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What do these have in common?

Can you change the word

DOG into the word CAT?

DOG

HOG

HAG

HAT

CAT

Can you slide the tiles to put

the numbers in order?

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14
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Reconfiguration

The reconfiguration framework is defined in terms of:
a classical problem P,
an instance I of P,
a definition of feasibility of solutions to I, and
a definition of adjacency of feasible solutions.

To make the problem interesting/tractable:

Adjacency is polynomially testable.

Feasibility is restricted.
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Graph representation

A reconfiguration graph is defined as
vertices that represent feasible solutions and

edges that represent adjacency.

s

t

Viewed as a graph
Vertex

Edge

Path

Viewed as a process
Solution

Reconfiguration step
Reconfiguration sequence
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Common types of reconfiguration problems

Intertwined structural and algorithmic problems:

Reachability Is there a reconfiguration sequence between the
two input solutions?

Connectivity Is the reconfiguration graph connected?
DiameterWhat is the diameter of the reconfiguration graph?
Shortest transformationWhat is the shortest reconfiguration
sequence between the two input solutions?
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Examples revisited

Word reconfiguration

Solution: k-letter word in English
Step: Change one letter

Reachability example: Can you change the word DOG into the
word CAT?

15 puzzle reconfiguration

Solution: Arrangement of tiles

Step: Slide one tile

Connectivity example: Are all arrangements reachable from each
other?
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Warnings and apologies

Goals:

Whirlwind tour

Slides on my website to read at leisure

Too little:

Omissions of definitions

Omissions of references

Omissions of related work

Too much:

Too many slides

Too many words per slide
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Sliding block puzzles

Key idea: Studied in great detail for many years.
Generalize to moving tokens or pebbles on a graph:

Connectivity no for 15-puzzle [Johnson and Story 1879];
yes except if the puzzle graph is a cycle on n≥ 4

vertices, is bipartite and not a cycle, or an

exceptional graph on vertices [Wilson 1974]

Diameter cubic [Kornhauser, Miller, Spirakis 1984]
Shortest transformation NP-hard [Goldreich 1984];

P when all tokens are the same; NP-hard when at

least one token is special [van den Heuvel and

Trakultriapruk 2014]

Related work on robot motion planning

[Papadimitriou, Raghavan, Sudan, Tamaki 1994]

multi-colour pebbles [Goraly and Hassin 2008], many others
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An incomplete history of reconfiguration

Before 2011 Lots of work not called reconfiguration

2011 Reconfiguration framework [Ito, Demaine, Harvey,

Papadimitriou, Sideri, Uehara, Uno 2011]

Reachability

PSPACE-hardness results for some NP-hard

classical problems and machinery (NCL)

Polynomial-time algorithms for some

polynomially-solvable classical problems

Conjecture that reachability is not in P for all

classical problems in P

Since 2011 Lots of work called reconfiguration (and also lots

of work not called configuration)
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Applications and related frameworks

Example applications
Maintaining a firewall in a changing network

Assigning frequencies in a changing mobile network

Planning motion, including 3D printing and robot

movement

Glauber dynamics Markov chain from statistical physics

Related frameworks
Local search: Given a solution to an instance, find a better
solution that is “close” to the input solution.

Reoptimization: Given an instance, an optimal solution, and
changes to the instance, find an optimal solution to the

changed instance.

Incremental problems: Given a yes-instance, a witness that it
is a yes-instance and changes to the instance, determine if the

changed instance is a yes-instance.
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Related problems

String, graph, and tree editing Transformation of one entity

into another using a fixed set of editing operations

Tree rotation Transformation of a tree into another tree by

rotations

Morphing graph drawings Continuous transformation of one

shape into another

Linkage reconfiguration Continuous transformation of a simple

planar polygon to make it convex - Carpenter’s

Rule Theorem [Connelly, Demaine, Rote 2003]

Unfolding polyhedra Cutting and flattening polyhedra

Countless others
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Outline of the talk

Coverage of:

Progress on individual problems

Progress on general properties of the framework

Structured as:

Reachability

Connectivity

Case study: Dominating set

Case study: Colouring

Diameter

Case study: Colouring

Parameterizing by length of sequence

Case study: Vertex cover

Shortest transformation

Case study: Flip distance

Case study: Satisfiability

Other research directions
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Relating classical and reachability complexity

General pattern

Classical problem NP-hard⇒ reachability PSPACE-hard
Classical problem in P⇒ reachability in P

PSPACE-completeness of Independent Set, Clique, Vertex

Cover, Set Cover,Dominating Set, Integer Programming,

Vertex Colouring, List Edge-Colouring, Satisfiability, Steiner

Tree

Polynomial-time algorithms for Minimum Spanning Tree

and Matching

Conjecture [Ito et al. 2011]

Not all classical problems in P give rise to polynomially-solvable

reconfiguration problems.
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Common types of reconfiguration steps

Graph problems Solutions are sets of vertices, viewed as marked
by tokens.

Token Jumping (TJ) (all solutions are the same size)
Token Sliding (TS) (all solutions are the same size)
Token Addition and Removal (TAR)
(a bound on size is usually required to avoid triviality)

s

t

Satisfiability Solutions are truth assignments.
Change one variable from true to false or from false to true.
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Resolving the conjecture

Conjecture [Ito et al. 2011]

Not all classical problems in P give rise to polynomially-solvable

reconfiguration problems.

Theorem

There exist:

I a classical problem in P that gives rise to a PSPACE-hard

reachability problem (shortest paths [Bonsma 2012]), and

I an NP-hard classical problem that gives rise to a

polynomially-solvable reachability problem

(3-Colouring [Johnson et al. 2014]).

Open question

What properties of problems result in the pattern holding or

not?
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In search of algorithm paradigms

Contracted solution graph method:

Shortest path on planar graphs [Bonsma 2012]

List-colouring on caterpillars [Hatanaka, Ito, Zhou 2014]

Colouring on (k−2)-connected chordal graphs
[Bonsma and Paulusma 2015]

Idea:

Find a way of compacting the information about the

reconfiguration graph

Apply dynamic programming

Use tree decompositions

Conjecture

Reachability problems are tractable when restricted to graphs

of bounded treewidth.
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H-word reconfiguration

Given an alphabet and a binary relation between symbols, an

H-word is a word in which each pair of consecutive symbols is
in the relation.

H-word reconfiguration [Wrochna 2014]
Solution: H-word
Step: Change one symbol

PSPACE-completeness based on the classic proof of

undecidability for general Thue systems. [Post 1947]
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Resolving the treewidth conjecture

For graphs of bounded bandwidth (and hence treewidth), the

following reconfiguration problems are PSPACE-complete:

shortest path

colouring

list colouring

independent set

vertex cover

feedback vertex set

odd cycle transversal

induced forest

induced bipartite

subgraph

dominating set

[Wrochna 2014] [Mouawad, Nishimura, Raman, Wrochna 2014]

[Haddadan, Ito, Mouawad, Nishimura, Ono, Suzuki, Tebbal 2015]

A graph of bandwidth b has pathwidth and treewidth at most b.
[Schiex 1999]
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Dominating set intractability/tractability boundary

Key idea: Lots of work to be done on individual problems.
[Haddadan, Ito, Mouawad, Nishimura, Ono, Suzuki, Tebbal 2015]

Open question

What are the boundaries between tractability and intractability

for specific problems, and why?
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Connectivity case study: Dominating set

γ(G) is the domination number, the minimum cardinality of a
dominating set of G
Gamma graphs [Subramanian and Sridharan 2008]

Solution: Minimum dominating set (γ-set)

Step: Token jumping

Gamma graphs [Fricke et al. 2011]

Solution: Minimum dominating set (γ-set)

Step: Token sliding

k-dominating graph [Haas and Seyffarth 2014]
Solution: Dominating set of size at most k
Step: Token addition and removal
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Results on the k-dominating graph
Γ(G) is the upper domination number, the maximum cardinality
of a minimal dominating set of G
The k-dominating graph (a.k.a. reconfiguration graph) is
connected when:

k ≥min{|V(G)|− 1,Γ(G) + γ(G)} [Haas and Seyffarth 2014]
bipartite and chordal, when k ≥ Γ(G) + 1 [HS14]

k = n− 1 and there is a matching of cardinality at least two
[HS14]

k = n−µ and there is a matching of cardinality at least

µ + 1 [Suzuki, Mouawad, Nishimura 2014]

k = Γ(G) + 1 for certain classes of well-covered graphs

[Haas and Seyffarth 17]

k = Γ(G) + 1 for graphs that are both perfect and

irredundant perfect [HS17]

But, it can be disconnected for k = Γ(G) + 1, even for planar,

bounded tree-width, or b-partite for b≥ 3 [SMN14]
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Other results on dominating graphs

Key idea: There are many other structural problems worth
exploring.

Q: Which graphs are dominating graphs? [Haas and Seyffarth

2014]

A: Only C6 and C8 among cycles [Alikhani, Fatehi, Klavžar 2016]

Q: Which graphs have the dominating graph isomorphic to the

graph itself? [Haas and Seyffarth 2014]

A: k = 2 and G is a star [Alikhani, Fatehi, Klavžar 2016]

There is an infinite family of graphs with exponential diameter

for γ(G) + 1. [Suzuki, Mouawad, Nishimura 2014]
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Connectivity case study: Colouring

Vertex colouring reconfiguration

Solution: A k-colouring
Step: Change the colour of one vertex

Mixing

A graph is k-mixing if its reconfiguration graph for k colours is
connected.

∆(G) is the maximum degree of any vertex in G.
Every graph is (∆(G) +2)-mixing. [Jerrum 1995]

Every graph is (χg(G) + 1)-mixing for χg(G) the Grundy
number of G, the highest possible number of colours using
by a greedy colouring of G (χg(G)≤∆(G) + 1).

[Bonamy and Bousquet 2013]

Every graph is (tw(G) +2)-mixing for tw(G) the treewidth ofG. [Bonamy and Bousquet 2013]
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Diameter case study: Colouring

Propertyk = 3

k ≥ tw(G) +2

k ≥ χg(G) + 1

k = ∆ + 1,∆≥ 3

Diameter boundO(n2) for any
component

2(n2 +2)

4χg(G)n

O(n2) component
(plus isolated

vertices)

Result
[Cereceda, van den

Heuvel, Johnson

2011]

[Bonamy and

Bousquet 2013]

[Bonamy and

Bousquet 2013]

[Feghali, Johnson,

Paulusma 2015]

Various classes of graphs for which reachability is

PSPACE-complete have examples with superpolynomial

diameter. [Bonsma and Cereceda 2007]
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More on colouring

Reconfiguration using Kempe changes (exchanging of the
colours a and b in a maximal connected subgraph in which all
vertices are coloured either a or b). [Feghali, Johnson, Paulusma
2015] Used to find clash-free timetables. [Mühlenthaler and

Wanka 2015]

Homomorphism reconfiguration is a generalization of

colouring. [Wrochna 2014]

Upcoming CanaDAM talk

Benjamin Moore “Some observations on circular colouring

mixing for (p,q)-colourings when p/q< 4”

Today at 3:50 in this room

Upcoming CanaDAM talk

Karen Seyffarth “Reconfiguring Vertex Colourings of 2-trees”

Today at 4:20 in this room
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Working with the diameter

Frequent pattern

Diameter is exponential⇒ reachability PSPACE-hard
Diameter is polynomial⇒ reachability in P

Dealing with diameter

“Neutralize” the effect of diameter by considering the

complexity in terms of the length of the reconfiguration

sequence.

The parameterized complexity of an algorithm is viewed as a
function of the input and a parameter.

A problem is fixed-parameter tractable (in FPT) if the running
time is polynomial in the size of the input and a computable

function of the parameter. [Downey and Fellows 1997]
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Parameterized complexity

Idea: “Push” the non-polynomial part of the complexity onto

the parameter(s).

Complexity hierarchy:

FPT ⊆W[1] ⊆W[2] ⊆ ·· · ⊆W[P] ⊆ XP

Classical complexity
P

NP-hard

Parameterized complexity
FPT

W[1]-hard (or worse)

Possible parameters:

Length of reconfiguration sequence (`)

Bound on a feasible solution (usually size k)
Properties of the input (e.g. treewidth t)
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Relating classical and reconfiguration problems

The subset problem for hereditary property π is the problem

of finding a subset V ′ ⊆ V such that G[V ′] ∈ π .

Hereditary property subset reconfiguration

Solution: A set of vertices U of size at most k such that G[U]
has property π

Step: Add or delete a vertex

Hereditary property deletion reconfiguration

Solution: A set of vertices U of size at most k such thatG[V(G)\U] has property π

Step: Add or delete a vertex

Example: Independent set as subset, Vertex cover as deletion
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General results on parameterized problems

Lemma [Mouawad, Nishimura, Raman, Simjour, Suzuki 2013]

For hereditary property π that satisfies certain conditions, the

following are at least as hard as the classical subset problem:

I subset reconfiguration reachability parameterized by k+ `,
and

I deletion reconfiguration reachability parameterized by `.

Corollary

The following are both W[1]-hard:

I independent set reachability parameterized by k+ `, and

I vertex cover reachability parameterized by `.
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Parameterized complexity case study: Vertex Cover

�

� + t

k

bounded
degree

tree
cactus

planar generalbipartitebounded
treewidth

W [1]-hardFPTP

[Ito, Demaine, Harvey, Papadimitriou, Sideri, Uehara, Uno 2011]

[Mouawad, Nishimura, Raman, Simjour, Suzuki 2014]

[Mouawad, Nishimura, Raman 2014]

[Mouawad, Nishimura, Raman, Wrochna 2014]
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Shortest transformation case study: Flip distance

Flip distance

Solution: Triangulation of a set of points in the plane

Step: Flip a diagonal of a quadrilateral

Reachability, connectivity and diameter solved
(always connected, quadratic) [Lawson 1972]Shortest transformation NP-complete [Lubiw and Pathak 2012]
Diameter and shortest transformation

Polynomial diameter 6⇒ shortest transformation in P
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Subsequent work on flip distance

Original problem:
Shortest transformation APX-hard [Pilz 2014], and
fixed-parameter tractable with respect to the flip distance

[Kanj and Xia 2015]

Extended to labelled flips:
Connectivity and shortest transformation results
[Lubiw, Masárová, Wagner 2017]

Upcoming CanaDAM talk

Anna Lubiw “Flipping Edge-Labelled Triangulations”

Thursday at 11:20 in ENG 105

Mini-symposium on Topological and Geometric Algorithms,

Part II (CM22).
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Case study: Satisfiability

Satisfiability reconfiguration

Solution: Satisfying truth assignment

Step: Change one variable from true to false or from

false to true

Classical problem Dichotomy: in P for formulas built from

Schaefer relations, otherwise NP-complete
[Schaefer 1978]

Reachability and connectivity Dichotomy: in P for formulas built
for tight relations (a superset of Schaefer
relations), otherwise PSPACE-complete

[Gopalan et al. 2009], [Schwerdtfeger 2013]

Diameter Dichotomy: linear if reachability is in P, otherwise
exponential
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Shortest transformation case study: Satisfiability

Trichotomy: [Mouawad, Nishimura, Pathak, Raman 2014]

P for navigable (a subset of tight relations),
NP-complete for tight but not navigable, and

otherwise PSPACE-complete

Generalized to “quantum version”

[Gharibian and Sikora 2014]

Generalized to constraint satisfaction [Wrochna 2015]
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Other research directions: Other problem domains

Upcoming CanaDAM talk

Moritz Mühlenthaler “Reconfiguration of Common Independent

Sets of Partition Matroids”

Today at 4:50 in this room

Past CanaDAM talk

Anna Lubiw “Reconfiguring Ordered Bases of a Matroid”

This morning
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Examining adjacency

Problems are equivalent if an instance is solvable using one
type of reconfiguration step if and only if it is solvable using

another type of reconfiguration step.

Independent Set: TJ and TAR are equivalent

[Kamiński et al. 2012]

Clique: TJ, TS, and TAR are equivalent [Ito et al. 2015]

New definitions of adjacency [deBerg, Jansen, Mukherjee 2016]

Multiple Token Jumping (MTJ)
TAR Reconfiguration Threshold
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Machinery for PSPACE-completeness results

A Nondeterministic Constraint Logic (NCL) machine is an
undirected graph with integer weights on vertices and edges.

[Hearn and Demaine 2005]

NCL reconfiguration

Solution: An orientation of the edges such that the weight of

each vertex is no greater than the sum of the

weights of incoming edges

Step: Change the direction of one edge

2

2

1 1
2

2

2 2

ORAND

PSPACE-complete by a reduction from Quantified Boolean

Formula [Garey and Johnson 1990]
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Toolkit for proving hardness results

Main tools:

Mimic hierarchy of reductions for classical problems

Use NCL directly or indirectly

Use H-word reconfiguration directly or indirectly

NCL remains PSPACE-complete for graphs of bounded

bandwidth [van der Zanden 2015]

Generalization [Osawa, Suzuki, Ito, Zhou 2017]:

Generalized to include neutral, undirected edges

Introduce new link gadget

Completes classification of complexity of list

edge-colouring, P for k ≤ 3 and PSPACE-complete

otherwise
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New approaches to reconfiguration

OptimizationWhat is the optimal solution reachable from a
given solution?

Related work on colouring, going from an improper to a proper

colouring [Felsner et al. 2009] [Garnero et al. 2016]

Isolated vertices How can the frozen configurations be
characterized?

Measuring girthWhat is known about the girth of
reconfiguration graphs?

Upcoming CanaDAM talk

Beth Novick “Structural Properties of Shortest Path Graphs”

Today at 5:20 in this room
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Open questions

Patterns to explore:

Relation between classical complexity and reconfiguration

complexity (exceptions known)

Relation between diameter and complexity (flip distance is

an exception)

Relation between symmetric difference and shortest

transformation (SAT is an exception)

Open question

What properties of problems result in the pattern holding or

not?

Are there classes of graphs for which reconfiguration is

generally tractable?

What algorithm paradigms suit reconfiguration problems?
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Where to learn more about reconfiguration

More talks this session and tomorrow

“The Complexity of Change” [van den Heuvel 2013]

Report on Banff International Research Station workshop

on Combinatorial Reconfiguration, 2017

Reconfiguration mailing list

lists.uwaterloo.ca/mailman/listinfo/reconf

Reconfiguration web portal

http://www.ecei.tohoku.ac.jp/alg/core/
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