
Lecture 15 - Thursday November 10 2011.

Material and some slide content from:
- Head First Design Patterns Book
- GoF Design Patterns Book

Design Patterns B
Reid Holmes

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

GoF design patternsDesign Patterns
����������������
��

�
�������� ��
	��	
�� �������
��

�����
��������

����
���������
�

�	����

�
�������

���������

������
� ������

�
����

��!������

����
���

������

������
 �����

���"�����

�
�#�

$���
�
���

���������
�������������

��!!���

$��
���

�������

%�!������������

��!����

����
��

�����

��
�����

&�����

�
��

�
�

�
�
�

�
�

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Pattern vocabulary
‣ Shared vocabulary
‣ communicate qualities
‣ reduce verbosity
‣ focus on design
‣ increase understanding

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Observer
‣ Intent: Define a one-to-many relationship between

objects so that when an object changes state its
dependents are updated automatically

‣ Motivation: To maintain consistency between
multiple different objects without tightly coupling
them

‣ Applicability:
‣ When you want to compartmentalize

modifications to two dependent objects
‣ When you want to publish updates but not

couple classes

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Observer
‣ Structure:

‣ Participants:
‣ Subject: tracks observers and fires updates
‣ Observer: subscribes/unsubscribes to subjects,

receives updates

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Observer
‣ Collaborations
‣ Subjects call observer’s update method when

they change
‣ Subjects can forward data (push) or just send

blank update notifications (pull)
‣ Consequences:
‣ Reduce coupling between subject & observer
‣ Support broadcast communication
‣ Can result in expensive updates

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Observer
‣ Implementation:

1. Subjects track observers (abstract class helpful)

2.Caching updates

3. Push vs. pull
‣ Related to:
‣ Employed by MVC & MVP.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

GWT example

Window.addResizeHandler(new ResizeHandler() {
	 	 	 @Override
	 	 	 public void onResize(ResizeEvent event) {
	 	 	 	 if (event.getWidth() > event.getHeight()) {
	 	 	 	 	 setPortrait(false);
	 	 	 	 } else {	
	 	 	 	 	 setPortrait(true);
	 	 	 	 }
	 	 	 }
	 	 });

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Decorator
‣ Intent: “Dynamically add additional responsibilities to

structures.”

‣ Motivation: Sometimes we want to add new
responsibilities to individual objects, not the whole
class. Can enclose existing objects with another
object.

‣ Applicability:
‣ Add responsibilities dynamically and transparently.
‣ Remove responsibilities dynamically.
‣ When subclassing is impractical.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Decorator
‣ Structure

‣ Participants:
‣ Component / concrete component
‣ Decorator / concrete decorator

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Decorator (code ex)
// the Window interface

interface Window {

 public void draw(); // draws the Window

 public String getDescription();

}

// implementation of a simple Window

class SimpleWindow implements Window {

 public void draw() {

 // draw window

 }

 public String getDescription() {

 return "simple window";

 }

}

// abstract decorator class

abstract class WindowDecorator implements Window {

 protected Window decoratedWindow;

 public WindowDecorator (Window decoratedWindow) {

 this.decoratedWindow = decoratedWindow;

 }

 public void draw() {

 decoratedWindow.draw();

 }

}

// adds vertical scrollbar functionality

class VerticalScrollBarDecorator extends WindowDecorator {

 public VerticalScrollBarDecorator (Window decoratedWindow) {

 super(decoratedWindow);

 }

 public void draw() {

 drawVerticalScrollBar();

 super.draw();

 }

 private void drawVerticalScrollBar() { .. }

 public String getDescription() {

 return decoratedWindow.getDescription() +" and vert sb";

 }

}

// adds horizontal scrollbar functionality

class HorizontalScrollBarDecorator extends WindowDecorator {

 public HorizontalScrollBarDecorator (Window decoratedWindow) {

 super(decoratedWindow);

 }

 public void draw() {

 drawHorizontalScrollBar();

 super.draw();

 }

 private void drawHorizontalScrollBar() { .. }

 public String getDescription() {

 return decoratedWindow.getDescription() + "and horiz sb";

 }

}
public class DecoratedWindowTest {

 public static void main(String[] args) {

 Window decoratedWindow = new HorizontalScrollBarDecorator (

 new VerticalScrollBarDecorator(new SimpleWindow()));

 // print the Window's description

 System.out.println(decoratedWindow.getDescription());}}

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Decorator
‣ Collaborations
‣ Decorators forward requests to component object.

‣ Consequences:
‣ More flexible.
‣ (than static inheritance; arbitrary nesting possible)

‣ Avoids feature-laden classes.
‣ (KISS and add functionality as needed.)

‣ Warn: Decorator & component are not identical.
‣ (equality can be thrown off because decorator != decorated)

‣ Negative: Many of little objects.
‣ (Lots of small, similar-looking classes differentiated by

how they are connected. hard to understand and debug.)

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Decorator		
‣ Implementation:
‣ 1) Interface conformance. (decorator interface required)
‣ 2) Abstract decorator not needed if only one

decoration is required.
‣ 2) Keep component classes lightweight. (too

heavyweight can overwhelm decorators
‣ 3) Changing a skin instead of changing the guts.

(if component is heavy, consider strategy instead)

‣ Related to: Decorators are a kind of single-node
Composite. Decorators can change the skin,
Strategy pattern can change the guts.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Singleton
‣ Intent: “Ensure a class has only one instance”
‣ Motivation: For situations when having multiple

copies of an object is either unnecessary or
incorrect.

‣ Applicability:
‣ Situations when there must be only one copy of

a class.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Singleton
‣ Structure:

‣ Participants:
‣ an instance operation that retrieves the instance.
‣ may be responsible for creating instance.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Singleton
‣ Collaborations
‣ All collaboration via instance operation.

‣ Consequences:
‣ Controlled access to instance.
‣ Reduced name space.
‣ Permits variable number of instances.
‣ More flexible than class operation

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Singleton
‣ Implementation:

1.Ensure a unique instance.

2.Provide an easy access point.
‣ Related to:
‣ Can be used to create Abstract Factory, Builder,

and Prototype.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Activity
‣ 5 mins:
‣ Right side: Develop a use for a observer pattern

for your system.
‣ Left side: Develop a usage of a decorator

pattern for your system.
‣ 10 mins (5 / group):
‣ Match up with team from other side of room.

Explain your pattern and how it improves your
system’s design.

