»| Momento Material and some slide content from:
Adapter | - Head First Design Patterns Book

S - GoF Design Patterns Book
unicer
o [ltﬁemtor },

Flyweight ‘

* defrarg

OraNTYT Y

sharing | Interpreter |

armr

VYRS

Mediator |«

l Observer I
Template Method | hb 15hd

Prototype b 2
»{ Factory Method \

configuro faciory

cynamecaly

i Abstract Factorx

Singleton

Design Patterns B

Lecture 15 - Thursday November 10 2011.

GoF design patterns

GoF Design Patterns

Croatonal J Sructral J Genaviora

Factory Method Adaptor - class Interpreter

Template Method

Abstract Factory
Builder
Prototype

Adaptor-object Chain of responsibility

Bridge Command
lterator
Mediator

Memento

Composite

Singleton Decorator
Facade
Observer
State

Strategy

Flyweight
Proxy

Visitor

class

object

R
a REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Pattern vocabulary

» Shared vocabulary
» communicate qualities
» reduce verbosity
» focus on design

» increase understanding

% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Observer

» Intent: Define a one-to-many relationship between
objects so that when an object changes state its
dependents are updated automatically

» Motivation: To maintain consistency between
multiple different objects without tightly coupling
them

» Applicability:

» When you want to compartmentalize
modifications to two dependent objects

» When you want to publish updates but not
couple classes

R
a REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Observer

» Structure:

» Participants:
» Subject: tracks observers and fires updates

» QObserver: subscribes/unsubscribes to subjects,
receives updates

% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE w

Observer

» Collaborations

» Subjects call observer’s update method when
they change

» Subjects can forward data (push) or just send
blank update notifications (pull)

» Conseguences:
» Reduce coupling between subject & observer

» Support broadcast communication
» Can result in expensive updates

R
* REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Observer

» Implementation:
1. Subjects track observers (abstract class helpful)
2.Caching updates
3. Push vs. pull

» Related to:

» Employed by MVC & MVP.

% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

GWT example

Window.addResizeHandler(new ResizeHandler() {
@Override
public void onResize(ResizeEvent event) {
1f (event.getWidth() > event.getHeight()) {
setPortrait(false);
} else {
setPortrait(true);

}
}
1)

R
E REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Decorator

» Intent: “Dynamically add additional responsibilities to
structures.”

» Motivation: Sometimes we want to add new
responsibilities to individual objects, not the whole
class. Can enclose existing objects with another

object.

» Applicability:
» Add responsibilities dynamically and transparently.
» Remove responsibilities dynamically.
» When subclassing is impractical.

R
E REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Decorator

» Structure

» Participants:
» Component / concrete component
5 » Decorator / concrete decorator

REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Decorator (code ex

// the Window interface
interface Window {
public void draw(); // draws the Window

public String getDescription();

// adds vertical scrollbar functionality
class VerticalScrollBarDecorator extends WindowDecorator {
public VerticalScrollBarDecorator (Window decoratedWindow) {

} super (decoratedWindow) ;

}

// implementation of a simple Window) ,
public void draw() {

class SimpleWindow implements Window { 4 Verticals 11Bar ()
rawVerticalScro ar();

public void draw() {
super.draw();

// draw window

}
} private void drawVerticalScrollBar() { .. }
public String getDescription() {

public String getDescription() {] o
return decoratedWindow.getDescription() +" and vert sb";

return "simple window";
}
} }
// adds horizontal scrollbar functionality

// abstract decorator class .)
class HorizontalScrollBarDecorator extends WindowDecorator {

abstract class WindowDecorator implements Window { .)))
public HorizontalScrollBarDecorator (Window decoratedWindow) ({

protected Window decoratedWindow;)
super (decoratedWindow) ;

}

public WindowDecorator (Window decoratedWindow) { . ,
public void draw() {

this.decoratedWindow = decoratedWindow;)
drawHorizontalScrollBar();

} super.draw();
public void draw() {
decoratedWindow.draw() ; } . . .
private void drawHorizontalScrollBar() { .. }
/ public String getDescription() {
! return decoratedWindow.getDescription() + "and horiz sb";
}

public class DecoratedWindowTest {
public static void main(String[] args) { }
Window decoratedWindow = new HorizontalScrollBarDecorator (

new VerticalScrollBarDecorator (new SimpleWindow()));

// print the Window's description

-..!==ﬂ System.out.println(decoratedWindow.getDescription());}}
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Decorator

» Collaborations

» Decorators forward requests to component object.
» Conseguences:
» More flexible.
» (than static inheritance; arbitrary nesting possible)

» Avoids feature-laden classes.
» (KISS and add functionality as needed.)

» Warn: Decorator & component are not identical.
» (equality can be thrown off because decorator != decorated)
» Negative: Many of little objects.

» (Lots of small, similar-looking classes differentiated by
how they are connected. hard to understand and debug.)

E W
a REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Decorator

» Implementation:
» 1) Interface conformance. (decorator interface required)

» 2) Abstract decorator not needed if only one
decoration is required.

» 2) Keep component classes lightweight. (too
heavyweight can overwhelm decorators

» 3) Changing a skin instead of changing the guts.
(if component is heavy, consider strategy instead)

» Related to: Decorators are a kind of single-node
Composite. Decorators can change the skin,
Strategy pattern can change the guts.

R
E REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Singleton

» Intent: "Ensure a class has only one instance”

» Motivation: For situations when having multiple
copies of an object is either unnecessary or

iIncorrect.
» Applicability:

» Situations when there must be only one copy of
a class.

-
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Singleton

» Structure:

» Participants:

» an instance operation that retrieves the instance.

» may be responsible for creating instance.

% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

W

Singleton

» Collaborations
» All collaboration via instance operation.
» Conseqguences:

» Controlled access to instance.

» Reduced name space.

» Permits variable number of instances.
» More flexible than class operation

-
% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Singleton

» Implementation:
1. Ensure a unique instance.

2.Provide an easy access point.

» Related to:

» Can be used to create Abstract Factory, Builder,
and Prototype.

% REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

Activity

» Right side: Develop a use for a observer pattern
for your system.

» Left side: Develop a usage of a decorator
pattern for your system.

» 10 mins (5 / group):

» Match up with team from other side of room.
Explain your pattern and how it improves your
system’s design.

R
* REID HOLMES - SE2: SOF 'WARE DESIGN & ARCHITECTURE

