
Lecture 16 - Thursday November 15 2011.

Material and some slide content from:
- GoF Design Patterns Book
- Head First Design Patterns

Design Patterns #3 
Reid Holmes



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

GoF design patternsDesign Patterns
����������������
��

�
�������� ��
	��	
�� �������
��

�����
��������

����
���������
�

�	����


�
�������

���������

������
� ������

�
����

��!������

����
���


������

������
 �����

���"�����

�
�#�

$���
�
���


���������
�������������

��!!���

$��
���


�������


%�!������������

��!����

����
��


�����

��
�����

&�����


�
��

�
�

�
�
�

�
�



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Factory Method
‣ Intent: “Provide an interface for creating an object 

but let subclasses decide which class to 
instantiate”

‣ Implementation:
‣ Create an abstract method (e.g. createPizza())
‣ Let subclasses implement method
‣ In this way the subclasses control instantiation 

without the client knowing what is being created



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Abstract factory
‣ Intent: “Provide an interface for creating families of 

related objects without specifying their concrete classes”

‣ Motivation: Consider a multi-platform UI toolkit. A 
WidgetFactory can provide an interface to make sure 
the right widget is instantiated for each platform.

‣ Applicability: 
‣ When a system should be independent of how its 

products are created and represented.
‣ A system contains multiple families of products.
‣ You want to reveal interfaces, not implementations. 



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Abstract factory
‣ Structure

‣ Participants:
‣ Abstract/Concrete Factory
‣ Abstract/Concrete Product
‣ Client



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Abstract factory
‣ Collaborations
‣ Usually only one Abstract Factory (singleton).
‣ Objects are created by concrete factories.

‣ Consequences:
‣ Isolates concrete classes from clients.
‣ (Clients only know about interfaces, not implementations)

‣ Makes exchanging families easy.
‣ (Concrete family reference appears only once)

‣ Makes adding products hard.
‣ (Abstract + all concrete factories must be updated.)



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Abstract factory
‣ Implementation:
‣ Create abstract factory interface.
‣ Use factory method to create descriptive names.
‣ Create concrete products/factories.
‣ Associate client with one factory.

‣ Known uses: Frequently used in widget toolkits.
‣ Related to: Often implemented with Factory Method 

or Prototypes. Concrete factories are often 
Singletons.

‣ XXX: Elaborate on Complex(..) example and the 
utility of the Factory Method.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Dependency Inversion

‣ Instantiations are references to concrete classes
‣ Factories allow high-level components to depend 

on abstractions
‣ Low-level components can then implement those 

abstractions and depend upon them
‣ Hints:

Depend upon abstractions, 
not concrete classes.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Facade
‣ Intent: “Provide a unified, higher-level, interface to 

a whole module making it easier to use.”
‣ Motivation: Composing classes into subsystems 

reduces complexity. Using a Facade minimizes the 
communication dependencies between 
subsystems.

‣ Applicability:
‣ When you want a simple interface to a complex 

subsystem.
‣ There are many dependencies between clients 

and a subsystem.
‣ You want to layer your subsystems.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Facade



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Facade
‣ Participants:
‣ Facade
‣ Subsystem classes

‣ Collaborations:
‣ Clients interact subsystem via Facade.

‣ Consequences: 
‣ Shields clients from subsystem components.
‣ Promotes weak coupling. (strong within subsystem, weak between them)

‣ Doesn’t prevent access to subsystem classes.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Facade
‣ Implementation:
‣ 1) Analyze client / subsystem tangling.
‣ 2) Create interface. Abstract factories can also 

be used to add further decoupling.
‣ Known uses: Varied.
‣ Related to: Abstract Factory can be used with 

Facade to create subsystem objects. Facades are 
frequently Singletons. Abstracts functionality 
similar to Mediator but does not concentrate on 
communication.



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Activity
‣ 5 mins: 
‣ Right side: Develop a use for a observer or 

command pattern for your system.
‣ Left side: Develop a usage of a decorator 

pattern or abstract factory for your system.
‣ 10 mins (5 / group):
‣ Match up with team from other side of room. 

Explain your pattern and how it improves your 
system’s design.


