
Lecture 18 - Tuesday November 22 2011.

Material and some slide content from:
- Mehdi Amoui Kalareh
- Fowler Refactoring book

Code Smells & Refactoring
Reid Holmes

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Program restructuring
‣ Software systems represent massive investments.
‣ To maintain their value, systems must evolve.
‣ The majority (>75%) of software development

takes place on existing systems.
‣ Software maintenance / evolution comprises the

largest proportion of a system’s total budget.
‣ Systems are modified to:
‣ Fix defects.
‣ Add new features.
‣ Support environmental changes.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Reasons for change
‣ Corrective:

‣ Adaptive:

‣ Perfective:

‣ Preventative:

(% from SE Matinenance, Hans van Vilet)

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Reducing change frequency
‣ Higher quality --> less maintenance
‣ Predicting changes --> less maintenance
‣ Better requirements --> less maintenance
‣ Less code --> less maintenance
‣ Regularly perform preventative maintenance

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Lehman’s Laws
‣ Belady & Lehman proposed 8 laws of software

evolution (beginning in 1974)
‣ #1 - Systems must evolve
‣ #2 - Systems will become increasingly complex
‣ #6 - Systems must gain new functionality

‣ Lehman’s advice:
‣ Complexity must be managed

‣ Systems must be periodically redesigned and refined

‣ System and development process is a feedback loop

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Why is maintenance hard?
‣ Unstructured and complex code
‣ Low quality
‣ Poor initial design
‣ Lack of preventative maintenance

‣ Insufficient domain knowledge
‣ Change requests push original design

‣ Insufficient / stale documentation

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Code smells
‣ Symptoms that hint at deeper problems
‣ Can also be considered anti-patterns
‣ Five core groups of smells:
‣ Bloaters: size becomes overwhelming

‣ long method, large class, prim. obsession, long param list, data clump

‣ OO abusers: OO design not leveraged
‣ switch statements, temp field, refused bequest, classes w/ similar interfaces

‣ Change preventers: Hinder further evolution
‣ divergent change, shotgun surgery, parallel inheritance hierarchy

‣ Dispensables: Unnecessary complexity
‣ lazy class, data class, duplicate code, dead code, speculative generality

‣ Couplers: Unnecessary coupling
‣ feature envy, inappropriate intimacy, message chains, middle man

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Removing smells	
‣ Using refactoring; 3 main steps:
‣ Understand
‣ Transform
‣ Refine

‣ Program behaviour should be unchanged
‣ Appropriate testing is crucial

‣ Refactorings happen in small steps
‣ Test at each step to make sure everything works

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Refactoring
‣ Should happen as you learn better techniques
‣ Rule of threes:
‣ 1) Code it up
‣ 2) Code it again (but wince)
‣ 3) Refactor

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

OO abuser: switch
‣ class Animal {

 final int MAMMAL = 0, BIRD = 1, REPTILE = 2;
 int myKind; // set in constructor
 ...
 String getSkin() {
 switch (myKind) {
 case MAMMAL: return "hair";
 case BIRD: return "feathers";
 case REPTILE: return "scales";
 default: return "integument";
 }
 }
}

‣ class Animal {
 String getSkin() { return "integument"; }
}
class Mammal extends Animal {
 String getSkin() { return "hair"; }
}
class Bird extends Animal {
 String getSkin() { return "feathers"; }
}
class Reptile extends Animal {
 String getSkin() { return "scales"; }
}

BEFORE

AFTER

[adding Insect is easy]
[subclasses probably differ]

[avoid other switches]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Speculative generality example

STRATEGY
ABSTRACT FACTORY

SINGLETON

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Bloater: long method

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Dispensables: duplicate code
‣ Template method can reduce duplicate code.
‣ Consider two fish:
‣ Big fish randomly move anywhere
‣ Little fish move anywhere except where big fish are.

BigFish

move()

Fish

<<abstract>>move()

LittleFish

move()

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Fish example

General outline of the method:
public void move() {

 choose a random direction; // same for both
 find the location in that direction; // same for both
 check if it’s ok to move there; // different
 if it’s ok, make the move; // same for both
}

Solution:
Extract the check on whether it’s ok to move
In the Fish class, put the actual (template) move() method
Create an abstract okToMove() method in the Fish class
Implement okToMove() in each subclass

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Fish example
‣ Use a template to vary specific detail without

duplicating code.

BigFish

move()

Fish

<<abstract>>move()

LittleFish

move()

BigFish

okToMove(locn):boolean

Fish

move()

<<abstract>>okToMove(locn):boolean

BigFish

okToMove(locn):boolean

•  Note%how%this%works:%
When%a%BigFish%tries%
to%move,%it%uses%the%
move()%method%in%
Fish%

•  But%the%move()

method%in%Fish%uses%
the%okToMove(locn)

method%in%BigFish

•  And%similarly%for%
LittleFish%

