
Lecture 5 - Tuesday, September 28 2010.

Material and some slide content from:
- Emerson Murphy-Hill
- Software Architecture: Foundations, Theory, and Practice
- Essential Software Architecture

Architectural Styles
Reid Holmes



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Objectives
‣ What are the benefits / pitfalls of different 

architectural approaches?
‣ What are the phases of the design process?
‣ What are some alternative design strategies? 

When are they necessary?
‣ Define: abstraction, reification, and SoC
‣ Identify key architectural style categories



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural approaches
‣ Creative
‣ Engaging
‣ Potentially unnecessary
‣ Dangerous

‣ Methodical
‣ Efficient when domain is familiar
‣ Predictable outcome
‣ Not always successful

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Design process
1.Feasibility stage:

• Identify set of feasible concepts

2.Preliminary design stage:

• Select and develop best concept

3.Detailed design stage:

• Develop engineering descriptions of concept

4.Planning stage:

• Evaluate / alter concept to fit requirements, also 
team allocation / budgeting

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Design strategies
‣ Standard
‣ Cyclic
‣ Revisit earlier stages

‣ Parallel
‣ Split off #2 or #1 in parallel

‣ Adaptive
‣ Plan next stage with insights from current

‣ Incremental
‣ Update all stages as experience is gained

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Abstraction
‣ Definition:

‣ “A concept or idea not associated with a 
specific instance”

‣ Top down
‣ Specify ‘down’ to details from concepts

‣ Bottom up
‣ Generalize ‘up’ to concepts from details

‣ Reification:
‣ “The conversion of a concept into a thing”

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Level of discourse
‣ Consider application as a whole
‣ e.g., stepwise refinement

‣ Start with sub-problems
‣ Combine solutions as they are ready

‣ Start with level above desired application
‣ e.g., consider simple input as general parsing

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Separation of Concerns
‣ Decomposition of problem into independent parts
‣ In arch, separating components and connectors
‣ Complicated by:
‣ Scattering:
‣ Concern spread across many parts
‣ e.g., logging

‣ Tangling:
‣ Concern interacts with many parts
‣ e.g., performance



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural patterns
‣ A set of architectural design decisions that are 

applicable to a recurring design problem, and 
parameterized to account for different software 
development contexts in which that problem 
appears.

‣ e.g., Three-tier architectural pattern:

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural styles
‣ Some design choices are better than others
‣ Experience can guide us towards beneficial sets 

of choices (patterns) that have positive 
properties
‣ Such as?

‣ An architectural style is a named collection of 
architectural design decisions that:
‣ Are applicable to a given context
‣ Constrain design decisions
‣ Elicit beneficial qualities in resulting systems

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Architectural
Styles

Language
Based

Layered Dataflow

Shared
Memory

Interpreter
Implicit

Invocation

Peer-to-Peer

Main program &
Subroutines

Object-
oriented

Virtual
Machine

Client
Server

Batch-
sequential

Pipe-and-Filter

Blackboard

Rule-based Interpreter

Mobile
code

Publish-
subscribe

Event-based

[TOPOLOGY FROM 
TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Lunar lander example
[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Main program & subroutine



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Main program & subroutine
‣ Decomposition of functional elements.
‣ Components: 
‣ Main program and subroutines.

‣ Connections: 
‣ Function / procedure calls.

‣ Data elements: 
‣ Values passed in / out of subroutines. 

‣ Topology: 
‣ Directed graph between subroutines and main program.

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Main program & subroutine
‣ Additional constraints:
‣ None.

‣ Qualities:
‣ Modularity, as long as interfaces are maintained.

‣ Typical uses:
‣ Small programs.

‣ Cautions:
‣ Poor scalability. Data structures are ill-defined. 

‣ Relations to languages and environments:
‣ BASIC, Pascal, or C.

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Object-oriented
[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Object-oriented
‣ Encapsulation of state and actions.
‣ Components: 
‣ Objects or ADTs.

‣ Connections: 
‣ Method calls.

‣ Data elements: 
‣ Method arguments.

‣ Topology: 
‣ Varies. Data shared through calls and inheritance.

[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Additional constraints:
‣ Commonly used with shared memory (pointers). Object preserves identity 

of representation.

‣ Qualities:
‣ Data integrity. Abstraction. Change implementations without affecting 

clients. Can break problems into interacting parts.

‣ Typical uses:
‣ With complex, dynamic data. Correlation to real-world entities.

‣ Cautions:
‣ Distributed applications hard. Often inefficient for sci. computing. Potential 

for high coupling via constructors. Understanding can be difficult.

‣ Relations to languages and environments:
‣ C++, Java.

Style: Object-oriented
[TAILOR ET AL.]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Dataflow
‣ A data flow system is one in which:
‣ The availability of data controls computation.
‣ The structure of the design is determined by the 

orderly motion of data between components.
‣ The pattern of data flow is explicit.
‣ Variations:
‣ Push vs. pull.
‣ Degree of concurrency.
‣ Topology.

[CZARNECKI]



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Batch-sequential



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Separate programs executed in order passed, each 
step proceeding after the the previous finishes.

‣ Components: 
‣ Independent programs.

‣ Connections: 
‣ Sneaker-net.

‣ Data elements: 
‣ Explicit output of complete program from preceding step.

‣ Topology: 
‣ Linear.

[TAILOR ET AL.]

Style: Batch-sequential



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Additional constraints:
‣ One program runs at a time (to completion).

‣ Qualities:
‣ Interruptible execution.

‣ Typical uses:
‣ Transaction processing in financial systems.

‣ Cautions:
‣ Programs cannot easily feed back in to one another.

[TAILOR ET AL.]

Style: Batch-sequential



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Pipe-and-filter



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Streams of data are passed concurrently from one 
program to another.

‣ Components: 
‣ Independent programs (called filters).

‣ Connections: 
‣ Explicitly routed by OS.

‣ Data elements: 
‣ Linear data streams, often text.

‣ Topology: 
‣ Typically pipeline.

[TAILOR ET AL.]

Style: Pipe-and-filter



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Qualities:
‣ Filters are independent and can be composed in novel 

sequences.

‣ Typical uses:
‣ Very common in OS utilities.

‣ Cautions:
‣ Not optimal for interactive programs or for complex data 

structures.

[TAILOR ET AL.]

Style: Pipe-and-filter



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Style: Blackboard



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Independent programs communicate exclusively 
through shared global data repository.

‣ Components: 
‣ Independent programs (knowledge sources), blackboard.

‣ Connections: 
‣ Varies: memory reference, procedure call, DB query.

‣ Data elements: 
‣ Data stored on blackboard.

‣ Topology: 
‣ Star; knowledge sources surround blackboard.

[TAILOR ET AL.]

Style: Blackboard



REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Variants:
‣ Pull: clients check for blackboard updates.

‣ Push: blackboard notifies clients of updates.

‣ Qualities:
‣ Efficient sharing of large amounts of data. Strategies to complex 

problems do not need to be pre-planned.

‣ Typical uses:
‣ Heuristic problem solving.

‣ Cautions:
‣ Not optimal if regulation of data is needed or the data frequently 

changes and must be updated on all clients.

[TAILOR ET AL.]

Style: Blackboard


