by Prentice Hall]

Objectives

 Model the architecture using architectural views
 Express architectural viewpoints using metamodels
 Use quality attributes to drive architectural design

2

Architectural Views and Viewpoints /1
 It is typically not feasible to capture everything we

want to model in a single architectural model
 The model would be too big, complex, and confusing

 Instead, we create several coordinated models, each
t i b t f th d i d i icapturing a subset of the design decisions

 Generally, the subset is organized around a particular
concern or other selection criteria

3

Architectural Views and Viewpoints /2
 The subset-model is called an “architectural view”

and the concern an “architectural viewpoint”
 For instance, deployment viewpoint is concerned with

how software systems are deployed on hardware and
networking nodes

 Instances of the deployment viewpoint are called
views
See Kruchten’s “4+1 View Model of Software See Kruchten’s “4+1 View Model of Software
Architecture” paper for additional viewpoints

4

Commonly-Used Viewpoints /1
 Logical Viewpoints:

 Capture the logical entities in a system and how they are
interconnectedinterconnected

 Use UML component diagram to show interfaces and
decomposition between components

ITester

Operations
«component»

Administration
«component»

ITester

DataStorage
«component»

Billing
«component»

IHardwareData IBillAdmin

 Physical Viewpoints:
Capt re the ph sical (often hard are) entities in a s stem and

DataStorage Billing
IBillingData

 Capture the physical (often hardware) entities in a system and
how they are interconnected

5

Commonly-Used Viewpoints /2
 Deployment Viewpoints:

 Capture how logical entities are mapped onto physical entities
Can combine the deployment and physical viewpoints into one Can combine the deployment and physical viewpoints into one
using UML deployment diagrams

<<device>>
A li i S:WebServer

:DBMS

:ApplicationServer
{OS=Solaris}

:WebServer

<<RMI>> <<JDBC>>

DataStorage
«component»

Administration
«component»

UserInterface
«component»

<<MessageBus>>

<<device>>
Mainframe

6

Mainframe

Commonly-Used Viewpoints /3
 Concurrency/Process Viewpoints:

 Capture how concurrency and threading will be managed
in a systemin a system

<<thread>>

HardwareTester
<<process>>

Administration
<<process>>

Operations +Request H/W Test

<<process>>

Database
<<thread>>

Billing
+Store Admin Data

+Store Billing Data+Store H/W Data

 Behavioral Viewpoints:
 Capture the expected behavior of (parts of) a system
 System scenarios using UML collaboration diagrams

7

UML Component Diagram
 Illustrate dependencies between architectural components at

design time, compilation time and runtime
 Used to model the system in terms of components andUsed to model the system in terms of components and

dependencies among the components
 Also called “software wiring diagrams“
 They show how the software components are wired together in They show how the software components are wired together in

the overall application

 The dependencies (edges in the graph) are shown as
dashed lines with arrows from the client component to thedashed lines with arrows from the client component to the
supplier component:
 The lines are often also called connectors

Th t f d d i i l t ti l The types of dependencies are implementation-language
specific

 Components can also be
 Source code, linkable libraries, executables

8

UML Interfaces
 A UML interface describes a group of operations

used or created by UML components

 There are two types of interfaces: provided and
required interfaces

A id d i t f (i l t d b th t) A provided interface (implemented by the component)
is modeled using the lollipop notation

 A required interface (accessed by the component) is q (y p)
modeled using the socket notation

 A port specifies a distinct interaction point between the
component and its environment
 Ports are depicted as small squares on the sides of

classifiers (in some tools, ports are mandatory)classifiers (in some tools, ports are mandatory)

9

UML Component Diagram Example

reservations

UML
Component

“reservations” is an
interface provided by

update

Component p y
Scheduler

UML Interface

10

UML Deployment Diagrams
 UML deployment diagrams are used for showing

physical and deployment architectural viewpoints
UML d l t di l d d i UML deployment diagrams are also used during
 Subsystem decomposition
 Concurrency

:PC :Server

 Hardware/Software Mapping

 A deployment diagram is a graph of nodes and
connections (“communication associations”)connections (communication associations)
 Nodes are shown as 3D boxes
 Connections between nodes are shown as solid lines
 Nodes may contain components
 Components are connected through deployment connectors
 Components may contain objects (indicating that the object is

part of the component)

11

UML Deployment Diagram Example

Dependency
(in a node)

UML Node

UML Interface

Dependency
(between nodes)

12

ARENA Deployment Diagram

13

Consistency Among Views
 Views can contain overlapping and related design

decisions
There is the possibility that the views can thus become There is the possibility that the views can thus become
inconsistent with one another

 Views are consistent if the design decisions they g y
contain are compatible
 Views are inconsistent if two views assert design

decisions that cannot simultaneously be truedecisions that cannot simultaneously be true

 Inconsistency is usually but not always indicative of
problems
 Temporary inconsistencies are a natural part of

exploratory design
 Inconsistencies cannot always be fixedy

14

Integrating Multiple Architectural Views
 Diagrams of different types cover different,

complementary facets of the system
Overlapping aspects require an integration mechanism Overlapping aspects require an integration mechanism
needed for compatibility among diagrams

 Metamodel
 Model defining and relating conceptual abstractions in

terms of which other models are defined
 Defines the structure of the modeling language provides Defines the structure of the modeling language, provides

meta-language for defining it, summarizes main features

 Typical approach:
 Define a common metamodel interrelating all conceptual

abstractions used in each type of diagram
 Enforce inter-diagram consistency rules based on Enforce inter diagram consistency rules based on

the integrated metamodel
15

Model-Driven Software Architecture /1
<<metaclass>>

Software Architecture
<<metaclass>>

System +has

+described by+includes 1 *
<<metaclass>>

Architectural Model
<<metaclass>>

Stakeholder +interested in
1..*

+described by+includes 1..

<<metaclass>>

View
<<metaclass>>

Concern
<<metaclass>>

Viewpoint+defines
1 *

+composed of 1..*

+conforms to

+selects 1..*+expresses 1..*

1..

16Based on IEEE Std 1471-2000:
IEEE Recommended Practice for Architectural Description of Software-Intensive Systems

Model-Driven Software Architecture /2

<<metaclass>><<metaclass>>

 Model-driven software
architecture creation:

metaclass

Metamodel
metaclass

Viewpoint +represents

+instance of +instance of

1. Identify relevant system stakeholders
2. For each stakeholder, determine their

key concerns (e.g., logical structure,

<<metaclass>>

Model
<<metaclass>>

View +represents

performance, concurrency)
3. Express their concerns as viewpoints

 Model the viewpoint elements p
(terminology) as metaclasses, and
each viewpoint itself as a metamodel

4. Create views that conform to the
matching viewpoints
 Represent each view as a model

that conforms to the corresponding
viewpoint/metamodelviewpoint/metamodel

17

Model-Driven Software Architecture /3

<<metaclass>>

Connector
<<metaclass>>

Component +target

+source
 Project the elements of a

metamodel using
t t

MM2:

g

<<component>>

WebServerFile

stereotypes:
 Apply stereotypes to UML

classes and metaclasses
MM1:

 Get a deeper
understanding of the
model semantics

<<component>>

JavaFile
<<component>>

HTMLFile
<<component>>

JSPFile

 Narrow the amount of
valid models

JavaFile HTMLFile JSPFile

<<JavaFile>><<JavaFile>>

Metaclasses
used as

stereotypes
M1:

18

<<JavaFile>>

server.java
<<JavaFile>>

client.java
stereotypes

Types of Requirements
 Functional requirements

 Describe the interactions between the system and its
environment, independent from the implementation
 Example: “An operator must be able to issue a new ticket“

 Nonfunctional requirements Nonfunctional requirements
 Aspects not directly related to functional behavior

 Example: “The response time must be less than 1 second”

 Constraints
 Imposed by the client or the environment

E l “Th t t b i l t d Wi d “ Example: “The system must be implemented on Windows“

 Also referred to as “pseudo requirements”

19

Functional vs. Nonfunctional Requirements
 Functional Requirements

 Describe user tasks that
the system needs to

 Nonfunctional Requirements
 Describe properties of the

system or the domainthe system needs to
support

 Phrased as actions
“Ad ti

system or the domain
 Phrased as constraints or

negative assertions
“All i t h ld b “Advertise a new

league”
 “Schedule tournament”
 “Notify an interest

 “All user inputs should be
acknowledged within 1
second”

 “A system crash should Notify an interest
group”

 A system crash should
not result in data loss”.

20

Examples of Nonfunctional Requirements
 Usability Requirement

 “Passengers must be able to buy a ticket for travel
without prior registration”

 Performance Requirement
 “The system must support 10 parallel transactions”

 Supportability Requirement
“ “The operator must be able to add new travel routes
without modifications to the existing system.”

21

Quality Attributes in Architectural Design
 Quality attributes can be used to guide software

architecture design:
A hit t l t l di d f ff ifi d t Architectural styles discussed so far offer specific advantages
and disadvantages with respect to various quality attributes

 For instance, pipes and filters does not support interactive
f ()software and hence (broadly speaking) has limited adaptability

 In addition, there are general architectural heuristics that apply
to specific quality-driven design goals and can be used as
drivers of architectural design

 Specific design goals include (see Chapter 12 of Taylor et al
textbook for details of these and other goals):textbook for details of these and other goals):
 Reducing complexity
 Improving scalability and heterogeneity
 Improving dependability and fault tolerance

22

Goal: Reduce Complexity /1
 IEEE Definition:

 Complexity is the degree to which a software system or
one of its components has a design or implementation
that is difficult to understand and verify

 Complexity can also be viewed as: Complexity can also be viewed as:
 A property that is directly proportional to the size of the

system, number of its constituent elements, their internal
structure, and the number of their interdependencies

23

Goal: Reduce Complexity /2
 Software components and complexity:

 Separate concerns into different components
 Keep only the functionality inside components Keep only the functionality inside components

 Move the interactions into connectors
 Insulate processing components from changes in data format

(use abstract data types, or specialized data components)

 Software connectors and complexity:
 Keep only interaction facilities inside connectors
 Separate interaction concerns into different connectorsp

 E.g., split communication (streams) from facilitation (delivery, routing)
 Support connector composition
 Restrict interactions facilitated by each connector

 Architectural configurations and complexity:
 Eliminate unnecessary dependencies
 Use hierarchical decomposition Use hierarchical decomposition

24

Goal: Reduce Complexity /3
 Linux OS Kernel

 Conceptual Architecture:
 Linux OS Kernel

 Concrete Architecture:

File System

File System

Memory
Manager

Network
Interface Memory

Manager
Network
Interface

Inter-Process
Communications

Process
Scheduler Inter-Process

Communications
Process

Scheduler

Initialization Library Initialization Library

25

Goal: Scalability and Heterogeneity /1
 Scalability:

 The capability of a software system to be adapted to
meet new requirements of size and scopemeet new requirements of size and scope

 Adaptability:
 Ability to satisfy new requirements and adjust to new Ability to satisfy new requirements and adjust to new

operating conditions during its lifetime

 Heterogeneity:
 Ability to consist of multiple disparate constituents or

function in multiple disparate computing environments

 Portability: Portability:
 Ability to execute on multiple platforms with minimal

modifications and without significant degradation in
functional or non functional characteristicsfunctional or non-functional characteristics

26

Goal: Scalability and Heterogeneity /2
 Software components and scalability:

 Define each component to have a simple and
understandable interface

 Distribute the data sources and replicate data when
necessaryy

 Software connectors and scalability:
 Give each connector a clearly defined responsibilityy p y
 Choose the simplest connector suited for the task

 Architectural configurations and scalability:g y
 Place the data sources close to the data consumers
 Make use of parallel processing capabilities

27

Goal: Dependability /1
 Dependability is a collection of system properties that

allows one to rely on a system functioning as required
 Reliability is the probability that a system will perform its

intended functionality under specified design limits,
without failure, over a given time period

 Availability is the probability that a system is operational
at a particular time
Robustness is a system’s ability to respond adequately Robustness is a system’s ability to respond adequately
to unanticipated runtime conditions

 Fault-tolerant is a system’s ability to respond gracefully
to failures at runtime

28

Goal: Dependability /2
 Software components and dependability:

 Provide reflection capabilities in components to check
status of a component at runtime

 Provide suitable exception handling mechanisms and
avoid single points of failureg p

 Software connectors and dependability:
 Employ connectors that strictly control component p y y p

dependencies

 Architectural configurations and dependability:
 Provide redundancy of critical functionality and data
 Implement non-intrusive system health monitoring

29

Food for Thought
 Read:

 Chapter 6 from “Software Architecture: Foundations,
Theory, and Practice”
 Read sections 6.1, 6.2, and 6.3 on architecture modeling

 Chapter 12 from “Software Architecture: Foundations, p ,
Theory, and Practice”
 Read detailed explanations of design heuristics discussed in the

lecture notes

30

