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Goals

• Scenario of using Visitor Pattern

• Why naïve approaches are bad?

• Elements of Visitor Pattern

• Real world application
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Scenario

• Sarah wants to find out who does NOT like 
Lady Gaga at UWaterloo
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• For male (female) students: borrowed >1 
(>3)book about Lady Gaga from school library

• For profs: purchased >2 Lady Gaga CDs

• For staff: …
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Essence of this scenario

• Iterate a variety of elements under one 
hierarchy
– Student/prof/staff

• Customization of the iterating algorithm
– Gender/library history/purchasing history

• Data aggregation
– Total number of student fans? What about CS only?

• New algorithm may arise from future demands
– Looking for fans of Justin Bieber? 

• “open for extension, but closed for modification”
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Naïve solution 1

Instanceof and type cast!

isLadyGagaFans(IPerson){

If(Iperson instanceof
Student){
}

Else if (Iperson instanceof
Professor){

}
}
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Naïve Solution 2

class Student{

isLadyGagaFans(){

checklibraryRecords();

checkGender();

}
}

Algorithm defined in the student class
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Problems of Naïve solutions

• “instanceof” 
solution:

– Instanceof or 
type casting is 
error prone

– hard coding!

•“pseudo OO” solution

•Touch original code

•Similar solution is 
scattered in many 
place!
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Visitor Pattern Solution
Class Student implement IPerson{

void accept(Visitor visitor){
visitor.visit(this);

}
}

Class LadyGagaFansChecker(){
visit(Student student){

student.checkLibraryHistory();
student.checkGender();
print;

}
}

…… studentA.accept(new LadyGagaFansChecker());
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Class Diagram of Visitor Pattern

CheckJustinBieberFa
n
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Real world application

• Processing syntactical elements in compiler
design

– Eclipse JDT 
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Visitor Pattern in JDT

compiler ASTVisitor

DeclarationVisitor
MethodVisitor

If the syntax of Java changes 
(such as generics and enhanced 

loop), we just need add new 
visitors and invoke them later
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What if we cannot change JDT?

• The Compiler of AspectJ reuses most of JDT 
elements (because we still need to compile 
the JAVA part of the code)

JointPointVisitor

JointPoint

AspectJ
compiler
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Take-away of this tutorial

• Separate the algorithm with from an object 
structure on which it operates

• Easy to add new operations on existing 
objects

– “open for extension, but closed for modification”

• Almost all compilers implementation use 
visitor pattern to iterate syntactical elements

– JDT & AspectJ compiler
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