
Lecture 5 - Tuesday, Sept 27 2010.

Material and some slide content from:
- Software Architecture: Foundations, Theory, and Practice

NFPs
Reid Holmes

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

NFPs
‣ NFPs are constraints on the manner in which the

system implements and delivers its functionality.
‣ E.g.,
‣ Efficiency
‣ Complexity
‣ Scalability
‣ Heterogeneity
‣ Adaptability
‣ Security
‣ Dependability

[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

FP vs NFP
‣ Products are sold based on their FPs.
‣ e.g., Cell phone, Car, Tent.

‣ However, NFPs play a critical role in perception.
‣ “This program keeps crashing”
‣ “It doesn’t work with my [...]”
‣ “It’s too slow”

[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Design guidelines for NFPs
‣ Provide guidelines that support various NFPs.
‣ Focus on architectural level:
‣ Components
‣ Connectors
‣ Topologies

[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

NFP: Efficiency
‣ Efficiency is a quality that reflects a system’s

ability to meet its performance requirements.
‣ Components:
‣ Keep them “small”.
‣ Simple and compact interfaces.
‣ Allow multiple interfaces to the same functionality.
‣ Separate data from processing components.
‣ Separate data from meta data.

‣ Connectors:
‣ Carefully select connectors.
‣ Be careful of broadcast connectors.
‣ Encourage asynchronous interaction.
‣ Be wary of location/distribution transparency.

‣ Topology:
‣ Keep frequent collaborators “close”.
‣ Consider the efficiency impact of selected styles.

[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Multiple Interfaces
[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Distribution transparency
[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Topological distance
[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

NFP: Complexity
‣ Complexity is a property that is proportional to the

size of a system, its volume of constituent
elements, their internal structure, and their
interdependencies.

‣ Components:
‣ Separate concerns.
‣ Isolate functionality from interaction.
‣ Ensure cohesiveness.
‣ Insulate processing from data format changes.

‣ Connectors:
‣ Isolate interaction from functionality.
‣ Restrict interactions provided by each connector.

‣ Topology:
‣ Eliminate unnecessary dependencies.
‣ Use hierarchical (de)composition.

[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Connector complexity
!"#$%&'()$*

+$*,-'%
+./.0$-

1$)2,-3%
4/)-5.6

4/)$-78-,6$((%
9,**:/"6.)",/(

8-,6$((%
&6;$<:#$-

4/")".#"=.)",/ >"?-.-'

!"#$%&'()$*

+$*,-'%
+./.0$-

1$)2,-3%
4/)-5.6

4/)$-78-,6$((%
9,**:/"6.)",/(

8-,6$((%
&6;$<:#$-

4/")".#"=.)",/ >"?-.-'

[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

NFP: Scalability / Heterogeneity
‣ Scalability: The capability of a system to be

adapted to meet new size / scope requirements.
‣ Heterogeneity: A system’s ability to be composed

of, or execute within, disparate parts.
‣ Internal: Ability to accommodate multiple kinds

of components and connectors.
‣ External: Ability to adjust to different platforms

and environments (e.g., portability).
‣ Portability: The ability of a system to execute on

multiple platforms while retaining their functional
and non-functional properties.

[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

‣ Components:
‣ Keep components focused (avoid bottlenecks).
‣ Simplify interfaces (ease adding new components).
‣ Avoid unnecessary heterogeneity (arch mismatch).
‣ Distribute data sources (avoid bottlenecks).
‣ Replicate data (caution: mutable vs immutable data).

‣ Connectors:
‣ Use explicit connectors (natural scaling points).
‣ Clearly define connector responsibilities (avoid bottlenecks).
‣ Choose the simplest connectors (complexity dec. perf.).
‣ Direct vs. indirect connectors (loose coupling, easy ext.).

‣ Topology:
‣ Avoid bottlenecks.
‣ Place data close to consumer (reduce network traffic).
‣ Location transparency (move / expand services, data).

NFP: Scalability / Heterogeneity
[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

NFP: Evolvability
‣ Evolvability: The ability to change to satisfy new

requirements and environments.
‣ Components:
‣ Same as for complexity.
‣ Goal is to reduce risks by isolating modifications.

‣ Connectors:
‣ Clearly define responsibilities (make it easy track risk).
‣ Make connectors flexible.
‣ Enable connector composition (support new comps.).

‣ Topology:
‣ Avoid implicit connectors (hard to understand).
‣ Encourage location transparency (supports obliviousness).

[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

NFP: Evolvability
[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

NFP: Dependability
‣ Reliability: The probability a system will perform

within its design limits without failure over time.
‣ Availability: The probability the system is available at

a particular instant in time.
‣ Robustness: The ability of a system to respond

adequately to unanticipated runtime conditions.
‣ Fault-tolerance: The ability of a system to respond

gracefully to failures at runtime.
‣ Faults arise from: environment, components, connectors,

component-connector mismatches.
‣ Survivability: The ability to resist, recover, and adapt

to threats.
‣ Sources: attacks, failures, and accidents.
‣ Steps: resist, recognize, recover, adapt.

‣ Safety: The ability to avoid failures that will cause loss
of life, injury, or loss to property.

[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

NFP: Dependability
‣ Components:
‣ Control external component dependencies (insulation).
‣ Support reflection (e.g., querying about health).
‣ Support exception handling (adjust to failures).
‣ Specify key state invariants (best, normal, worst-case).

‣ Connectors:
‣ Use explicit connectors (insulate components).
‣ Provide interaction guarantees (know how to react).
‣ Use advanced connectors (replicas, mocks, etc.).
‣ [Support seamless dependability]

‣ Topology:
‣ Avoid single points of failure.
‣ Enable back-ups (e.g., via advanced connectors).
‣ Support system health monitoring (e.g., perf. analysis).
‣ Support dynamic adaptation (e.g., dynamic discovery).

[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

NFP: Security
‣ Security: “The protection afforded a system to

preserve its integrity, availability, and confidentiality
if its resources.”

‣ Confidentiality
‣ Preserving the confidentiality of information means preventing

unauthorized parties from accessing the information or perhaps
even being aware of the existence of the information. I.e., secrecy.

‣ Integrity
‣ Maintaining the integrity of information means that only authorized

parties can manipulate the information and do so only in authorized
ways.

‣ Availability
‣ Resources are available if they are accessible by authorized parties

on all appropriate occasions.

[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Security arch. principles
‣ Least privilege:
‣ Give each component only the privileges it requires.

‣ Fail-safe defaults
‣ Deny access if explicit permission is absent.

‣ Economy of mechanism
‣ Adopt simple security mechanisms.

‣ Open design
‣ Secrecy != security.

[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Security arch. principles
‣ Separation of privilege
‣ Introduce multiple parties to avoid exploitation of privileges.

‣ Least common mechanism
‣ Limit critical resource sharing to only a few mechanisms.

‣ Psychological acceptability
‣ Make security mechanisms usable.

‣ Defence in depth
‣ Have multiple layers of countermeasures.

[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

IIS Example
[TAILOR ET AL.]

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Access control
‣ Decide whether access should be granted.
‣ Discretionary:
‣ Based on the accessor’s identity, the

resources, and whether the accessor has
permissions.

‣ Mandatory:
‣ Policy based. (e.g., dominating labels)

‣ Cross-cutting concern that should be
investigated at an architectural level.

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Discretionary access control

DB Component Interface

Alice Read-write;
always Bend Y

Bob Read-write;
Between 9-5 Fold N

Charles No access Spindle N

Dave No access Mutilate Y

Eve Read-only;
Always Non N

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Mandatory access control

REID HOLMES - SE2: SOFTWARE DESIGN & ARCHITECTURE

Trust management
‣ Trust is a subjective probability with which one

agent assesses another agents will perform some
specific action within a specific context.

‣ Reputation is the expectation of an agent’s
behaviour based on their past behaviours.

‣ Trust cannot be isolated to individual components.
‣ Dominant concern in decentralized applications.
‣ Architecture provides a foundation for reasoning

about trust-related issues.

