
Tutorial 4
Visitor Pattern

Wei Wang

Nov. 25th, 2011



Goals

• Scenario of using Visitor Pattern

• Why naïve approaches are bad?

• Elements of Visitor Pattern

• Real world application

2



Scenario

• Sarah wants to find out who does NOT like 
Lady Gaga at UWaterloo

3



• For male (female) students: borrowed >1 
(>3)book about Lady Gaga from school library

• For profs: purchased >2 Lady Gaga CDs

• For staff: …

4



Essence of this scenario

• Iterate a variety of elements under one 
hierarchy
– Student/prof/staff

• Customization of the iterating algorithm
– Gender/library history/purchasing history

• Data aggregation
– Total number of student fans? What about CS only?

• New algorithm may arise from future demands
– Looking for fans of Justin Bieber? 

• “open for extension, but closed for modification”

5



Naïve solution 1

Instanceof and type cast!

isLadyGagaFans(IPerson){

If(Iperson instanceof
Student){
}

Else if (Iperson instanceof
Professor){

}
}

6



Naïve Solution 2

class Student{

isLadyGagaFans(){

checklibraryRecords();

checkGender();

}
}

Algorithm defined in the student class

7



Problems of Naïve solutions

• “instanceof” 
solution:

– Instanceof or 
type casting is 
error prone

– hard coding!

•“pseudo OO” solution

•Touch original code

•Similar solution is 
scattered in many 
place!

8



Visitor Pattern Solution
Class Student implement IPerson{

void accept(Visitor visitor){
visitor.visit(this);

}
}

Class LadyGagaFansChecker(){
visit(Student student){

student.checkLibraryHistory();
student.checkGender();
print;

}
}

…… studentA.accept(new LadyGagaFansChecker());

9



Class Diagram of Visitor Pattern

CheckJustinBieberFa
n

10



Real world application

• Processing syntactical elements in compiler
design

– Eclipse JDT 

11



Visitor Pattern in JDT

compiler ASTVisitor

DeclarationVisitor
MethodVisitor

If the syntax of Java changes 
(such as generics and enhanced 

loop), we just need add new 
visitors and invoke them later

12



What if we cannot change JDT?

• The Compiler of AspectJ reuses most of JDT 
elements (because we still need to compile 
the JAVA part of the code)

JointPointVisitor

JointPoint

AspectJ
compiler

13



14



Take-away of this tutorial

• Separate the algorithm with from an object 
structure on which it operates

• Easy to add new operations on existing 
objects

– “open for extension, but closed for modification”

• Almost all compilers implementation use 
visitor pattern to iterate syntactical elements

– JDT & AspectJ compiler

15


