
Lecture 6 - Thursday, September 30 2010.

Material and some slide content from:
- Emerson Murphy-Hill
- Software Architecture: Foundations, Theory, and Practice
- Essential Software Architecture

Architectural Styles
Reid Holmes

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

AV contact
‣ Dwight Schmidt <de2schmi@uwaterloo.ca> will be

managing AV for the demos
‣ It would be nice if each group emailed him to let

him know what kind of devices you’ll be using for
both the prototypes and the final demos

‣ Let him know:
‣ That you’re from CS 446
‣ What make/model devices you will use
‣ If your device has any video-out capabilities

mailto:de2schmi@uwaterloo.ca
mailto:de2schmi@uwaterloo.ca

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Good properties of an architecture
‣ Result in a consistent set of principled techniques
‣ Resilient in the face of (inevitable) changes
‣ Source of guidance through product lifetime
‣ Reuse of established engineering knowledge

[CZARNECKI]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

“Pure” architectural styles
‣ Pure architectural styles are rarely used in practice
‣ Systems in practice:
‣ Regularly deviate from pure styles.
‣ Typically feature many architectural styles.

‣ Architects must understand the “pure” styles to
understand the strength and weaknesses of the
style as well as the consequences of deviating
from the style.

[CZARNECKI]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Role of context
‣ Neitzsche believed that all judgements were

heavily dependent on individual perspective and
that truth was the subject to interpretation

‣ The role of context is fundamental to the decisions
surrounding your architecture
‣ Two very similar applications may require

fundamentally different architectures for
seemingly trivial reasons

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural
Styles

Language
Based

Layered Dataflow

Shared
Memory

Interpreter
Implicit

Invocation

Peer-to-Peer

Main program &
Subroutines

Object-
oriented

Virtual
Machine

Client
Server

Batch-
sequential

Pipe-and-Filter

Blackboard

Rule-based Interpreter

Mobile
code

Publish-
subscribe

Event-based

[TOPOLOGY FROM
TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Language-based
‣ Influenced by the languages that implement them
‣ Lower-level, very flexible
‣ Often combined with other styles for scalability

Examples:

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Layered
‣ Layered systems are

hierarchically organized
providing services to upper
layers and acting as clients
for lower layers

‣ Lower levels provide more
general functionality to more
specific upper layers

‣ In strict layered systems,
layers can only communicate
with adjacent layers

[CZARNECKI]

Examples:

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Dataflow
‣ A data flow system is one in which:
‣ The availability of data controls computation
‣ The structure of the design is determined by the

orderly motion of data between components
‣ The pattern of data flow is explicit
‣ Variations:
‣ Push vs. pull
‣ Degree of concurrency
‣ Topology

[CZARNECKI]

Examples:

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Shared state
‣ Characterized by:
‣ Central store that represents system state
‣ Components that communicate through shared

data store
‣ Central store is explicitly designed and structured

Examples:

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Interpreter
‣ Commands interpreted dynamically
‣ Programs parse commands and act accordingly,

often on some central data store

Examples:

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Implicit invocation
‣ In contrast to other patterns, the flow of control is

“reversed”
‣ Commonly integrate tools in shared environments
‣ Components tend to be loosely coupled
‣ Often used in:
‣ UI applications (e.g., MVC)
‣ Enterprise systems
‣ (e.g., WebSphere)

Examples:

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Peer to Peer
‣ Network of loosely-coupled peers
‣ Peers act as clients and servers
‣ State and logic are decentralized amongst peers
‣ Resource discovery a fundamental problem

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Client-server
[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Client-server
‣ Clients communicate with server which performs actions

and returns data. Client initiates communication.
‣ Components:
‣ Clients and server.

‣ Connections:
‣ Protocols, RPC.

‣ Data elements:
‣ Parameters and return values sent / received by connectors.

‣ Topology:
‣ Two level. Typically many clients.

[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Additional constraints:
‣ Clients cannot communicate with each other.

‣ Qualities:
‣ Centralization of computation. Server can handle many

clients.

‣ Typical uses:
‣ Applications where: client is simple; data integrity important;

computation expensive.

‣ Cautions:
‣ Bandwidth and lag concerns.

Style: Client-server
[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Blackboard

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Independent programs communicate exclusively
through shared global data repository.

‣ Components:
‣ Independent programs (knowledge sources), blackboard.

‣ Connections:
‣ Varies: memory reference, procedure call, DB query.

‣ Data elements:
‣ Data stored on blackboard.

‣ Topology:
‣ Star; knowledge sources surround blackboard.

[TAILOR ET AL.]

Style: Blackboard

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Variants:
‣ Pull: clients check for blackboard updates.

‣ Push: blackboard notifies clients of updates.

‣ Qualities:
‣ Efficient sharing of large amounts of data. Strategies to complex

problems do not need to be pre-planned.

‣ Typical uses:
‣ Heuristic problem solving.

‣ Cautions:
‣ Not optimal if regulation of data is needed or the data frequently

changes and must be updated on all clients.

[TAILOR ET AL.]

Style: Blackboard

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Publish-subscribe

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Subscribers register for specific messages or content.
Publishers maintain registrations and broadcast messages to
subscribers as required.

‣ Components:
‣ Publishers, subscribers, proxies.

‣ Connections:
‣ Typically network protocols.

‣ Data elements:
‣ Subscriptions, notifications, content.

‣ Topology:
‣ Subscribers connect to publishers either directly or through

intermediaries.

[TAILOR ET AL.]

Style: Publish-subscribe

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Variants:
‣ Complex matching of subscribers and publishers can be

supported via intermediaries.

‣ Qualities:
‣ Highly-efficient one-way notification with low coupling.

‣ Typical uses:
‣ News, GUI programming, network games.

‣ Cautions:
‣ Scalability to large numbers of subscriber may require

specialized protocols.

[TAILOR ET AL.]

Style: Publish-subscribe

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Event-based

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Independent components asynchronously emit and
receive events.

‣ Components:
‣ Event generators / consumers.

‣ Connections:
‣ Event bus.

‣ Data elements:
‣ Events.

‣ Topology:
‣ Components communicate via bus, not directly.

[TAILOR ET AL.]

Style: Event-based

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Variants:
‣ May be push or pull based (with event bus).

‣ Qualities:
‣ Highly scalable. Easy to evolve. Effective for heterogenous

applications.

‣ Typical uses:
‣ User interfaces. Widely distributed applications (e.g., financial

markets, sensor networks).

‣ Cautions:
‣ No guarantee event will be processed. Events can overwhelm

clients.

[TAILOR ET AL.]

Style: Event-based

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Mobile code

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Code and state move to different hosts to be
interpreted.

‣ Components:
‣ Execution dock, compilers / interpreter.

‣ Connections:
‣ Network protocols.

‣ Data elements:
‣ Representations of code, program state, data.

‣ Topology:
‣ Network.

[TAILOR ET AL.]

Style: Mobile code

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Variants:
‣ Code-on-demand, remote evaluation, and mobile agent.

‣ Qualities:
‣ Dynamic adaptability.

‣ Typical uses:
‣ For moving code to computing locations that are closer to the

large data sets being operated on.

‣ Cautions:
‣ Security. Transmission costs. Network reliability.

[TAILOR ET AL.]

Style: Mobile code

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural
Styles

Language
Based

Layered Dataflow

Shared
Memory

Interpreter
Implicit

Invocation

Peer-to-Peer

Main program &
Subroutines

Object-
oriented

Virtual
Machine

Client
Server

Batch-
sequential

Pipe-and-Filter

Blackboard

Rule-based Interpreter

Mobile
code

Publish-
subscribe

Event-based

[TOPOLOGY FROM
TAILOR ET AL.]

‣ Design using an assigned pattern.
‣ What are the components, connectors, and topology?

Activity

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Activity followup
‣ Discussion revealed that designing FB using:
‣ Event-based
‣ Blackboard
‣ Pipe-and-filter
‣ Main and subroutine

